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Abstract
Magnetic resonance–electrical impedance tomography (MR-EIT) is a
conductivity imaging method based on injecting currents into the object. In this
study, a new MR-EIT method, whereby currents are induced inside the object
by using external coils, is proposed. This new method is called induced current
magnetic resonance–electrical impedance tomography. In induced current MR-
EIT surface electrodes are not used and thereby artifacts due to electrodes are
eliminated. The reconstruction algorithm is based on the measurement of only
one component of the secondary magnetic flux density. The algorithm is an
iterative one, is 3D and is based on the solution of a linear matrix equation at
each iteration. For the measurement of secondary magnetic flux density, a pulse
sequence to be used in the MRI system is proposed. Numerical simulations
are performed to test the algorithm for both noise-free and noisy cases. The
singular value behavior of the matrix is monitored and it is observed that at least
two current induction profiles improve the images significantly. It is shown
that induced current MR-EIT can be used to reconstruct absolute conductivity
images without the need for any additional peripheral voltage measurement.

Keywords: electrical impedance tomography (EIT), MR-EIT, current density
imaging (CDI), induced current MR-EIT

1. Introduction

Magnetic resonance–electrical impedance tomography (MR-EIT) methods proposed
previously (Birgül and İder 1995, İder and Birgül 1998, Birgül et al 2003, Seo et al 2003a,
2003b, Kwon et al 2002, Khang et al 2002, Oh et al 2003, İder et al 2003, İder and Onart 2004)
are based on injecting current into the object to be imaged. These injected current MR-EIT
methods suffer from problems caused by the current injection electrodes such as susceptibility
artifacts and denser currents near the electrodes. To circumvent these problems, in this study,
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induced current MR-EIT is proposed. In this technique, similar to induced-current EIT (Gençer
et al 1994), external coils are used to expose the object to an ac primary magnetic field which
then generates eddy currents inside the object. These eddy currents create a new, secondary,
magnetic flux density which can be measured by MRI. This secondary magnetic flux density
contains the information necessary to reconstruct internal conductivity distribution.

MR-EIT techniques fall into two categories, those utilizing all three components of the
secondary magnetic flux density and those utilizing only Bz, where z is the direction of the
main dc magnetic field of the MRI system. The former class of algorithms has the disadvantage
that the object to be imaged has to be rotated in the MRI gantry because only one component
of the secondary magnetic flux density can be measured by MRI at one time. Therefore in the
induced current MR-EIT method proposed in this study a reconstruction algorithm based on
Bz only is utilized.

There are several MR-EIT reconstruction techniques based on Bz only. Birgül and İder
(1995), İder and Birgül (1998) and Birgül et al (2003) use an iterative sensitivity matrix
method which utilizes the linearized relation between perturbation in Bz and perturbation
in conductivity. Seo et al (2003a) use the gradient of Bz, i.e. ∇Bz, to reconstruct internal
current density distribution in axially symmetric cylindrical sections, after which they use
a J-substitution algorithm (Kwon et al 2002, Khang et al 2002) to reconstruct conductivity.
Seo et al (2003b) and Oh et al (2003), have developed iterative algorithms which utilize the
Laplacian of Bz, i.e. ∇2Bz. In these iterative algorithms, at each iteration the gradient of
conductivity is found first. Seo et al (2003b) integrate this gradient on Cartesian lines to
reconstruct conductivity. Oh et al (2003), on the other hand, use a layer potential technique
to reconstruct conductivity from its gradient. Later, İder and Onart (İder et al 2003, İder and
Onart 2004) proposed several reconstruction algorithms for both current density imaging and
conductivity imaging by using only one component of magnetic flux density. In this study the
methods of İder and Onart are adopted for induced current MR-EIT.

In summary, a new technique for conductivity imaging, induced current MR-EIT, is
proposed in this study. The reconstruction algorithm is based on the measurement of only one
component of the secondary magnetic flux density. The algorithm is an iterative one, is 3D and
is based on the solution of a linear matrix equation at each iteration. Numerical simulations
are performed to test the algorithm for both noise-free and noisy cases.

2. Formulation of the forward problem

Let � be a bounded and electrically conductive domain in R3 with boundary �. Conductivity
and resistivity distributions inside � are σ and ρ, respectively, both assumed to be positive.
By applying a low frequency magnetic flux density inside �, a quasi-static current density
distribution can be generated in �. This distribution will be a function of conductivity
distribution inside the object.

