Elec 201

Midterm 1
ASST. PROF. SERDAR KOZAT
APRIL 02, 2010

Duration: 90 minutes.

Examination is CLOSED-BOOK and CLOSED-NOTES. Do NOT use CALCULATOR. NO CREDIT will be given for ANSWERS without PROPER JUSTIFICATION.

NAME: \qquad

ID NUMBER: \qquad

SIGNATURE: \qquad

You may or may not need the following formulas:

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t} \text { AND } \quad c_{k}=\frac{1}{T_{0}} \int_{\left\{T_{0}\right\}} x(t) e^{-j k \omega_{0} t} d t \\
& H\left(\omega_{0}\right)=\int_{-\infty}^{\infty} h(t) e^{-j \omega_{0} t} d t \\
& \cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \text { AND } \\
& \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) \sin \theta=\frac{1}{2 j}\left(e^{j \theta}-e^{-j \theta}\right) \\
& \operatorname{sinc}\left(\frac{x}{\pi}\right)=\frac{\sin x}{x}
\end{aligned}
$$

PROBLEM 1: (30 points) No credit will be given to answers without proper justification.

a)
a. (4 points) $\quad \int_{-\infty}^{\infty}\left[\sum_{k=-1}^{1} \delta\left(\frac{1}{2} t-k \pi\right)\right] \operatorname{Re}\left\{\mathrm{e}^{\mathrm{jt}}\right\} d t$ (Evaluate, i.e., simplify as simple as possible)
b. (3 points) $\quad[u(t)-u(t-3)] *[\delta(t)-\delta(t-3)] \quad$ (simplify and PLOT)
c. (3 points) $(\delta[n]-\delta[n-2]) *\left(\sum_{k=-1}^{1} \delta[n-2 k]\right) \quad$ (simplify and PLOT)
b) Compute and PLOT the convolution of the following two sequences (5 points)

$$
x[n]=\left\{\begin{array}{ll}
1 & n=0 \\
0 & n=1 \\
3 & n=2
\end{array}\right\} \text { and } h[n]=\left\{\begin{array}{cc}
-1 & n=-1 \\
2 & n=0 \\
-1 & n=1
\end{array}\right\}
$$

c) A discrete-time system is given by

$$
y[\mathrm{n}]=\left\{2+\left(\sum_{i=-1}^{1} x[-n-i]\right)\right\}\left(\frac{j}{2}\right)^{n}
$$

a. (4 points) Is this system linear? Prove your answer.
b. (4 points) Is this system time-invariant? Prove your answer.
c. (4 points) Is this system stable? Prove your answer.
d. (3 points) Is this system causal? Prove your answer.

PROBLEM 2: (35 Points)

a. (20 Points) Given the following LTI system and input $x(t)$, WRITE $y(t)$ in closed form and PLOT $\mathrm{y}(\mathrm{t})$.

$h_{1}(t)=u(-t+1)-u(-t-1) \quad h_{2}(t)=u(t)-u(t-1)$
and $x(t)$ is given as follows:
$x(t)=\delta(t-1)+\delta(t+1)$
b. (15 Points) Given the following LTI system and input $x[n]$, calculate and PLOT $y[n]$

$h[n]=\delta[n+1]-\delta[n]$
Where $\mathrm{x}[\mathrm{n}]$ is a periodic signal as follows:

PROBLEM 3: (35 points)

Let an LTI system be defined by

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=3 \frac{d x(t)}{d t}-2 x(t)
$$

a) Find the output $y(t)$ when the input is $x(t)=e^{-j 3 \pi t}$ (5 points)
b) The input $x(t)$ is given below. Find the Fourier series coefficients for $x(t)$ (10 points)

c) For real signals, the trigonometric form of the Fourier series can be expressed as (15 points)

$$
y(t)=c_{0}+\sum_{k=1}^{\infty}\left[a_{k} \cos \left(\frac{2 \pi}{T_{0}} k t\right)+b_{k} \sin \left(\frac{2 \pi}{T_{0}} k t\right)\right] .
$$

Find c_{0}, a_{k} and b_{k} for the output signal $y(t)$, when the input $x(t)$ is given above (as a shifted periodic square wave).
d) What is the average power of the input $x(t)$ (as a shifted periodic square wave)? (5 Points)

