Elec 303
Midterm 1

ASST. PROF. SERDAR KOZAT

March 20, 2012

Duration: 90 minutes.

Examination is CLOSED-BOOK and CLOSED-NOTES. Do NOT use CALCULATOR. NO CREDIT will be given for ANSWERS without PROPER JUSTIFICATION.

NAME: \qquad

ID NUMBER: \qquad

SIGNATURE: \qquad

You may or may not need the following formulas:

$$
\begin{array}{ll}
\cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j^{\theta}}\right) & \sin \theta=\frac{1}{2 j}\left(e^{i} \theta-e^{-j^{\theta}}\right) \\
\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) & \sin ^{2} \theta+\cos ^{2} \theta=1
\end{array} \quad \sum_{k=M}^{N} \alpha^{k}=\frac{\alpha^{M}-\alpha^{N+1}}{1-\alpha}
$$

Continuous-Time Fourier Series	$x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k w_{0} t}, \omega_{0}=\frac{2 \pi}{T_{0}}$
$a_{k}=\frac{1}{T_{0}} \int_{<T_{0}>} x(t) e^{-j k w_{0} t} d t$	
	$X(w)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right)$
Continuous-Time Fourier Transform	$x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j w t} d w$
Discrete-Time Fourier Series	$X(w)=\int_{-\infty}^{\infty} x(t) e^{-j w t} d t$
	$a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j \frac{2 \pi}{N} k n}$
	$X(\theta)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\theta-\frac{2 \pi}{N} k n\right.$

$$
\begin{gathered}
x(t)=\frac{\sin \left(\omega_{0} t\right)}{\pi t}
\end{gathered} \leftrightarrow \quad X(\omega)=\left\{\begin{array}{ll}
1 & |\omega|<\omega_{0} \\
0 & \text { otherwise }
\end{array}\right\}
$$

PROBLEM 1: ($\mathbf{3 0}$ points) No credit will be given to answers without proper justification.

a) An LTI system is given by the following difference equation:

$$
y[n]-\frac{5}{6} y[n-1]+\frac{1}{6} y[n-2]=x[n-1]
$$

i. What is the frequency response $H\left(e^{j \Omega}\right)$? (3 Points)
ii. Find the corresponding $\mathrm{h}[\mathrm{n}]$. (3 Points)
iii. What is the DTFT of $z[n]=n h[n]$? (3 Points)
iv. What is the DTFT of $w[n]=\cos (\pi n / 2) h[n]$ (3 Points)
v. What is the DTFT of $r[n]=(-1)^{n} h[n]$ (3 Points)
b)
a. (5 Points) Let $x[n]$ is a periodic signal with period N

$$
\begin{aligned}
& x[n] \stackrel{D F T, N}{\longleftrightarrow} X_{1}[k] \\
& x[n] \stackrel{D F T, 4 N}{\longleftrightarrow} X_{2}[k]
\end{aligned}
$$

What is the relationship between, $X_{1}[k]$, the N point DFT , and $X_{2}[k]$, the 4 N point DFT?
b. $\begin{aligned} & x[n]=\{0,1,2,3,4\} \longleftrightarrow D F T, 5 \\ & S[n]=\{0,1,0,0,1\} \longleftrightarrow{ }^{\text {DFT. } 5} \longrightarrow \\ & \\ & S[k]\end{aligned}$ (5 Points)

Determine $\mathrm{y}[\mathrm{n}]$, which yields $\mathrm{Y}[\mathrm{k}]=\mathrm{X}[\mathrm{k}] \mathrm{S}[\mathrm{k}]$ where $\mathrm{Y}[\mathrm{k}]$ is 5 point DFT of $\mathrm{y}[\mathrm{n}]$.
c. (5 Points) Suppose $x[n]$ is a length 8 sequence and $X[k]$ is the length 8 DFT of $\mathrm{x}[\mathrm{n}]$. We define a length 24 sequence $\mathrm{y}[\mathrm{n}]$

$$
y[n]=\left\{\begin{array}{c}
x\left[\frac{n}{3}\right], n=0, \pm 3, \pm 6, \ldots \\
0, \text { otherwise }
\end{array}\right.
$$

What is the relationship between the 8 point $\operatorname{DFT} \mathrm{X}[\mathrm{k}]$ and 24 point $\mathrm{DFT} \mathrm{Y}[\mathrm{k}]$?

PROBLEM 2: (35 points) No credit will be given to answers without proper justification.
Let $x(t)=\cos (800 \pi t)+\cos (500 \pi t)$ and $\Delta=1 / 600 \mathrm{sec}$.

a) (15 pts) Suppose we sample $x(t)$ without using an anti-alias filter.
i. Compute and plot the Fourier transform (CTFT) $X_{p}(\omega)$ of the sampled signal $x_{p}(t)$.
ii. Write an expression for the discrete-time signal $x[n]$ and find the DTFT of $x[n]$.
b) (20 pts) Suppose we now introduce an anti-alias filter before sampling.
i. Find the cut-off frequency of the anti-alias filter.
ii. Specify the output $y(t)$ if the impulse response of the digital filter is $h[n]=\left(\frac{1}{2}\right)^{|n|}$

PROBLEM 3: ($\mathbf{3 5}$ points) No credit will be given to answers without proper justification.

Suppose you are given a sequence $\mathrm{x}[\mathrm{n}]$ with the corresponding DTFT.
a) Given $x[n]$, you construct $y[n]$ such that (10 Points)
$y[n]=\left\{\begin{array}{c}x[n], n=0, \pm 3, \pm 6, \ldots \\ 0, \text { otherwise }\end{array}\right.$
what is the DTFT of $\mathrm{y}[\mathrm{n}]$ in terms of DTFT of $\mathrm{x}[\mathrm{n}]$?
b) Given $\mathrm{x}[\mathrm{n}]$, you construct $\mathrm{z}[\mathrm{n}]$ (10 Points)
$z[n]=\left\{\begin{array}{c}x\left[\frac{n}{3}\right], n=0, \pm 3, \pm 6, \ldots \\ 0, \text { otherwise }\end{array}\right.$
what is the DTFT of $\mathrm{z}[\mathrm{n}]$ in terms of DTFT of $\mathrm{x}[\mathrm{n}]$?
c) Given $x[n]$, you construct (10 Points)
$d[n]=w[n] x[n]$ using the Hanning window:
$w[n]=\left\{\begin{array}{c}0.5-0.5 \cos (2 \pi n / M), 0 \leq n \leq M, \\ 0, \text { otherwise }\end{array}\right.$
what is the DTFT of $\mathrm{d}[\mathrm{n}]$ in terms of DTFT of $\mathrm{x}[\mathrm{n}]$ for any M?
d) Given $x[n]$, you construct (5 Points)
$e[n]=f[n] x[n]$ using the Bartlett window:
$f[n]=\left\{\begin{array}{c}2 n / M, 0 \leq n \leq M / 2, \\ 2-2 n / M, M / 2<n \leq M \\ 0, \text { otherwise }\end{array}\right.$
what is the DTFT of $\mathrm{e}[\mathrm{n}]$ in terms of DTFT of $\mathrm{x}[\mathrm{n}]$ for any M?