Maxwell’s equations for a sinusoidally varying electromagnetic field in a linear,
nonmagnetic, isotropic and conductive medium are as follows:

∇ × E = −jωB (1)

∇ × B = µ0(σ + jωε)E (2)

∇ · E = ρυ

ε
(3)

∇ · B = 0 (4)
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with the continuity equation

∇ · J = −jωρυ (5)

where ρυ is the charge density and D and J are related to E by

J = (σ + jωε)E, (6)

and

D = εE. (7)

Additionally, the relations between magnetic vector potential, A, magnetic flux density,
B, and electric field, E, are

B = ∇ × A (8)

E = −∇� − jωA (9)

where � is the potential distribution in �.
Derivation of the forward problem starts from the continuity equation. Since there is no

charge density in the object, the continuity equation can be rewritten as

∇ · ((σ + jωε)E) = 0. (10)

If we combine equations (9) and (10), we get

∇ · ((σ + jωε)∇�) = −jω∇ · ((σ + jωε)A). (11)

By using the property ∇ · (f U) = f ∇ · U + ∇f · U, the above equation becomes

∇ · ((σ + jωε)∇�) = −jω((σ + jωε)∇ · A + ∇(σ + jωε) · A). (12)

In equation (8), the curl of A is defined as magnetic flux density. However, divergence
of A must also be defined in order to specify A completely. Since A is an auxiliary function,
we are free to define divergence of A. Coulomb’s gauge, which adopts ∇ · A = 0, is a good
selection (Gençer et al 1994). Then, the formulation becomes

∇ · ((σ + jωε)∇�) = −jω∇(σ + jωε) · A. (13)

Due to the fact that we work at low frequency, it is possible to make the assumption that
ωε � σ (Gençer et al 1994), and therefore equations (2), (6) and (13) reduce to

∇ × B = µ0J (14)

J = σE (15)

∇ · (σ∇�) = −jωA · ∇σ. (16)

Since there will be no current flow outside the object, the normal component of the current
density on � will be equal to zero. By using this fact, the boundary condition of the above
partial differential equation becomes:

∂�

∂n
= −jωA · n (17)

where n is the outward normal vector.
Another assumption used is that the secondary magnetic vector potential, As , due to eddy

currents is much smaller than the primary magnetic vector potential, Ap, generated by the
external induction coil (Gençer et al 1994). If we take the phase of the ac current in the
external induction coil as the reference phase (zero phase), then Ap is purely real for our case,
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Figure 1. (a) Cuboid shaped simulation phantom and coil placement. (b) Top view of coil
placements and simulation phantom.

i.e. low frequency quasi-static condition. Therefore equations (16) and (17) can be rewritten
as

∇ · (σ∇�) = −jωAp · ∇σ, (18)

and
∂�

∂n
= −jωAp · n. (19)

Note that since conductivity is a real positive quantity � must be purely imaginary. Under the
same assumption equation (9) becomes

E = −∇� − jωAp, (20)

and consequently it can be seen from equations (20) and (15) that E and J are also purely
imaginary vector quantities.

Secondary magnetic flux density Bs , due to J, is given by the Biot-Savart integral

Bs(r) = µ0

4π

∫
�

J(r′) × r − r′

|r − r′|3 dυ ′ (21)

where r and r′ are field and source vectors defined in �. Primary magnetic flux density Bp,
due to the external induction coil (assumed to be circular and lying in the xy-plane) is given
by another Biot-Savart integral

Bp(r) = µ0Icoila

4π

∫
C

aφ × r − r′

|r − r′|3 dl′ (22)

where r is the field vector in �, r′ is the source vector on the coil Icoil is the current flowing in
the coil, C is the contour of the coil, a is the radius of the coil, dl′ is the incremental length of
a current element on the coil and aφ is the unit vector of the incremental current element. Bs

is purely imaginary and Bp is purely real.
The finite element method (FEM) is used to solve equation (18) for the boundary

condition in equation (19). In figure 1(a), the object, which is a cuboid, used in the simulation
studies is shown. The object is divided into small cubic elements using a regular Cartesian
mesh. In figure 2(a) the Cartesian mesh of cubic elements for an xy-slice of the cuboid
object is illustrated. It is assumed that each cubic element has constant conductivity inside.
Each cubic element is divided into six tetrahedral elements (Silvester and Ferrari 1996).
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Figure 2. (a) A Cartesian mesh of cubic elements for an xy-slice of the cuboid object. (b) Six
tetrahedra forming a cubic element.

In figure 2(b), the six tetrahedra of a cubic element are shown. � is approximated by a
first-order polynomial inside a tetrahedral element. In addition, Ap is assumed to be constant
inside a tetrahedral element. E and J are also constant since Ap is constant inside the element
and � is planar. To find E and J in a cubic element, the average of the corresponding values
for the six tetrahedral elements making up the same cubic element is used and new E and J
are assumed to be at the centers of cubes.

