Elec 201

FINAL

Dr. Serdar KOZAT

June 10, 2010

Duration: 2 hours 30 minutes.

Examination is CLOSED-BOOK and CLOSED-NOTES. Do not use any reference material other than that provided with this set.

NO CREDIT will be given for ANSWERS without PROPER JUSTIFICATION.

NAME:

SIGNATURE:

1	
2	
3	
4	
5	
TOTAL	

You may or may not need the following formulas:

$$
\begin{array}{ll}
\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-j \theta}\right) & \sin \theta=\frac{1}{2 j}\left(e^{i} \theta-e^{-j \theta}\right) \\
\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) & \sin ^{2} \theta+\cos ^{2} \theta=1
\end{array} \quad \sum_{k=M}^{N} \alpha^{k}=\frac{\alpha^{M}-\alpha^{N+1}}{1-\alpha}
$$

Continuous-Time Fourier Series	$\begin{aligned} & x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k v_{0} t}, \omega_{0}=\frac{2 \pi}{T_{0}} \\ & a_{k}=\frac{1}{T_{0}} \int_{<T_{0}>} x(t) e^{-j k v_{0} t} d t \\ & X(w)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right) \end{aligned}$
Continuous-Time Fourier Transform	$\begin{aligned} & x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j w t} d w \\ & X(w)=\int_{-\infty}^{\infty} x(t) e^{-j w t} d t \end{aligned}$
Discrete-Time Fourier Series	$\begin{aligned} & x[n]=\sum_{k=<N>} a_{k} e^{j \frac{2 \pi}{N} k n} \\ & a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j \frac{2 \pi}{N} k n} \\ & X(\theta)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\theta-\frac{2 \pi}{N} k\right) ; a_{k+N}=a_{k} \end{aligned}$
Discrete-Time Fourier Transform	$\begin{aligned} & x[n]=\frac{1}{2 \pi} \int_{<2 \pi>} X(\theta) e^{j \theta n} d \theta \\ & X(\theta)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \theta n} \end{aligned}$
$x[$	$\begin{array}{lll} \left.{ }_{0} t\right) & \leftrightarrow & X(\omega)= \begin{cases}1 & \|\omega\|<\omega_{0} \\ 0 & \text { otherwise }\end{cases} \\ <T_{1} & \leftrightarrow & X(\omega)=\frac{2 \sin \left(\omega T_{1}\right)}{\omega} \\ \text { rwise } & \leftrightarrow & X(\Omega)=\frac{\sin \left(\Omega\left(N_{1}+1 / 2\right)\right)}{\sin (\Omega / 2)} \\ N_{1} & \leftrightarrow & X(\Omega)= \begin{cases}1 & \|\Omega\|<a \pi \\ 0 & a \pi<\|\Omega\|<\pi\end{cases} \end{array}$

PROBLEM 1: (20 points) You must show all steps to receive credit.
a) (2 pts) Simplify as much as possible:

$$
f(t)=\int_{-\infty}^{\infty} e^{-200 t} \delta(3 t-6) d t
$$

b) (2 pts) Evaluate the integral

$$
I=\int_{-\infty}^{\infty} \cos (\pi t)[\delta(t / 2+4)+\delta(t / 2-1)] d t
$$

c) (6 pts) Convolve

d) (10 pts) Convolve $x(t)$ and $h(t)$, where

and

$$
h(t)=u(-t)-u(-t-1)-u(t)+u(t-1)
$$

PROBLEM 2: (20 points)
a) (15 pts) A signal $x(t)$ has the CT Fourier transform

$$
X(\omega)=\frac{1}{\omega^{2}-5 j \omega-2}
$$

Write the CTFT of the following:
i) $x(t) \sin (200 \pi t)$
ii) $\frac{d^{2} x(t)}{d^{2} t}$
iii) $j t x(t)$
iv) $e^{j 800 \pi t} x(t)$
a) Write the impulse response $\mathrm{h}[\mathrm{n}]$ of the following bandpass digital filter, given between $[-\pi, \pi]:$ (5 Points)

PROBLEM 3: (20 points)

Let an LTI system be defined by

$$
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=\frac{d x(t)}{d t}-2 x(t)
$$

where the input $x(t)$ and output $y(t)$ are periodic with the Fourier series coefficients $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$, respectively

a. Find the Fourier series representation of the following $x(t)$ in complex exponential form. Will the CTFS coefficients be real, purely imaginary, or neither? (5 Points)

b.Find the Fourier series representation of $x(t)$ in trigonometric form. (5 Points)
c. (10 pts) Suppose we input $x(t)$ to an analog filter with the impulse response

$$
h(t)=\frac{\sin \left(\frac{18 \pi}{5} t\right)}{\pi t}
$$

Write the Fourier series for the output signal $y(t)$. How many harmonics will there be in the output signal $y(t)$? (10 Points)

PROBLEM 4: (20 points)

Let $x(t)=\frac{\sin (W t)}{\pi t}$

a) Suppose $\mathrm{W}=100$ and $w_{0}=100$. We sample $\mathrm{y}(\mathrm{t})$.
i. What should be the minimum sampling rate T_{0} of $\mathrm{y}(\mathrm{t})$ to avoid aliasing? (2 Points)
ii. Compute and plot the CTFT of $Y_{p}(w)$ if $\mathrm{y}(\mathrm{t})$ is sampled with the minimum sampling rate T_{0}. (3 Points)
iii. If $y(t)$ is sampled with the minimum sampling rate T_{0} and the digital filter has an impulse response $h[n]=\cos (\pi n / 2)$. What is the output $\mathrm{z}(\mathrm{t})$? (5 Points)
b) Suppose $\mathrm{W}=100$ and $w_{0}=150$. We sample $\mathrm{y}(\mathrm{t})$.
i. What should be the minimum sampling rate T_{0} to avoid aliasing? (2 Points)
ii. Compute and plot the CTFT of $Y_{p}(w)$ if $\mathrm{y}(\mathrm{t})$ is sampled with the minimum sampling rate To. (3 Points)
iii. If $y(t)$ is sampled with the minimum sampling rate T_{0} and the digital filter has an impulse response $h[n]=\frac{\sin (\pi n / 2)}{\pi n}$. What is the output $\mathrm{z}(\mathrm{t})$? (5 Points)

PROBLEM 5: (20 points)
An LTI system is described the differential equation:
$\frac{d^{3} y(t)}{d t^{3}}+\frac{d^{2} y(t)}{d t^{2}}-2 y(t)=\frac{d x(t)}{d t}$
a) Find the corresponding transfer function $\mathrm{H}(\mathrm{s})$ of this system (3 Points)
b) What is the corresponding ROC, if the system is known to be causal? Find the impulse response $\mathrm{h}(\mathrm{t})$ that corresponds to this ROC. (8 points)
c) Suppose for this part of the question, the system is again known to be a causal system.

Find the corresponding output $\mathrm{y}(\mathrm{t})$ of the system if the input is $x(t)=\frac{d \delta(t)}{d t}-\delta(t)$. (9 Points)

