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a b s t r a c t

In this paper, we consider sequential decision problems in which the decision at each

time is taken as a convex-combination of observations and whose performance metric is

multiplicatively compounded over time. Such sequential decision problems arise in

gambling, investing and in a host of signal processing applications from statistical

language modeling to mixed-modality multimedia signal processing. Using a competitive

algorithm framework, we construct sequential strategies that asymptotically achieve the

performance of the best piecewise-convex strategy that could have been chosen by

observing the entire sequence of outcomes in advance. Using the notion of context-trees,

a mixture approach is able to asymptotically achieve the performance of the best choice

of both the partitioning of the space of past observations and convex strategies within

each region, for every sequence of outcomes. This performance is achieved with linear

complexity in the depth of the context-tree, per decision. For the application of sequential

investment, we also investigate transaction costs incurred for each decision. An explicit

algorithmic description and examples demonstrating the performance of the algorithms

are given. Our methods can be used to sequentially combine probability distributions

produced by different statistical language models used in speech recognition or natural

language processing and by different modalities in multimedia signal processing.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we consider sequential decision pro-
blems whose metric of performance is multiplicatively
compounded over time and in which the decisions made
at each time amount to picking a strategy taken as
a convex-combination of the vector-valued outcomes.
In this general framework that encompasses a number of
applications, the observations, which are observed
sequentially, are represented as vectors in the positive
orthant, i.e., fx½t�gtZ1, x½t� 2 Rm

þ , where some entries of x½t�
ll rights reserved.

u (A.J. Bean).
can be zero implying that the observations are simply
vectors of nonnegative numbers. We represent our
decision at time t as b½t�, where b½t� 2 Rm

þ andPm
j ¼ 1 bj½t� ¼ 1 for all t. Based on the decision b½t� and

then observing x½t�, we incur the benefit or reward b½t�T x½t�
at time t, yielding the accumulated gain over all past
observations as

Qn
t ¼ 1 bT

½t�x½t� for all n. In this paper, the
goal is to maximize the accumulated gain over any
possible and unknown fx½t�gtZ1 by sequentially choosing
appropriate fb½t�gtZ1 for any n. The decisions fb½t�gtZ1 are
‘‘sequential’’ such that b½t� only depends on the past
sequence of observations, i.e., x½1�, . . . ,x½t�1�, but not on
information from the future. Extensions of this basic
framework for more general decision vectors, such as
b½t� 2 ½�1,1Þm [1,2], and or observation vectors, such as
x½t� 2 ½�1,1Þm [3], are also possible. We study the basic
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Fig. 1. A partition of the Rm
þ . Each axis corresponds to the observation

(price-relative) of a given stock in the market.

S.S. Kozat et al. / Signal Processing 91 (2011) 890–905 891
structure of the problem here and our results can be
readily extended to these more general cases.

Sequential decision problems whose metric of perfor-
mance is multiplicatively compounded over time arise in
a host of signal processing applications from statistical
language modeling [4–6] and Gaussian mixture models
[5] to mixed-modality multimedia signal processing [7,8].
We refer the reader to [9], and the references therein, for a
more general discussion of such sequential decision
problems. For concreteness of terminology, in this paper
we will pay particular attention to the application of
sequential investing in a market of m stocks, and note that
the mathematical techniques used here apply more
generally to the contexts discussed in [9]. In the investing
context, the observation vectors fx½t�gtZ1 represent the
market gains such that the jth entry xj[t] of the vector x½t�
represents the gain achieved by the jth stock on the tth
day of investment, as might be measured by the ratio of
opening price of the jth stock on the tth day to the
opening price of the jth stock on the (t�1)th trading day.
The sequence of decisions fb½t�gtZ1 will correspond to a
sequence of investments made by allocating a fraction of
the current holdings, or wealth, of the player to each
of m stocks or other financial instruments. The selection
of such a ‘‘portfolio’’ amounts to choosing a particular
weighting among stocks of the wealth available on a given
investment period. An investment strategy at day t is
represented by the ‘‘portfolio vector’’ b½t�, b½t� 2 Rm

þ andPm
j ¼ 1 bj½t� ¼ 1 for all t. Each entry bj[t] corresponds to the

fraction of the total wealth available to be invested in
the jth stock on the tth day. The achieved wealth after
n investment periods is given by the product of the
gains achieved in each successive day of trading, i.e.,Qn

t ¼ 1 bT
½t�x½t�. In another context, x½t� could correspond to

probabilities derived from various signal source models
for a sequence of observations and their convex-combina-
tion would amount to a mixture distribution in a Bayesian
mixture representation [5,6].