The FEM matrix generated for the solution of � is singular and it is necessary to assign
a reference voltage value to any one of the mesh nodes. The value of the reference voltage is
irrelevant because in finding E and J the gradient of � is used. The size of the FEM matrix
is very large. In our simulation experiments, its size is 32 × 32 × 64 × 6 by 32 × 32 ×
64 × 6 as explained in section 6. To lower the computational cost of the FEM solution, the
preconditioned conjugate gradients method (PCG of Matlab) is used and sparsity of the FEM
matrix is taken into consideration.

Secondary magnetic flux density is calculated by discretizing the Biot-Savart integral.
During the calculation, it is assumed that there exist current sources located at the center
of gravity of each tetrahedron, and the field points are selected as the center of each cubic
element.

3. Formulation of the inverse problem

Magnetic flux density has real and imaginary parts. Due to the assumptions explained in
section 2, equation (1) becomes

∇ × (ER + jEI ) = −jω(Bp + jBs). (23)

The imaginary part of equation (23) is

∇ × EI = −ωBp. (24)

By using the inverse of equation (15), i.e. E = ρ J, we get

∇ × ρJI = −ωBp (25)

where JI itself is the eddy current density since J is purely imaginary. An equivalent form of
equation (25) is

∇ρ × JI + ρ∇ × JI = −ωBp. (26)
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The imaginary part of the current density distribution will be directly related to Bs by
using equation (14), and the curl of JI can be expressed as

∇ × JI = ∇ × ∇ × Bs

µ0
= 1

µ0
(∇(∇ · Bs) − ∇2Bs) = −∇2Bs

µ0
. (27)

By inserting equation (27) into equation (26), we get

∇ρ × JI − ρ
∇2Bs

µ0
= −ωBp. (28)

The third component of the above vectoral equation system is

∂ρ

∂x
Jy − ∂ρ

∂y
Jx − ρ

∇2Bsz

µ0
= −ωBpz (29)

where Jx and Jy represent the x and y components of current density JI respectively, and Bsz

and Bpz are the z components of the corresponding field quantities.
Assuming that Bsz is measured and Bpz is known, this equation is a partial differential

equation for ρ and it is the basis for the solution of the inverse problem. It is a nonlinear
PDE because Jx and Jy depend on ρ. This equation can be solved iteratively to obtain the ρ

distribution on a xy-slice by xy-slice basis (İder et al 2003, İder and Onart 2004) as explained
in the next section.

4. Numerical solution of the inverse problem

Equation (29) is discretized for any xy-slice by using finite differences. The discretization
points are the centers of the cubic elements of the selected slice, say the kth slice. Let us assume
that the Cartesian mesh contains N cubic elements in the x direction and M cubic elements in
the y direction. Then, there exist NM cubic elements in each slice. The resistivity values of
these cubic elements are denoted by R which is an NM × 1 vector. In inner regions of the slice,
discretization is done with central difference formulation. On the edges and corners, backward
or forward difference formulations are used where appropriate. For example, the discretized
equation for the (i, j)th cubic element, which is in the inner region, i.e. 2 < i < N − 1 and
2 < j < M − 1, is

ρ(i + 1, j, k) − ρ(i − 1, j, k)

2�x
Jy(i, j, k) − ρ(i, j + 1, k) − ρ(i, j − 1, k)

2�y
Jx(i, j, k)

− ρ(i, j, k)
(∇2Bsz)(i,j,k)

µ0
= −ωBpz(i, j, k) (30)

where the discretized version of the Laplacian operator for a scalar function U for the kth slice
(not on the boundary) is

(∇2U)(i,j,k) = (1/6)(U(i + 1, j, k) + U(i − 1, j, k) + U(i, j + 1, k)

+ U(i, j − 1, k) + U(i, j, k + 1) + U(i, j, k − 1) − 6U(i, j, k)). (31)

There are NM equations, one for each cubic element, and NM resistivity unknowns. We
rearrange and combine all the equations into a matrix form as

SR = b (32)

where S is the NM × NM coefficient matrix, R is the NM × 1 vector of unknowns and b is the
NM × 1 vector of −ωBpz.

