Elec 303
Midterm 2

ASST. PROF. SERDAR KOZAT

May 24, 2012

Duration: 90 minutes.

Examination is CLOSED-BOOK and CLOSED-NOTES. Do NOT use CALCULATOR. NO CREDIT will be given for ANSWERS without PROPER JUSTIFICATION.

NAME: \qquad

ID NUMBER: \qquad

SIGNATURE: \qquad

You may or may not need the following formulas:

$$
\begin{array}{ll}
\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-j^{\theta}}\right) & \sin \theta=\frac{1}{2 j}\left(e^{i \theta}-e^{-i^{\theta}}\right) \\
\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) & \sin ^{2} \theta+\cos ^{2} \theta=1
\end{array} \quad \sum_{k=M}^{N} \alpha^{k}=\frac{\alpha^{M}-\alpha^{N+1}}{1-\alpha}
$$

Continuous-Time Fourier Series	$\begin{aligned} & x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k w_{0} t}, \omega_{0}=\frac{2 \pi}{T_{0}} \\ & a_{k}=\frac{1}{T_{0}} \int_{<T_{0}>} x(t) e^{-j k w_{0} t} d t \\ & X(w)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right) \end{aligned}$
Continuous-Time Fourier Transform	$\begin{aligned} & x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j w t} d w \\ & X(w)=\int_{-\infty}^{\infty} x(t) e^{-j w t} d t \end{aligned}$
Discrete-Time Fourier Series	$\begin{aligned} & x[n]=\sum_{k=<N>} a_{k} e^{j \frac{2 \pi}{N} k n} \\ & a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j \frac{2 \pi}{N} k n} \\ & X(\theta)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\theta-\frac{2 \pi}{N} k\right) ; a_{k+N}=a_{k} \end{aligned}$
Discrete-Time Fourier Transform	$\begin{aligned} & x[n]=\frac{1}{2 \pi} \int_{<2 \pi>} X(\theta) e^{j \theta n} d \theta \\ & X(\theta)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \theta n} \end{aligned}$
$x[r$	$\begin{array}{lll} \frac{\left.{ }_{0} t\right)}{} & \leftrightarrow & X(\omega)= \begin{cases}1 & \|\omega\|<\omega_{0} \\ 0 & \text { otherwise }\end{cases} \\ <T_{1} & \leftrightarrow & X(\omega)=\frac{2 \sin \left(\omega T_{1}\right)}{\omega} \\ \text { erwise } & \leftrightarrow & \\ N_{1} & \leftrightarrow & X(\Omega)=\frac{\sin \left(\Omega\left(N_{1}+1 / 2\right)\right)}{\sin (\Omega / 2)} \\ \text { vise } & & \end{array}$
	$\left.{ }_{2}\right]=\frac{\sin (a \pi n)}{\pi n} \leftrightarrow \quad X(\Omega)=\left\{\begin{array}{cc} 1 & \|\Omega\|<a \pi \\ 0 & a \pi<\|\Omega\|<\pi \end{array}\right.$

PROBLEM 1: (30 points) No credit will be given to answers without proper justification.
a) (5 Points) Express the Z-Transform of

$$
y[n]=\sum_{k=-\infty}^{n} x[k]
$$

in terms of $\mathrm{X}(\mathrm{z})$.
b) (10 Points) Let $x[n]$ be a sequence with Z-Transform $X(z)$. Find the Z-Transform of the following in terms of $\mathrm{X}(\mathrm{z})$.
$x_{1}[n]=\left\{\begin{array}{c}x\left[\frac{n}{2}\right], \text { if } \mathrm{n} \text { is even } \\ 0, \text { if } \mathrm{n} \text { is odd. }\end{array}\right.$
c)
(10 Points) Let $\mathrm{x}[\mathrm{n}]$ be a sequence with Z-Transform $\mathrm{X}(\mathrm{z})$. Find the Z-Transform of the following in terms of $\mathrm{X}(\mathrm{z})$.
$x_{2}[n]=x[2 n]$.
d) (5 Points) Find $\mathrm{x}[\mathrm{n}]$ whose Z-Transform is given as

$$
X(z)=e^{z}+e^{1 / z}
$$

PROBLEM 2: (35 points) No credit will be given to answers without proper justification.

A linear time invariant discrete time system has system function
$H_{1}(z)=\frac{\left(1-2 z^{-1}+2 z^{-2}\right)}{\left(1-z^{-1}\right)\left(1-0.5 z^{-1}\right)\left(1-0.2 z^{-1}\right)}$
a) Find and list all possible ROCs (10 Points)?
b) Find the impulse response of the system given that the system is causal (10 Points)
c) Find an $\mathrm{h}_{2}[\mathrm{n}]$ such that the overall system is stable and find the impulse response of the overall stable system. (15 Points)?

PROBLEM 3: ($\mathbf{3 5}$ points) No credit will be given to answers without proper justification.
For an LTI system $\mathrm{h}[\mathrm{n}]$, the output is given by

$$
\mathrm{y}[\mathrm{n}]=2 \delta[\mathrm{n}-1],
$$

given that

$$
\mathrm{x}[\mathrm{n}]=\delta[\mathrm{n}]-2 \delta[\mathrm{n}-1]+2 \delta[\mathrm{n}-2] .
$$

a) Find the transfer function $\mathrm{H}(\mathrm{z})$ (7 Points).
b) Find the difference equation of the overall system (8 Points).
c) Given that the system is causal find $\mathrm{h}[\mathrm{n}]$ (10 Points).
d) Given that the system does not have Fourier Transform, find $\mathrm{h}[\mathrm{n}]$ (10 Points).

