EEE 424
Midterm 1

ASSOC. PROF. S. SERDAR KOZAT

March 17, 2016

Duration: 90 minutes.

Examination is CLOSED-BOOK and CLOSED-NOTES. Do NOT use CALCULATOR.
NO CREDIT will be given for ANSWERS without PROPER JUSTIFICATION.
NO CREDIT will be given for ANSWERS written out of place.

NAME: \qquad

ID NUMBER: \qquad

SIGNATURE: \qquad

You may or may not need the following formulas:

$$
\begin{array}{ll}
\cos \theta=\frac{1}{2}\left(e i^{\theta}+e^{-j}\right) & \sin \theta=\frac{1}{2 j}\left(e^{i} \theta-e^{-j}\right) \\
\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) & \sin ^{2} \theta+\cos ^{2} \theta=1
\end{array} \quad \sum_{k=M}^{N} \alpha^{k}=\frac{\alpha^{M}-\alpha^{N+1}}{1-\alpha}
$$

Continuous-Time Fourier Series	$\begin{aligned} & x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k v_{0} t}, \omega_{0}=\frac{2 \pi}{T_{0}}, a_{k}=\frac{1}{T_{0}} \int_{<T_{0}>} x(t) e^{-j k v_{0} t} d t \\ & X(w)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right) \end{aligned}$
Continuous-Time Fourier Transform	$\begin{aligned} & x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j w t} d w \\ & X(w)=\int_{-\infty}^{\infty} x(t) e^{-j w t} d t \end{aligned}$
Discrete-Time Fourier Series	$\begin{aligned} & x[n]=\sum_{k=<N>} a_{k} e^{j \frac{2 \pi}{N} k n} \\ & a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j \frac{2 \pi}{N} k n} \\ & X(\theta)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\theta-\frac{2 \pi}{N} k\right) ; a_{k+N}=a_{k} \end{aligned}$
Discrete-Time Fourier Transform	$\begin{aligned} & x[n]=\frac{1}{2 \pi} \int_{<2 \pi \nu} X(\theta) e^{j \theta n} d \theta \\ & X(\theta)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \theta n} \end{aligned}$

$$
\begin{aligned}
& x(t)=\frac{\sin \left(\omega_{0} t\right)}{\pi t} \quad \leftrightarrow \quad X(\omega)=\left\{\begin{array}{cc}
1 & |\omega|<\omega_{0} \\
0 & \text { otherwise }
\end{array}\right. \\
& x(t)=\left(\begin{array}{cc}
1 & |t|<T_{1} \\
0 & \text { otherwise }
\end{array} \leftrightarrow \quad X(\omega)=\frac{2 \sin \left(\omega T_{1}\right)}{\omega}\right. \\
& x[n]=\left\{\begin{array}{cc}
1 & |n| \leq N_{1} \\
0 & \text { otherwise }
\end{array} \quad \leftrightarrow \quad X(\Omega)=\frac{\sin \left(\Omega\left(N_{1}+1 / 2\right)\right)}{\sin (\Omega / 2)}\right. \\
& x[n]=a^{n} u[n],|\mathrm{a}|<1, \quad \leftrightarrow \quad X(\Omega)=\frac{1}{1-a e^{-j w}} \\
& x[n]=\frac{\sin (a \pi n)}{\pi n} \leftrightarrow \quad X(\Omega)=\left\{\begin{array}{cc}
1 & |\Omega|<a \pi \\
0 & a \pi<|\Omega|<\pi
\end{array}\right.
\end{aligned}
$$

PROBLEM 1: (40 points) No credit will be given to answers without proper justification.

a) (15 Points) An LTI system is given by the following difference equation:

$$
y[n]-\frac{5}{6} y[n-1]+\frac{1}{6} y[n-2]=x[n-1]
$$

i. What is the frequency response $H\left(e^{j \Omega}\right)$? (4 Points)
ii. What is the DTFT of $z[n]=n h[n]$? (4 Points)
iii. What is the DTFT of $w[n]=\sin (\pi n / 2) h[n]$ (4 Points)
iv. What is the DTFT of $r[n]=(-1)^{n} h[n]$ (3 Points)
b) (10 Points) Suppose $x[n]$ is a length 8 sequence and $X[k]$ is the length 8 DFT of $\mathrm{x}[\mathrm{n}]$. We define a length 24 sequence $\mathrm{y}[\mathrm{n}]$

$$
y[n]=\left\{\begin{array}{c}
x\left[\frac{n}{3}\right], n=0, \pm 3, \pm 6, \ldots \\
0, \text { otherwise }
\end{array}\right.
$$

What is the relationship between the 8 point $\mathrm{DFT} \mathrm{X}[\mathrm{k}]$ and 24 point DFT $\mathrm{Y}[\mathrm{k}]$?
c) (10 Points) Given a length N sequence $x[n]$, where $x[n]$ is non-zero for $n=0, \ldots, N-1$, we define $y[n]=x[n]+x[N-n]$. What is the N point DFT of $\mathrm{y}[\mathrm{n}]$ in terms of the N point DFT of $\mathrm{x}[\mathrm{n}]$, i.e., $\mathrm{X}[\mathrm{k}]$?
d) (5 Points) A person starts to walk on train a track from minus infinity towards a particular track T. At each time, he/she throws a fair dice and takes exactly n steps where n is the output the dice throw. What is the probability that he/she will hit the particular track T?

PROBLEM 2: ($\mathbf{3 0}$ points) No credit will be given to answers without proper justification.

The digital filter is casual and described by
$y[n]=(1 / 2) y[n-1]+x[n]$.
a) What is the kind of the filter, i.e., FIR or IIR? LPF or HPF? (10 Points)
b) What is $\mathrm{p}[\mathrm{n}]$ if $v[n]=2 \cos (\pi n / 3+\pi / 4)$? (5 Points)
c) Given that A / D and D / A converters are ideal and use anti-alising filters with cut off π / T.

Derive frequency response of the analog filter from $x(t)$ to $y(t)$. (15 Points)

PROBLEM 3: (30 points) No credit will be given to answers without proper justification.

a) For an LTI system $\mathrm{h}[\mathrm{n}]$, the output is given by

$$
\mathrm{y}[\mathrm{n}]=2 \delta[\mathrm{n}-1],
$$

given that

$$
\mathrm{x}[\mathrm{n}]=\delta[\mathrm{n}]-2 \delta[\mathrm{n}-1]+2 \delta[\mathrm{n}-2] .
$$

i) (5 Points) Find the transfer function $H\left(e^{j w}\right)=\frac{Y\left(e^{j w}\right)}{X\left(e^{j w}\right)}$.
ii) (5 Points) Find the difference equation of the overall system.
b) (10 Points) Plot the magnitude of the DTFT of the Hanning window:

$$
w[n]=\left\{\begin{array}{c}
0.5-0.5 \cos (2 \pi n / M), 0 \leq n \leq M, \\
0, \text { otherwise }
\end{array}\right.
$$

c) (10 Points) The block diagram of a causal LTI system, $\mathrm{h}_{1}[\mathrm{n}]$, is given below (input $\mathrm{x}[\mathrm{n}]$, output $\mathrm{y}[\mathrm{n}]$). In this block diagram, the impulse response of the particular block is equal to

$$
\mathrm{g}[\mathrm{n}]=\alpha \delta[\mathrm{n}-1] .
$$

Determine $h_{1}[n]$ (assume $\alpha>1$ and α is real). Check for the stability of $h_{1}[n]$, while explaining its reason clearly.