It is possible to take more than one set of measurements with different coil placements.
In figure 1(b), four circular coils which are centered at different locations are shown. We call
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the combination of the type of coil and where the coil is placed the current induction profile.
If there are K different current induction profiles, there will be K different Jx , Jy,∇2Bsz and
Bpz distributions, and consequently there will be K different S matrices and b vectors. We
rename these as Jx, Jy, S and b where  = 1, 2, . . . , K. We concatenate all S matrices
and b vectors to form the combined system equation

�R = β (33)

where � = [
ST

1 ST
2 · · · ST

K

]T
is the combined system matrix and β = [

bT
1 bT

2 · · · bT
K

]T
. Note

that R is the vector of unknown resistivities of the kth slice. We define Θ as the vector of
unknown resistivities of the whole 3D object formed by concatenating the R vectors of the
slices.

Equation (33) is nonlinear in R because the Jx and Jy which appear in the S matrices
are dependent on R. Therefore, an iterative method for reconstruction is proposed. The steps
of the iterative method can be defined as:

Step 1. Assume an initial Θ0 distribution for the 3D object to be imaged. Usually Θ0 is taken
to be the uniform distribution. Set iteration number i to 1.

Step 2. Take Θi = Θi−1. Calculate Jx and Jy,  = 1, . . . , K for all slices simultaneously
using the 3D FEM solver for Θi.

Step 3. Calculate b,  = 1, . . . , K by using known Bpz information for all current induction
profiles, for all slices.

Step 4. Calculate the Laplacian of measured Bsz for all profiles and construct S,  = 1, . . . , K ,
for all slices.

Step 5. For each slice, concatenate S matrices and b vectors to obtain the � matrix and β

vector of that slice.
Step 6. Solve equation (33) for each slice.
Step 7. Form a new Θi from the R vectors of all slices and check for the stopping condition

and stop if it is met. Else, increase i by 1 and go to step 2.

In step 6, equation (33) is solved in the least-squares sense by solving

�T �R = �T β. (34)

As will be shown later, for the simulation experiments made in this study, �T � is non-singular,
and LU factorization with partial pivoting is used for the solution of equation (34) (INV of
Matlab).

The stopping condition in step 7 may be selected in many different ways. One way of
selecting where to stop the iteration is to look at the relative L2 norm error. Relative L2 norm
error is defined as

L2
rel.err = 100

‖Θ − Θorg‖L2

‖Θorg‖L2

(35)

where Θorg is the original resistivity distribution. Note that this error measure can only be
used in simulations in which Θorg is known, in order to observe the convergence properties of
the algorithm.

5. The proposed pulse sequence

MRI techniques for measuring the magnetic flux density generated by a current density
distribution are developed by investigators who aim at current density imaging (CDI). For the
case of injected dc currents, Scott et al (1992) have used a spin echo pulse sequence which
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Figure 3. The proposed pulse sequence for induced current MR-EIT. I, shown by the solid line, is
the current flowing through the excitation coil. Bpz is in-phase with I, but Bsz is out-of-phase with it
as illustrated by the broken line on the same axis with I. RF line represents the RF pulses. Gx,Gy

and Gz are the applied gradients in the x, y and z directions during the spin echo experiment,
respectively. tcurr, Techo, treadout, tπ−π , Tw are the duration of applied current, the echo time, the
duration of readout, the time between successive 180◦ RF pulses and the time between the 90◦ RF
pulse and the first 180◦ RF pulse respectively.

has a single 180◦ RF pulse. For the case of injected ac currents of 1 kHz frequency, Mikac
et al (2001) have developed a method which involves multiple 180◦ RF pulses. The MRI pulse
sequence used by Mikac et al can be adapted to the particular case of induced ac currents
used in this study, as shown in figure 3. During ac excitation, 180◦ RF pulses are applied at
the peaks of Bpz, and therefore phase accumulating due to Bpz is zero for each half-cycle.
However, since Bsz and Bpz are out-of-phase by 90◦, 180◦ RF pulses coincide with the zero
crossings of Bsz. Therefore phases accumulating due to Bsz at each half-cycle add up. Total
phase accumulating during current application is therefore due only to Bsz and is equal to

ϕS(x, y, z) = (−1)Nγ 〈Bsz(x, y, z)〉 tcurr (36)

where N is the number of 180◦ RF pulses, γ is the gyro-magnetic ratio (26.75 ×
107 rad s−1 T−1), tcurr is the duration of the applied current I and 〈Bsz〉 is the time average value
of Bsz during one positive half-cycle, that is, (2/π)B

peak
sz (peak during one positive half-cycle).

