EEE 424

Final

January 10, 2014

Duration: 150 minutes.

Examination is CLOSED-BOOK and CLOSED-NOTES. Do NOT use CALCULATOR.
NO CREDIT will be given for ANSWERS without PROPER JUSTIFICATION.

NAME:

ID NUMBER:

SIGNATURE: \qquad

You may or may not need the following formulas:

$$
\begin{array}{ll}
\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-j^{\theta}}\right) & \sin \theta=\frac{1}{2 j}\left(e^{i \theta}-e^{-i^{\theta}}\right) \\
\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) & \sin ^{2} \theta+\cos ^{2} \theta=1
\end{array} \quad \sum_{k=M}^{N} \alpha^{k}=\frac{\alpha^{M}-\alpha^{N+1}}{1-\alpha}
$$

Continuous-Time Fourier Series	$\begin{aligned} & x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k w_{0} t}, \omega_{0}=\frac{2 \pi}{T_{0}} \\ & a_{k}=\frac{1}{T_{0}} \int_{<T_{0}>} x(t) e^{-j k w_{0} t} d t \\ & X(w)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right) \end{aligned}$
Continuous-Time Fourier Transform	$\begin{aligned} & x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j w t} d w \\ & X(w)=\int_{-\infty}^{\infty} x(t) e^{-j w t} d t \end{aligned}$
Discrete-Time Fourier Series	$\begin{aligned} & x[n]=\sum_{k=<N>} a_{k} e^{j \frac{2 \pi}{N} k n} \\ & a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j \frac{2 \pi}{N} k n} \\ & X(\theta)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\theta-\frac{2 \pi}{N} k\right) ; a_{k+N}=a_{k} \end{aligned}$
Discrete-Time Fourier Transform	$\begin{aligned} & x[n]=\frac{1}{2 \pi} \int_{<2 \pi>} X(\theta) e^{j \theta n} d \theta \\ & X(\theta)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \theta n} \end{aligned}$
$x[r$	$\begin{array}{lll} \frac{\left.{ }_{0} t\right)}{} & \leftrightarrow & X(\omega)= \begin{cases}1 & \|\omega\|<\omega_{0} \\ 0 & \text { otherwise }\end{cases} \\ <T_{1} & \leftrightarrow & X(\omega)=\frac{2 \sin \left(\omega T_{1}\right)}{\omega} \\ \text { erwise } & \leftrightarrow & \\ N_{1} & \leftrightarrow & X(\Omega)=\frac{\sin \left(\Omega\left(N_{1}+1 / 2\right)\right)}{\sin (\Omega / 2)} \\ \text { vise } & & \end{array}$
	$\left.{ }_{2}\right]=\frac{\sin (a \pi n)}{\pi n} \leftrightarrow \quad X(\Omega)=\left\{\begin{array}{cc} 1 & \|\Omega\|<a \pi \\ 0 & a \pi<\|\Omega\|<\pi \end{array}\right.$

PROBLEM 1: ($\mathbf{2 5}$ points) No credit will be given to answers without proper justification.
a) (5 Points) Given that

$$
\begin{aligned}
& x[n]=\{4,3,2,1,0\} \longleftrightarrow{ }^{D F T .5} X[k] \\
& S[n]=\{0,1,0,0,1\} \longleftrightarrow \text { DFT. } 5 \\
& \longleftrightarrow
\end{aligned}[k]
$$

Determine $\mathrm{y}[\mathrm{n}]$, which yields $\mathrm{Y}[\mathrm{k}]=\mathrm{X}[\mathrm{k}] \mathrm{S}[\mathrm{k}]$ where $\mathrm{Y}[\mathrm{k}]$ is 5 point DFT of $\mathrm{y}[\mathrm{n}]$.
b) Evaluate the DTFT of the following in terms of the DTFT of $x[n] .(10$ Points)
a. $\quad x_{1}[n]=\left\{\begin{array}{c}x[n], \text { if } n \text { is odd }, \\ 0, \text { otherwise } .\end{array}\right.$
b. $\mathrm{x}_{2}[n]=x[n] x[-n]$
c. $\quad x_{3}[n]=\frac{x[n]}{(-1)^{n}}$
c) Given that $x[n]=0.5^{n} u[n]$ and $X\left(e^{j w}\right)$ is the DTFT of $\mathrm{x}[\mathrm{n}]$.

Define $Y[k]=X\left(e^{j \frac{2 \pi}{10} k}\right), k=0,1, \ldots, 9$. Construct the sequence $\mathrm{y}[\mathrm{n}]$ that is the length-10 IDFT of Y[k]. Provide $y[n]$ in a closed form (if possible). (10 points)

PROBLEM 2: (25 points) No credit will be given to answers without proper justification.

The digital filter $\mathrm{H}(\mathrm{z})$ is casual and described by
$y[n]=(1 / 2) y[n-1]+(1 / 2) x[n]+(1 / 2) x[n-1]$.
a) What is the kind of $\mathrm{H}(\mathrm{z})$, i.e., FIR or IIR? LPF or HPF? Linear phase? Minimum phase? (5 Points)
b) What is the 3 dB bandwidth of $\mathrm{H}(\mathrm{z})$? (5 Points)
c) What is $\mathrm{p}[\mathrm{n}]$ if $v[n]=2 \sin (\pi n / 3+\pi / 4)$? (5 Points)
d) Given that A / D and D / A converters are ideal and use anti-alising filters with cut off π / T.

What is the frequency response of the analog filter from $x(t)$ to $y(t) ?$ (10 Points)

PROBLEM 3: ($\mathbf{2 5}$ points) No credit will be given to answers without proper justification.

Given that $\mathrm{x}[\mathrm{n}]$ is the input and $\mathrm{y}[\mathrm{n}]$ is the output to the overall system, and
$H(z)=\frac{1}{1-(1 / 3) z^{-1}}$ is a casual LTI filter.
a) Is the overall system linear? Is the overall system time invariant? (5 Points)
b) What is $\mathrm{Y}(\mathrm{z})$ in terms of $\mathrm{X}(\mathrm{z})$? What is the ROC of $\mathrm{Y}(\mathrm{z})$ in terms of $\mathrm{X}(\mathrm{z})$. (5 Points)
c) What is $\mathrm{y}[\mathrm{n}]$ given that $x[n]=\delta[n-1]$? (5 Points)
d) Given that $x[n]=2 \sin (2 \pi n / 3+\pi / 4)$ and $\beta=e^{j(\pi / 8) n}$, what is the output $\mathrm{y}[\mathrm{n}]$? (10 Points)

PROBLEM 4: ($\mathbf{2 5}$ points) No credit will be given to answers without proper justification.

Given the input is $\mathrm{x}[\mathrm{n}]$, the output is $\mathrm{y}[\mathrm{n}]$ and $\mathrm{H}($.$) is LTI.$
a) Is the overall system linear? Is the overall system time invariant? (5 Points)
b) What is $\mathrm{Y}(\mathrm{z})$ in terms of $\mathrm{X}(\mathrm{z})$? (5 Points)
c) Under what conditions $x[n]=y[n]$? (5 Points)
d) Given that $h[n]=\delta[n]+\delta[n-1]+\delta[n-2]$, can you derive the polyphase representation where the decimators are in the front and interpolators are at the end? (10 Points)