The sequential portfolio assignment problem studied
here has been considered broadly in the signal processing
[10], machine learning [3,2] and information theory [11,1]
research literature. The objective is to select a sequence of
investment strategies, or portfolios, for a market with a
finite number of stocks, to maximize wealth over time
over any possible deterministic observation vectors
fx½t�gtZ1 without stochastic assumptions on fx½t�gtZ1. To
define a meaningful performance measure, we define a
competitive algorithm framework in which the goal is
to perform well with respect to a candidate class of
investment strategies, i.e., a competition class, over any
possible fx½t�gtZ1. As an example, a problem studied
extensively in this context is to find a sequential algorithm
that asymptotically achieves the wealth of the best
constant rebalanced portfolio tuned to the individual
sequence of observation vectors. When the portfolio vector
remains constant for all t, i.e., b½t� ¼ b, corresponding to an
apportionment of assets at each point in time that is a
fixed constant convex-combination, b, the strategy is
called a ‘‘constant rebalanced portfolio’’ (CRP). In this
context, we try to achieve maxb

Qn
t ¼ 1 bT x½t�, where b is

fixed and fx½t�gtZ1 is an arbitrary individual sequence,
using a sequential algorithm. The goal is to find a
sequential algorithm b½t� such that when it is applied
to any deterministic and unknown fx½t�gtZ1 (which is
revealed sequentially), it will achieve the gainQn

t ¼ 1 b½t�T x½t� that is close to maxb
Qn

t ¼ 1 bT x½t� for all n

(or asymptotically equal to maxb

Qn
t ¼ 1 bT x½t� as n goes to

infinity), without knowing n or fx½t�gtZ1 beforehand. If we
can find such an algorithm, this algorithm is said to be
competitive with respect to the class of all CRPs, since it
asymptotically achieves the performance of even the best
CRP in the class that is tuned to the underlying fx½t�gtZ1,
for all n. In the context of probabilistic model combina-
tions, such a CRP would amount to a constant weighting
among constituent probabilistic models, i.e., an a priori

weighting. Cover [11] presented an algorithm that asymp-
totically achieves the wealth of the best CRP for any
sequence of observation vectors, that is, his algorithm can
sequentially achieve nearly the same performance of an
investment strategy that could only have been chosen in
hindsight, after observing the entire sequence of stock
market values in advance, but which was restricted to only
select a CRP.

In the first part of this paper, we investigate sequential
portfolios that compete against the best piecewise-
constant rebalanced portfolios (PCRPs), which are a direct
extension of CRPs. Here, instead of trying to achieve the
performance of the best CRP that is tuned to the under-
lying sequence of observations, we try to achieve the
performance of the best PCRP. In our framework, the
space in which the sequence of observations lies is
partitioned into a union of disjoint regions, over each of
which, a CRP is fitted independently. This is a natural
nonlinear extension to linear modeling where piecewise
models are used to approximate more general nonlinear
functions such as in [12]. As an example, suppose at
trading period t, we divide the space x½t�1� 2 Rm

þ as in
Fig. 1 into K disjoint regions Vk, where [K

k ¼ 1Vk ¼Rm
þ

(e.g., K=4 for Fig. 1). Here, if x½t�1� 2 V1, then stock 1
outperformed stock 2 at trading day t�1 (however, both
stocks lost value, i.e., x1½t�1�o1,x2½t�1�o1). If x½t�1� 2
V1 [ V2 where the gain of stock 1 was greater than that of
stock 2 at trading day t�1, then investing in stock 1 more
than stock 2 in the next trading period t may be a good
idea. This strategy may work if there is useful information
in the relative performance of various assets in the
market. Hence, to follow this idea, we define the PCRP
competition class by assigning a CRP to each region and
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such a PCRP invests during each trading day using the
portfolio that depends on the relative performance of each
stock on the previous day. For PCRPs, the portfolio used in
each region is a fixed CRP, bk, such that if x½t�1� 2 Vk then
we invest with bk at trading period t. The CRPs can be
selected arbitrarily for each region. We point out that as
the number of regions grows, the piecewise constant
model can better approximate any fixed nonlinear
portfolio b¼ f ðx½t�1�Þ for some arbitrary locally convex
smoothly varying nonlinear function f ð�Þ [13]. However,
we emphasize that neither the optimal partitioning of Rm

þ

nor the best CRPsfor each region are known in advance,
and both depend on fx½t�gtZ1 and n.

Note that if the piecewise regions or the partition of
Rm
þ is fixed, the assignment of portfolio vectors to each

region are known. As in the first part of this paper and in
[11], independently applying the algorithm of [11] for
each piecewise region will asymptotically achieve the
performance of the optimal CRPs in each region. In the
second part of this paper, we extend these results when
the partitioning of the past observations space, i.e.,
partition of the Rm

þ , is also a design parameter that can
be selected from a large class of possible partitions. In this
sense, if we consider the partition information as the side-
information, the side-information generating mechanism
is also a design parameter [11]. The class of possible
partitions will be compactly represented using a ‘‘context-
tree’’ [14], which will be used to define a doubly
exponential number of partitions. We have neither a

priori knowledge of the selected partition nor the best
model parameters, i.e., the best PCRP given that partition.
Here, we demonstrate an algorithm that asymptotically
achieves the performance of the best sequential portfolio
(corresponding to a particular partition) from the doubly
A context tree of depth D=2 representin
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Fig. 2. A depth-2 context-tree. Each leaf of the context-tree corresponds to a r

P ¼ fP1 , . . . ,P5g.
exponentially large class of such partitioned portfolios. To
accomplish this, we use the notion of context-trees as
shown in Fig. 2 which is explained in Section 2.2. By using
context-trees, we are able to compete against the best
partition among a doubly exponential number of possible
partitions that can be embedded in a context-tree with
computational complexity only linear in the depth of the
context-tree.