In order to obtain more sensitivity and also to eliminate the constant phase terms due to
static magnetic field inhomogeneities and delays due to MRI hardware, the proposed pulse
sequence is applied twice with the current I reversed in the second application. The phase
difference of the complex MR images obtained for the two applications is given by

ϕS2(x, y, z) = 2(−1)NγBpeak
sz (x, y, z)

2tcurr

π
. (37)

Since tπ−π is much smaller than twice Tw, spin echoes do not occur between 180◦ RF
pulses. Instead, a spin echo is only formed at the end, during treadout, provided that N is
odd. To use similar parameters as used in Mikac et al (2001), we have chosen Tw = 6 ms,
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Slice 1 Slice 23 Slice 27 Slice 32

Slice 33 Slice 38 Slice 42 Slice 64

                      S/m (Ω–m)
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Figure 4. Original conductivity distributions used in the simulations for eight different slices of
the first simulation phantom.

tcurr = 19.5 ms, N = 39 and Techo = 31.5 ms. With these parameters and maximum B
peak
sz =

30 nT as in the first simulation phantom (described in the next section), the phase accumulating
due to Bsz is 14.3◦.

In the last section, various practical aspects of the proposed pulse sequence are discussed.

6. Simulation results

Computer simulations are made in order to assess the performance of the proposed
induced current MR-EIT method. A cuboid shaped object with edge lengths 32 cm ×
32 cm × 64 cm in the x, y and z directions, respectively, is used as the basis of our simulation
phantoms (see figure 1(a)). This rectangular object is divided into 1 cm × 1 cm × 1 cm cubic
elements using a regular Cartesian mesh. The xy-slices are numbered from 1 to 64 starting
from the bottom of the object. For example, the 32nd slice is the slab between z = −1 cm and
z = 0 cm planes. The first simulation phantom contains two spheres which are centered at
different xy-slices and which have different conductivity values. One has a conductivity value
of 0.4 S m−1, and the other has a conductivity value of 0.1 S m−1. Background conductivity
is taken as 0.2 S m−1. In figure 4, conductivity distributions of eight selected slices of the first
simulation phantom are given.

In figure 1(b), the external induction coils are illustrated with reference to the simulation
object. Four external circular coils with diameters 192 cm are used to generate the
primary magnetic flux density excitation. These coils are placed with centers at (x, y, z) =
(−32, 0, 0), (32, 0, 0), (0,−32, 0) and (0, 32, 0), where quantities are in cm. These coils are
excited one at a time and it is assumed that Bsz is measured for these four cases. For simulation
purposes Bsz is calculated to generate simulation data.

The reconstructed conductivity distribution for the first simulation phantom, for the fifth
iteration, is given in figure 5. The initial uniform conductivity distribution is taken to be
0.05 S m−1. It is observed that boundaries and locations of the spheres are well reconstructed
with high spatial resolution in all slices. In figure 6, results for the first five iterations are given
for the 32nd slice (mid-slice). From the profile plots, the convergence characteristics of the
algorithm can be observed. The relative L2 norm errors for the first five iterations are 59.4%,
14.6%, 13.3%, 13.3% and 13.3%.
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Slice 1 Slice 23 Slice 27 Slice 32

Slice 33 Slice 38 Slice 42 Slice 64

                      S/m (Ω–m)

0.05 (20.0)

0.10 (10.0)

0.15 (6.67)

0.20 (5.00)
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Figure 5. Fifth iteration reconstructed conductivity distributions for eight different slices of the
first simulation phantom.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5                      S/m (Ω–m)

0.05 (20.0)

0.15 (6.67)

0.25 (4.00)

0.35 (2.86)

0.45 (2.22)

Figure 6. First five iteration images for slice 32 of the first simulation phantom and two different
profile plots of the corresponding images. The first profile plot is for the horizontal line which
passes through the center of the higher circular conductivity region. Similarly, the second profile
plot is for the horizontal line which passes through the center of the lower circular conductivity
region. In each profile plot, the original conductivity values are shown by solid lines and the
reconstructed conductivity distributions are shown by dots. The scales are taken to be between
0.45 and 0.05 for the profile plots except for the first profile plot in the iteration 1 column for which
the scale is between 1.45 and 0.05.

In figure 7, some simulation results for the second simulation phantom containing a more
complicated conductivity distribution are given. The second simulation phantom is a simple
model of the human thorax, but its conductivity distribution does not have z-dependence.
It contains less conductive lung (0.181–0.061 S m−1), bone (0.143–0.055 S m−1) and more
conductive heart (0.4–0.22 S m−1) regions. In this phantom, as compared to the first simulation
phantom, edges of the different conductivity regions are smoothly varying. Figure 7 contains
four images, which are the original conductivity distribution of mid-slice and the reconstruction
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Org. Cond. Iteration 1 Iteration 2 Iteration 5                      S/m (Ω–m)

0.05 (20.0)

0.15 (6.67)

0.25 (4.00)

0.35 (2.86)

0.45 (2.22)

Figure 7. The original conductivity distribution, the reconstructed conductivity distributions for
the first, second and fifth iterations for slice 32 and their profile plots for the second simulation
phantom. The profile plots are for the mid-vertical lines. In each profile plot, the original
conductivity values are shown by solid lines and the reconstructed conductivity distributions are
shown by dots.

SNR = ∞ SNR = 90 SNR = 60 SNR = 30                      S/m (Ω–m)

0.05 (20.0)

0.15 (6.67)

0.25 (4.00)

0.35 (2.86)

0.45 (2.22)

Figure 8. Reconstructed conductivity distributions for the first iteration for slice 32 of the first
simulation phantom and their profile plots for MRI with system SNR = ∞, 90, 60 and 30. The
profile plots are for the mid-vertical lines. In each profile plot, the original conductivity values
are shown by solid lines and the reconstructed conductivity distributions are shown by dots. The
initial uniform conductivity distribution was taken to be 0.2 S m−1.

results for the first, second and fifth iterations. The initial uniform conductivity distribution
is taken to be 0.2 S m−1. The relative L2 norm errors for the first five iterations are 33.9%,
25.6%, 25.1%, 25.2% and 25.2%. If the simulation results and the relative L2 norm errors of
the first and fifth iterations are compared, a significant improvement in the conductivity image
can be observed.

Simulations for noisy Bsz data are also made to analyze the behavior of the algorithm
against noise. The noise model in Scott et al (1992) is used as modified in İder and Onart (2004).
In this modified model, zero mean Gaussian noise with standard deviation of σs = 1/(2/γ tcurr

SNR), where SNR is the signal-to-noise ratio of the MRI system, is added to Bsz. Simulation
results for the first phantom for tcurr = 19.5 ms and SNR = ∞, 90, 60 and 30 are given
in figure 8. The standard deviations for SNR = 30, 60 and 90 are 3.195 nT, 1.598 nT and
1.065 nT, respectively. The relative L2 errors for SNR = ∞, 90, 60 and 30 are 12.1%,
24.4%, 45.4% and 190.7%, respectively. As also observed from figure 8, SNR values larger
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Figure 9. Singular values of the combined system matrix on a logarithmic scale. One current
induction profile means that only coil 1 in figure 1 is excited. Two current induction profiles means
that coils 1 and 2 are excited. Three current induction profiles means coils 1, 2 and 3 are excited.
Four current induction profiles means that all four coils are excited. The vertical axis shows the
normalized singular values.

than 60 are necessary for at least maintaining internal boundary information. It is known
that much larger SNR values are practically achievable in real MRI systems. For body coils
200 SNR is possible (Schnell et al 2000). For head and other special coils higher values can
be obtained.

Figure 9 shows the logarithmic singular value plots for the combined system matrix for
the first iteration of slice 32 of the first simulation phantom, for different current induction
profile combinations. The initial uniform conductivity distribution was taken to be 0.2 S m−1.
For one current induction profile, the size of the system matrix is 1024 × 1024. For two, three
and four current profiles, the size of the system matrix increases to 2048 × 1024, 3096 ×
1024 and 4192 × 1024, respectively. Whether one, two, three or four current induction profiles
are used, it is observed that the rank of the system matrix is 1024. The condition number of
the combined system matrix is 8218, 71, 53, 44 for one, two, three and four current induction
profiles, respectively. The condition number is a measure of the ill-conditioning of the system
matrix and indicates how tolerant the system is against measurement noise. In our case, it is
apparent that use of more than one current profile improves the condition number significantly.
Since the condition number for four current induction profiles is better than any of the other
cases, all simulation results are obtained using four current induction profiles.

In figure 10, the first iteration reconstructed images for one, two, three and four current
profiles are given. The initial uniform conductivity distribution was taken to be 0.2 S m−1.
When one current induction profile is used, the combined system matrix is relatively more
ill-conditioned and the reconstructed image is dissatisfactory. However, with two, three or four
current induction profiles, increasingly more satisfactory conductivity images are obtained.

7. Discussion and conclusions

In injected current MR-EIT, the absolute conductivity distribution inside the object cannot
be found. There is a need for an additional peripheral voltage measurement to find the
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Figure 10. Reconstructed conductivity distributions for the first iteration for slice 32 of the first
simulation phantom, for the cases of one, two, three and four current induction profiles are used in
the simulation.
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Figure 11. (a) A vector plot of the current density distribution for slice 32 of the first simulation
phantom for the first current induction profile. (b) A vector plot of the current density distribution
for slice 32 of the first simulation phantom for the second current induction profile.

absolute conductivity distribution (İder et al 2003, Khang et al 2002). In induced current
MR-EIT, since the combined system matrix is not singular, it is possible to find the absolute
conductivity distribution inside the object. Therefore, there is no need for any additional
voltage measurement in induced current MR-EIT.