Competition against the known side-information depen-
dent CRP is investigated in [11] and then several different
sequential algorithms have been introduced that also
attempt to achieve the performance of the best CRP, albeit
either with different bounds or different performance on
historical data [3,15]. This basic problem has been extended
to portfolios with side-information [11,3,16], transaction
costs [17], margin and short sales [1,2], smoothly varying
target classes [16], competition against the best switching
constant rebalanced portfolios [18,10] and internal regret
[19]. We emphasize that we only use Cover’s algorithm as
an example in our derivations and the methods we use are
generic such that they can use other algorithms such as
those in [3,19,15,20,21] in our theorems. Note that the
alternative algorithms are provided since although the
algorithm of [11] has ‘‘asymptotically’’ tight performance
bounds, its exact implementation requires O(nm�1) compu-
tational complexity per investment period. In this sense, the
alternative algorithms such as the ones in [3,22,15] are
introduced to provide both computational efficiency and
logarithmic regret at the same time (if possible). These
alternative algorithms are also experimentally shown to
outperform the algorithm of [11] in certain scenarios,
especially when the market has large number of stocks
[3,21]. As an example, the exponentiated gradient based
algorithm of [3] has linear complexity per investment period
g partitions of R+ .
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þ . This context-tree represents five different partitions of Rm
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with Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logm=n

p
Þ normalized regret and the follow-the-

leader based algorithm of [22] has O(m3) complexity per
investment period with Oð4mlogðnÞ=nÞ normalized regret
(only when certain parameters are optimized in hindsight,
unlike Cover’s algorithm). To demonstrate the versatility
and ease of our scheme for incorporating new algorithms
into the studied framework, we use algorithms from [3,22]
in addition to the algorithm from [11] in the Simulations
section. Moreover, unlike [11], our model includes the
presence of transactions costs and can be straightforwardly
extended to investing on margin and short sales. While
competition against CRPs was extended to more general
target classes in [16,3], we point out that in all these cases
considering side-information, the side-information generat-
ing mechanism or the side-information itself is known or
fixed. Hence, in these results, the competition with respect
to the side-information sequence is achieved by merely
repeating the basic algorithm for each side-information
value. However, in this paper, the side-information generat-
ing mechanism can also be selected by the competition
class. Only in hindsight, one can determine which partition
of the Rm

þ , i.e., the side-information, will yield the optimal
growth. Without such a priori knowledge, our algorithm
asymptotically achieves the performance of any such
partition, i.e., the best side-information generating mechan-
ism from this class.

Context-trees and the context-tree weighting algorithm
have been used extensively in lossless source coding and
related fields essentially to assign Bayesian mixture prob-
abilities to binary sequences [23,14]. In these frameworks,
context-trees are mainly used to efficiently calculate a
weighted average of probabilities produced by an exponential
number of models represented on the context-tree. However,
in this paper, the purpose of using context-trees is not to
directly calculate a weighted average of wealths produced by
an exponential number of investment models, which was the
main tool in [14,24,25] to achieve the performance of the best
model. Here, we specifically design ‘‘an algorithm’’ that when
applied to the sequence of price relatives, yields a perfor-
mance that is as large as this weighted average. Hence, we
use the context-tree concept to construct this algorithm,
however, not to perform any weighted averaging. The key
difference and the main problem that is solved, unlike [14], is
to construct this algorithm using the tools of context-trees for
convex-combinations under log loss.

Furthermore, although the application of such models
and the context-tree weighting algorithm to universal
prediction appeared in [13] for the piecewise linear
prediction of bounded arbitrary sequences under the square
error loss, there are important differences. While the
problem of universal portfolio selection considered here
can be viewed as a sequential decision problem with a
restricted form of the log loss, the results in [13] for square
error are incompatible with the portfolio context. We note
that the log loss function considered in here is not bounded
and the regret defined in [13] is with respect to a loss
function which is exp-concave and bounded. These condi-
tions must hold for the scheme in [13] to hold. Hence, the
algorithmic steps as well as the proofs of the performance
for the algorithms are different. Furthermore, intrinsic to
portfolio selection, here, we also consider the case when
there are transaction costs present and provide an algorithm
using context-tree weighting that performs as well as the
best context dependent algorithm under transaction costs.