For injected current MR-EIT, the need for at least two current injection profiles, even
for relative conductivity reconstructions, is explained in Khang et al (2002) and İder et al
(2003). With one current injection profile, unique reconstructions are not possible in injected
current MR-EIT. In induced current MR-EIT, although the combined system matrix is non-
singular even for one current induction profile, it is nevertheless necessary to use at least two
current induction profiles in order to significantly improve its ill-conditioning. Although the
uniqueness of our algorithm is not investigated in this study, our proposed induced current
MR-EIT method appears to exhibit similar uniqueness characteristics to injected current MR-
EIT.

In figure 11, xy-components of the current densities for two different current induction
profiles for the mid-slice (32nd slice) of the first simulation phantom are given. With different



S302 L Özparlak and Y Z İder

current induction profiles, current densities at a given location exhibit different directions and
this may be the reason for improved condition number of the combined system matrix, using
similar arguments as made for injected current MR-EIT (İder et al 2003, Khang et al 2002).

In our simulations, the maximum magnitude of the current density inside the object is
calculated to be approximately 7500 mA m−2. Lee et al (2003) injected 28 mA current into
a 5 cm × 5 cm × 5 cm phantom and obtained satisfactory experimental results by using an
MRI system with tcurr = 48 ms, and SNR 	 30. In their study, they used denoising techniques
to reduce the effect of noise. In Lee et al (2003), if we assume that the injected current is
uniformly distributed inside the object, the current density inside the object is found to be
11 200 mA m−2 (28/(0.05 × 0.05)). In İder and Onart (2004), at least 1000 mA is used to
obtain satisfactory results. The dimensions of the object used in their simulations are the
same as our phantom size. With the same assumption as we made for Lee et al’s work,
the maximum current density inside the object is found to be approximately 4883 mA m−2

(1000/(0.32 × 0.64)). Therefore, in our study, the maximum current density level is of the
same order of magnitude as both Lee et al’s work and İder and Onart’s work. In order to
obtain this amount of current density in the object, it is necessary to apply 1000 A current to
the external induction coil if the coil is single turn. By using multiple-turn coils this amount
of current can be significantly reduced.

Phase accumulating due to Bpz is ideally zero. However, in practice, due to 180◦ RF pulse
position inaccuracies and because Bpz is large (Bpeak

pz is of the order of 5 mT), there will be
phase accumulating due to Bpz as well. Assuming a consistent few µs error in pulse position,
say 5 µs, the phase accumulating due to Bpz is

ϕP 2(x, y, z) = 2N(−1)NγBpeak
pz (x, y, z)

2 sin(2π × 1 kHz × 5 µs)

(2π × 1 kHz)
. (38)

This equation is derived by finding the area under the ±5 µs region around the peak of the
Bpz waveform. With N = 39 and B

peak
pz = 5 mT the value of ϕP 2 is 6.6◦ (mod 360◦). In

this calculation, phase wrapping is accounted for by mod 360◦ division. The phase due to
Bpz wraps 1042 times. On the other hand, if Bpz is inhomogeneous the phase map will be
highly noisy due to excessive phase wrapping. For this reason, use of homogenous Bpz is
recommended in which case the contribution of Bpz to the phase will be constant for the whole
slice and noisy behavior due to phase wrapping will be eliminated. If Bpz is generated by a four
coil Helmholtz configuration it is possible to obtain 10 ppm inhomogeneity easily (Lugansky
1987). We have calculated the Bpz due to an unoptimized Helmholtz pair which yielded
380 ppm inhomogeneity in the phantom volume (much less on a slice basis, for example only
13 ppm on the mid-slice). This amount of inhomogeneity corresponds to 1.9 µT. If the above
calculation is repeated for 1.9 µT without the mod 360◦ operation then the inhomogeneity in
phase accumulation due to Bpz across the volume will be 142.7◦. Furthermore, in the imaging
equation, equation (29), the Laplacian of Bsz is used. Even if Bsz is contaminated with the
contribution coming from Bpz, this contamination is further reduced by the Laplacian operation
because the Laplacian of Bpz is very small. In fact the Laplacian of Bpz is theoretically zero
due to equation (4). There are however numerical computation errors due to the finite mesh
sizes used. To observe the relative contributions of Bpz and Bsz, the Laplacians of ϕP 2 and
ϕS2 are compared in figure 12. The Laplacian of ϕP 2 is six orders of magnitude smaller than
the Laplacian of ϕS2 when the Bpz with 1.9 µT inhomogeneity is used.

The contribution of Bpz to the Larmour frequency at its positive and negative peaks is
±213 kHz. Therefore the 180◦ RF pulses must be hard pulses to cover this deviation.
However if the frequency of the 180◦ RF pulses is chosen to be γ

(
B0 ± B

peak
pz

)
, B0 being the

static magnetic field of the MRI system and B
peak
pz being the peak value of Bpz in time, then
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Figure 12. (a) Laplacian of ϕP 2, the phase accumulating due to Bpz, (b) Laplacian of ϕS2, the
phase accumulating due to Bsz. Units are arbitrary.

this problem is removed. Still, it is recommended that the duration of 180◦ RF pulses must be
short because during their application Bpz is changing. The change in Bpz during for example
90 µs is 198 µT corresponding to a deviation of 8.5 kHz. A 100 µs hard RF pulse has a
frequency range of 11 kHz which covers the 8.5 kHz deviation.

The pulse sequence we have proposed is a modified version of that of Mikac et al (2001).
They have applied 39 180◦ RF pulses in a period of 20 ms and have obtained high resolution
and high contrast current density images both in phantoms and biological samples. The
current density in their experiments with biological samples is 250 A m−2. This corresponds
to a maximum magnetic field of 1.1 µT, considering the object geometry they have used.
Therefore, when currents are applied into the sample, an additional maximum 1.1 µT is
imposed on the main magnetic field. The primary magnetic field in our experiments is about
5 mT. This value is, of course, much larger than the 1.1 µT in Mikac et al’s experiments.
However, the actual quantity which must be considered is the inhomogeneity in Bpz, because
we can easily choose the 180◦ RF pulses at a center frequency of γ

(
B0 ± B

peak
pz

)
, as explained

in the previous paragraph. For the unoptimized Helmholtz pair the inhomogeneity in Bpz is
1.9 µT, similar to 1.1 µT.

Recently Muftuler et al (2004) have applied a similar pulse sequence for 200 Hz injected
current MR-EIT and have obtained successful images from phantoms and rats. In their pulse
sequence z-gradients are also applied during the current application time, i.e. during the 180◦

pulses. They have used low currents about 4 mA corresponding to approx. 5700 mA m−2.
It is discussed above that homogeneous Bpz is advantageous for MRI phase measurements

and to decrease errors in the calculation of ∇2Bsz. However, the reconstructions made in
section 6 are for non-homogeneous Bpz distributions which have 76% inhomogeneity over the
whole phantom and 37% inhomogeneity over the mid-slice. To test whether homogeneous Bpz

has any disadvantage with respect to image formation, we made reconstruction simulations
for the unoptimized Helmholtz pair mentioned above which has 380 ppm inhomogeneity for
the first simulation phantom (see figure 13). At the fifth iteration the same image and profile
plots as in figure 6 are obtained with the same error values.
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Figure 13. Reconstructed conductivity distribution for the fifth iteration for slice 32 of the first
simulation phantom and two profile plots. The description of the profile plots is given in figure 6.

Another possible tool is the use of signal averaging by repeating the MRI data acquisition
several times and averaging the phase images obtained for each. We have not analyzed in this
study the possible benefits to be obtained by signal averaging.

Our iterative reconstruction algorithm is not designed to minimize the L2 norm of error
defined in equation (35). L2 error is only used for monitoring the convergence of simulations.
In some of our simulations L2 error does not always decrease in successive iterations. This
issue must be further investigated.

The final reconstruction error is contributed by the errors made in the generation of Bsz and
Bpz data using the forward solver and the errors made in the finite difference approximations
given in equations (30) and (31). In figure 12, it can be observed that ∇2Bsz has high values at
points and lines where the internal conductivity distribution has high gradients. These are also
the regions where the Laplacian calculations yield erroneous values. In order to obtain more
accurate results, finer meshes may be utilized. However, using finer meshes will increase the
computation time. Our forward solver, which solves the internal eddy current density, takes
about 19 min for a current induction profile on a Pentium-IV PC with 2.8 GHz internal clock,
1 GB DDR-RAM and 500 MHz System Bus speed. One iteration of the algorithm takes about
82 min with the same PC. Generating magnetic flux densities, Bsz and Bpz, and magnetic
vector potential, Ap, for four current induction profiles takes about 6 h using an optimized
C-code. These computation times are formidable, and there is need for further work to develop
hardware and software solutions to decrease them considerably.
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