We begin our discussion of piecewise constant reba-
lanced portfolios with the case when the partition is fixed
and known in Section 2.1. We then extend these results
using context-trees in Section 2.2 to include comparison
classes with arbitrary partitions from a doubly exponen-
tial class of possible partitions. In each section, we provide
theorems that upper-bound the regret with respect to the
best competing algorithm in the class. The theorems are
constructive, in that they yield algorithms satisfying the
corresponding bounds. An explicit implementation of the
context-tree PCRP algorithm is also given. Extension to
investment under transaction costs is given in Section 2.3.
The paper is then concluded with simulations of the
algorithms on historical data.
2. Piecewise constant rebalanced portfolios

2.1. Fixed partition

In this section, we investigate the framework when the
partition of the space of past observation vectors is given,
i.e., say [K

k ¼ 1Vk ¼Rm
þ is known. Since the partition is

fixed, the side-information generating mechanism, i.e.,
assigning CRPs to each region, is known. In this case, we
seek to find a sequential portfolio such that when applied
to any fx½t�gtZ1, asymptotically achieves, for all n,

sup
b12B,...,bK2B

Yn

t ¼ 1

bT
s½t�1�x½t�, ð1Þ

where s[t�1]=k when x½t�1� 2 Vk and B is the simplex.
That is, we wish to obtain a sequential portfolio that
achieves a wealth over every sequence of observations
fx½t�gtZ1 as large as the best fixed PCRPs for that sequence
with a partition of the observation space given by
[K

k ¼ 1Vk ¼Rm
þ . The algorithm introduced here will be

sequential such that it will only depend on x½1�, . . . ,x½t�1�.
In this case, we have the following result:

Theorem 1. We can construct a sequential algorithm ~b½t�
such that when applied to any arbitrary and unknown

sequence of observation vectors fx½t�gtZ1 (which are revealed

sequentially) such that x½t� 2 Rm
þ for all t and for which some

components of x½t� can be zero, for all n, satisfies

ln
Yn

t ¼ 1

~b
T
½t�x½t�Z ln

Yn

t ¼ 1

bT
s½t�1�x½t��

Kðm�1Þ

2
lnðn=Kþ1Þ�Klnð2Þ,

ð2Þ

where s[t�1] is the indicator variable, i.e., s[t�1]=k when

x½t�1� 2 Vk and bk 2 B, k=1,y,K, are arbitrary CRPs

assigned to regions.

Note that the bound in (2) holds for all bk 2 B,
k=1,y,K, i.e., even for the optimal CRPs for each region
for any n.

The Proof of Theorem 1 and construction of the
sequential algorithm is given in Appendix A.
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2.2. Representing the piecewise regions via context-trees

In this section, the sequential algorithm introduced in
here competes against not only with the best CRPs for a
given partition, but also against the best partition of the
space of past observations defined on a context-tree. To
accomplish this, we define a depth-D context-tree with 2D

leaves, as shown in Fig. 2, where, for this tree, D=2. For a
depth-D context-tree, the 2D finest region bins corres-
pond to leaves of the tree. As an example, on this tree, each
of the leaves are assigned to regions: f1Zx2Zx1Z0g,
fx2Zx141g, f1Zx14x2Z0g and fx14x241g. Of course,
more general partitioning schemes could be represented by
such a context-tree, i.e., the leaves can be assigned
arbitrarily. For a tree of depth-D, there exist 2D+1

�1 nodes
such that 2D of these nodes are leaf nodes and remaining
nodes are internal nodes. On this tree, each node r,
r¼ 1, . . . ,2Dþ1

�1, represents a portion (or a volume) of
the positive quadrant Rm

þ , Vr. The leaves are assigned to the
finest partition bins. The region corresponding to an inner
node, e.g., say r, Vr, which is not a leaf node, is constructed
by the union of regions represented by the nodes of its
children. For a binary tree, each inner node has two children,
left child node rL with VrL

and right child node rR with VrR

such that Vr ¼ VrL
[ VrR

. One can define a doubly exponen-
tial number, numðDÞ � ð1:5Þ2

D

of complete subtrees on this
context-tree. As an example, in Fig. 2 given a depth-2
context-tree, we present num(2)=5 different complete
subtrees. In the context of this paper, a subtree is complete,
if the union of the regions assigned to its leaves (which are
the leaves or the inner nodes of the context-tree) gives the
whole positive orthant. Hence, each subtree corresponds to
a complete and disjoint ‘‘partition’’ of the positive orthant
Rm
þ . Specifically, for each subtree i=1,y,num(D), we define

the partition Pi ¼ fVi,1, . . . ,Vi,Ki
g with [Ki

k ¼ 1Vi,k ¼Rm
þ , where

each Vi,k is assigned to a leaf of the corresponding subtree,
which is naturally a node (or a leaf) of the context-tree. For
example in Fig. 2, for P1, we have V1,1 = V1, V1,2 = V2 and
V1,3 ¼ V3 [ V4.

For each such partition Pi defined on this context-tree,
a sequential algorithm, b̂Pi

½t�, can be assigned such as the
sequential algorithm from Section 2.1 which achieves the
performance of the best PCRP for that partition. To achieve
the performance of the sequential algorithm with the best
partition defined on this context-tree, we will first
demonstrate a sequential portfolio, ~bu½t�, such that when
applied to any fx½t�gtZ1, for all n, asymptotically achieves

sup
Pi

Yn

t ¼ 1

b̂
T

Pi
½t�x½t�,

i = 1,y,num(D). Hence, the sequential portfolio ~bu½t�

uniformly achieves the performance of the sequential
portfolio with the best partitioning among the class of a
doubly exponential number of portfolios represented on
the context-tree. Furthermore, if the sequential algo-
rithms b̂Pi

½t� assigned to each partition are selected such
that they achieve the performance of the best PCRP as in
Section 2.1 for that partition, then ~bu½t� will achieve the
performance of the best PCRP with the corresponding best
partition. In this sense, the algorithms introduced here are
‘‘twice-universal’’ in the nomenclature of universal source
coding [26], i.e., universal with respect to the partitions
and the parameters, and are based on sequential prob-
ability assignment [14,27,23].

Using this context-tree, we can construct a sequential
algorithm with complexity only linear in the depth of the
context-tree per investment period satisfying:

Theorem 2. Given a context-tree with corresponding nodes r,

r¼ f1, . . . ,2Dþ1
�1g and arbitrary sequential portfolios

assigned to each node b̂r½t�, suppose b̂Pi
½t� represents the

sequential portfolio obtained by the combination of the

sequential portfolios corresponding to its piecewise regions

Pi ¼ fVi,1, . . . ,Vi,kg, i.e., b̂Pi
½t� ¼ b̂r½t� if x½t�1� 2 Vi,k and

Vi,k ¼ Vr. Then, we can construct a sequential portfolio ~bu½t�

with complexity linear in the depth of the context-tree per

investment period such that when applied to any arbitrary and

unknown sequence of observation vectors fx½t�gtZ1 (such that

x½t� 2 Rm
þ for all t and for which some components of x½t� can

be zero and x½t� are revealed sequentially) satisfies, for all n,

ln
Yn

t ¼ 1

~b
T

u½t�x½t�Zsup
Pi

ln
Yn

t ¼ 1

b̂
T

Pi
½t�x½t��ð2Ki�1Þlnð2Þ

 !
,

where i=1,y,num(D).

The proof of Theorem 2 and construction of the sequential
algorithm of Theorem 2 is given in Appendix B. We note that
although there are a total of 2D+1

�1 algorithms present at
the nodes, each update of the context-tree has a computa-
tional complexity only linear in D. The construction of the
universal portfolio, ~bu½t�, is given at the end of the proof of
Theorem 2, where a complete algorithmic description as well
as a pseudo-code is also given. This theorem implies that,
without a prior knowledge of any complexity constraint on
the algorithm, such as prior knowledge of the depth of the
context-tree against which it is competing, the sequential
portfolio can compete well with each and every subpartition
within the depth-D full tree used in its construction.

We emphasize that there are no restrictions on the
sequential portfolios running independently within each

region, i.e., b̂r½t�. Hence, in order to achieve the performance

of the best PCRP among the class of all PCRPs represented on
this context-tree, one can use specific portfolios on each
node that achieve the performance of the best CRP for that

regions. As an example, if we choose b̂r½t� as Cover’s

algorithm [11] running independently in each region, then
we have the following result for this specific algorithm:

Theorem 3. We can construct a sequential portfolio ~bu½t�

with complexity linear in the depth of the context-tree per

investment period such that when applied to arbitrary and

unknown fx½t�gtZ1 (where x½t� 2 Rm
þ for all t and for which

some components of x½t� can be zero and x½t� is revealed

sequentially) for all n satisfies

ln
Yn

t ¼ 1

~b
T

u½t�x½t�Zsup
Pi

sup
bi,k2B

ln
Yn

t ¼ 1

bT
i,si ½t�1�x½t��ð2Ki�1Þlnð2Þ

 

�
Kiðm�1Þ

2
ln

n

Ki
þ1

� �
�Kilnð2Þ

!
, ð3Þ



S.S. Kozat et al. / Signal Processing 91 (2011) 890–905 895
where i=1,y,num(D), k=1,y,Ki, si[t�1] is the state

indicator variable for partition Pi, i.e., si[t�1]=k if x½t�1� 2
Vi,k and bi,k 2 B are arbitrary CRPs for each node.

The outline of the proof of Theorem 3 is given in
Appendix C. Note that the algorithm of Theorem 3
competes against a competition class that has a con-
tinuum of experts, i.e., a doubly exponential number of
experts represented by the context-tree and a continuum
of CRPs in each region. We point out that in the
construction of the algorithm of Theorem 3, we use
Cover’s algorithm in each node. However, if we use
alternative algorithms instead of Cover’s algorithm, such
as the ones in [3,22], then the computational complexity
of the final algorithm would be reduced, however, the
performance bound in (3) would degrade.

2.3. Context-trees with transaction cost (or commission)

We now consider the extension of previous algorithms
and theorems to include the presence of commissions.
Here, an investor pays a fixed percentage commission for
his transactions, particularly 0rcsellr1 for selling and
0rcbuyr1 for buying, where we assumed that these
rates are the same for all stocks [28]. As an example, to
buy A amount of stock 1 and to sell B amount of stock 2,
an investor should pay a total amount of Acbuy +Bcsell in
transaction costs. Clearly, keeping a CRP requires poten-
tially significant trading. If one starts with a capital of 1
dollar and invests with a constant rebalanced portfolio
b¼ ½b1, . . . ,bm�

T , then at the end of the first period, one has
bixi dollars in each stock i=1,y,m, where xi is the relative
price change of the ith stock. Now, the new portfolio
vector is given by ½b1x1=

P
iðbixiÞ, . . . ,bmxm=

P
iðbixiÞ�

T

(which can be significantly different than b) and must
be adjusted to b before the next trading. An extensive
study of how this trading could be done to minimize the
wealth loss due to commission is covered in [17]. Our
results are unaffected by how this trading is done.

We first investigate the framework considered in
Theorem 2, where given a sequence of observation
vectors xn, we have sequential portfolios, b̂r½t�, for each
node r on the context-tree. Here, b̂Pi

½t� is the sequential
portfolio obtained by the combination of the sequential
portfolios corresponding to its regions Pi ¼ fVi,1, . . . ,Vi,Ki

g,
i.e., b̂Pi

½t� ¼ b̂r½t� if x½t�1� 2 Vi,k and Vi,k ¼ Vr. If from one
trading day to the next, the state does not change, i.e.,
x½t�1� 2 Vi,k and x½t� 2 Vi,k, then the algorithm would pay a
transaction cost of rebalancing the portfolio to b̂r½t� at
time t if node r corresponds to Vi,k. However, if the state
changes at time t, i.e., x½t�1� 2 Vi,k, x½t� 2 Vi,l and kal, then
the algorithm pays a transaction cost to rebalance the
portfolio to b̂k½t� if node k corresponds to Vi,l. We define
the wealth achieved by this algorithm as Wcðxnjb̂Pi

,PiÞ,
including costs csell and cbuy, where c=csell+cbuy. The
wealth Wcðxnjb̂Pi

,PiÞ can be significantly less than
Wðxnjb̂Pi

,PiÞ if c is large. We demonstrate that:

Theorem 4. Given a context-tree of depth-D with corre-

sponding nodes r, r¼ f1, . . . ,2Dþ1
�1g and sequential

portfolios for each node b̂r½t�, we can construct sequential
portfolios ~b
c

u½t� with complexity linear in the depth of the

context-tree per investment period such that for any

c=csell+cbuy, and for all n, when applied to any arbitrary

and unknown fx½t�gtZ1 (where x½t� 2 Rm
þ for all t and some

components of x½t� can be zero and x½t� is revealed

sequentially) satisfies

ln ~W
c

uðx
nÞZsup

Pi

ðlnWcðxnjb̂Pi
,PiÞ�ð2Ki�1Þlnð2ÞÞ,

where Wc
uðx

nÞ is the wealth achieved by the universal

algorithm with commissions.

The outline of the proof of Theorem 4 is given in
Appendix D. We next consider the presence of commission
with CRPs in each region, Bi ¼ ½bi,1; . . . ;bi,Ki

� where each
bi,k 2 B. We define the wealth achieved by this algorithm as
WcðxnjBi,PiÞ, including costs csell and cbuy, where c=csell+cbuy

and the CRPs are given by Bi ¼ ½bi,1; . . . ;bi,Ki
�. For this

framework, have the following result:

Theorem 5. We can construct sequential portfolios ~b
c

u½t�

with complexity linear in the depth of the context-tree per

investment period such that for any c=csell+cbuy, and for all

n, when applied to fx½t�gtZ1 (where x½t� 2 Rm
þ for all t and

some components of x½t� can be zero and x½t� is revealed

sequentially) satisfies

ln ~W
c

uðx
nÞZsup

Pi

�
lnWcðxnjBi,PiÞ�ð2Ki�1Þlnð2Þ

�Kiðm�1Þln
nð1þcÞ

Ki
þ1

� �
�Kilnð2Þ�Niln

1

1�c

� ��
,

where Wc
uðx

nÞ is the wealth achieved by the universal

algorithm with commission and Ni is the total number of

state changes taken by Pi on xn.

The outline of the proof of Theorem 5 is given in
Appendix D.

2.4. Algorithmic description

In this section, we present the algorithmic description
of the context-tree algorithm introduced in Theorem 2.
We will also point out the variables that need to be
changed to get the universal algorithms introduced in
Theorems 3–5. A complete description of the universal
context-tree algorithm is given in Fig. 3.

A depth-D context-tree has 2D+1
�1 nodes and for each

node r¼ 1, . . . ,2Dþ1
�1 we assign a corresponding sequen-

tial portfolio Br½n�1� ¼ ~br½n�1�. This portfolio vector can be
selected as Cover’s sequential portfolio as in (15), however,
we define it as a generic vector since any sequential
portfolio from [11,3,15] can be used instead. Moreover,
selecting these sequential vectors as the portfolios intro-
duced in [17] yields the universal context-tree algorithm
under transaction costs introduced in Theorems 4 and 5.

For each node r, we also assign two variables: the

‘‘assigned’’ total wealth Tr½n�1�9 ~W rðxn�1Þ and the

achieved wealth by the corresponding sequential portfolio

of that node Ar½n�1�9
Qnr�1

t ¼ 1
~b

T

r½t�dr½t�. For a full tree of

depth D, we need to store a total of (m+2)(2D + 1
�1)

variables. At each time n�1, only D+1 of these portfolios
or m(D+1) variables will be used or updated.



Fig. 3. An algorithmic description of the context-tree portfolio algorithm.
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Initially for all nodes r¼ 1, . . . ,2Dþ1
�1, all the assigned

and achieved wealth for each node should be 1, i.e.,
Tr½0� ¼ 1,Ar½0� ¼ 1 and all initial portfolios should be
Br½0� ¼ ½1=m, . . . ,1=m�T since, when there is no data, we
start with an equal investment in each stock. At each time
n�1, we first determine the affected nodes, i.e., the nodes rk

such that x½n�1� 2 Vrk
. Although in Fig. 3, we loop through

all the nodes in the third step of the algorithmic description
to find the affected nodes, this calculation is really O(D)
since we need to check only the nodes starting from an
affected leaf until the root node of the tree. These affected
nodes are stored in vector a. On the figure, a½k� represents
the kth component of the vector a. For these nodes, we
calculate bk½n�1� which are in turn to be used to calculate
ak½n�1� and final portfolio, after O(D) operations. Here, each
bk½n�1� is recursively generated by the product of the
assigned wealth of the corresponding sibling nodes and
bk�1½n�1�. For the update, only the variables and the
portfolios of the selected nodes (D+1 of them) are updated
using the new observation vector x½n�. Hence, we efficiently
combine num(D) sequential portfolios only using D+1 node
portfolios and O(D+1) operations for combination of the
portfolios, per investment period.
3. Simulations

In this section, we illustrate the performance of our
algorithms on historical data sets collected from the New
York Stock exchange over a 22-year period until 19851 [29].
In the initial set of experiments, we demonstrate
1 We thank Dr. Erik Ordentlich for providing us with the historical

data.
performance of our algorithms and illustrate effects of the
internal parameters within the algorithms on the final
performance using the stock pair Kinark–Iroquois, which are
chosen because of their volatility. For the initial set of
experiments, there are no transaction costs involved. We
then present results over larger and more comprehensive
data sets with and without transaction costs. Here, we first
use a context-tree of depth D=2 with sequential portfolios
given in (15) from [11] at each node. We implement two
different context-tree algorithms corresponding to two
different partitions of the space of past observations, i.e.,
the positive orthant Rm

þ . The first partition corresponds to
the partition given in Fig. 1, referred here as ‘‘diagonal
partitioning’’, and the second partition corresponds to the
partitioning Rm

þ into rectangle regions, i.e., each leaf
corresponds to one of the rectangular regions: (x1r1 and
x2r1), (x141 and x2r1), (x1r1 and x241) and (x141
and x241), referred here as ‘‘rectangular partitioning’’. For
rectangular partitioning, to get a binary tree of depth more
than D=2, we continue to perform splittings further from
each leaf, e.g., for the leaf with x1r1, we split further
whether x1r 1

2 or 1
2 ox1. Naturally, this splitting corre-

sponds to splitting a high dimensional cube into hyper-
rectangular regions. Although, other methods exist to
partition the space of past price relative vectors, we observe
that these two partitions have produced good results and
are straightforward to implement. In Fig. 4, we plot the
wealth achieved by the context-tree algorithm with
diagonal partitioning (CTW-CRP diagonal partitioning),
context-tree algorithm with rectangular partitioning
(CTW-CRP rectangular passioning), Cover’s universal portfo-
lio [11] (Cover’s portfolio) and the best CRP tuned to the
sequence of observations (best CRP). We next compare
the performance of the context-tree algorithm to the



0 1000 2000 3000 4000 5000 6000
10−2

100

102

104

106

108

1010
CTW−CRP versus other strategies : Kin Ark and Iroquois

investment period (days)

w
ea

lth
 a

ch
ie

ve
d

CTW−CRP, rectangular partitioning
CTW−CRP, diagonal partitioning
Best CRP
Cover’s Portfolio
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with D=2 for two different partitioning (diagonal partitioning and rectangular partitioning), Cover’s universal portfolio [11] and the best CRP.
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Fig. 5. Wealth achieved on the Iroquois–Kinark stock pair by: the context-tree universal portfolios using portfolio from (15) in each node (CTW-CRP) with

D=5 and rectangular partitioning, the sequential portfolio corresponding to the finest partition.
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performance of the sequential portfolio corresponding to the
finest partition on the context-tree, i.e., the sequential
portfolio corresponding to the partition with 2D leaves,
in Fig. 5. Here, we use a depth D=5 context-tree with
a rectangular partition of Rm

þ . Since the context-tree
algorithm adaptively combines portfolios of several different
partitions, it is able to favor either the coarser models with
small numbers of parameters (that may have better
performance when the data length is small) or the finest
model with larger numbers of parameters (that may have
better modeling power) depending on the respective
performance. We also plot the wealth achieved by the
context-tree algorithms on the Kinark–Iroquois pair for
different context-tree depths including D=1,2,3,4,5 in Fig. 6
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with rectangular partitioning to demonstrate the effect of
the tree depth on the final wealth. We observe that for this
stock pair the depth of the context-tree does not effect
performance significantly.

As pointed out in Theorem 3 and in the proof of
Theorem 2, the implementation of the context-tree
algorithm is generic such that a wide variety of sequential
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Fig. 6. Wealth achieved on the Iroquois–Kinark stock pair by different depth

(CTW-CRP) and rectangular partitioning, including D=1,2,3,4,5.

m = 2 m = 3

CTW-CRP 9.4505e+005 2.7090e+005

CTW-CRP-Finest 231.2840 35.0917

CTW-CRP-Best 6.5936e+006 1.8456e+006

CTW-ONS 2.2194e+008 5.4999e+008

CTW-ONS-Finest 1.1853e+008 1.5134e+007

CTW-ONS-Best 3.8808e+009 1.3016e+011

CTW-MU 2.1877e+008 5.0219e+008

CTW-MU-Finest 4.8769e+007 3.2106e+006

CTW-MU-Best 3.8808e+009 3.3074e+010

COVERS 18.5884 21.2522

MU1 21.4041 24.3892

MU2 12.6614 12.1242

ONS1 27.5655 32.5797

ONS2 12.3978 11.7638

Fig. 7. Performance of several different sequential portfolios on historical stock

each node ‘‘CTW-CRP’’, from [22] in each node ‘‘CTW-ONS’’, from [3] ‘‘CTW-M

selected algorithmic parameters. (a) Stock sets include Kinark and Iroquois sto
portfolios can be used in each node such as those from
[3,22]. Accordingly, in the next set of experiments, we
use the sequential portfolios from [3,22] instead of the
sequential portfolio from [11] in each node. These
implementations have significantly less computational
complexity, however, they also have inferior guaranteed
performance bounds. For the algorithm from [22], certain
00 4000 5000 6000
period (days)

us depth context trees

context-tree universal portfolios using portfolio from (15) in each node

m = 2 m = 3

CTW-CRP 22.6628 24.2139

CTW-CRP-Finest 20.1467 21.8079

CTW-CRP-Best 40.3668 38.0346

CTW-ONS 100.6965 161.2965

CTW-ONS-Finest 55.9575 90.8693

CTW-ONS-Best 1.1023e+004 7.4008e+004

CTW-MU 87.4047 132.6730

CTW-MU-Finest 38.4194 43.1435

CTW-MU-Best 1.1815e+003 2.9898e+003

COVERS 17.4538 19.3128

MU1 19.0605 20.9273

MU2 14.0180 14.2314

ONS1 22.2631 27.8127

ONS2 13.6954 13.7735

pairs: the context-tree algorithm using sequential portfolios from (15) in

U’’. The other sequential portfolios are described in the text with the

cks. (b) Stock sets do not include Kinark and Iroquois stocks.
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algorithmic parameters which may depend on the
investment horizon or underlying data should be set to
achieve a logarithmic regret. However, these difficulties
can be easily surpassed by applying this algorithm over
exponentially increasing segment lengths and setting the
parameters for each segment independently as in [3]. In
Fig. 8, we present final wealths achieved after 22 years by
m = 2 m = 3

CTW-CRP 22.4169 24.0879

CTW-CRP-Finest 19.7353 21.6492

CTW-CRP-Best 38.8162 37.3954

CTW-ONS 94.9536 149.1974

CTW-ONS-Finest 49.9478 100.5908

CTW-ONS-Best 1.3267e+004 7.1238e+004

CTW-MU 82.2727 125.4128

CTW-MU-Finest 29.3923 37.3555

CTW-MU-Best 987.9530 2.2498e+003

COVERS 17.4538 19.3128

MU1 19.0605 20.9273

MU2 14.0180 14.2314

ONS1 22.2631 27.8127

ONS2 13.6954 13.7735

Fig. 8. Wealth achieved over m=2 and 3, with history two, i.e., context-

tree is used to partition fx½t�2�,x½t�1�g. Results are averaged over 500

independent trials.

0 1000 2000 3
investment 

w
ea

lth
 a

ch
ie

ve
d

Comparison of Learn

η = 5
η = 1
η = 0.75
η = 0.50
η = 0.25
η = 0.15
η = 0.05

10−2

100

102

104

106

108

1012

1010

Fig. 9. CTW-MU algorithm with several different learning rates and D=2. The
several different investment strategies that are applied to
stock pairs, i.e., m=2, that are randomly chosen among 35
stocks [3]. The presented results are the average wealths
over 500 independent trials, i.e., stock pairs. For the
results presented in Fig. 7a, the stock pairs include Kinark
or Iroquois stocks. The results presented in Fig. 7b do not
include all stocks including Kinark and Iroquois, which are
shown to be highly ‘‘predictable’’ [30]. The investment
strategies include, context-tree algorithms: using (15) in
each node ‘‘CTW-CRP’’, using algorithm from [22] in each
node ‘‘CTW-ONS’’, using algorithm from [3] in each node
‘‘CTW-MU’’. All context-trees have depth 8 and they use
rectangular partitioning. For each context-tree algorithm,
we further present the wealth achieved by the finest
partition and the best partition on the tree. For CTW-ONS,
the algorithmic parameters are selected in accordance
with the Theorem 1 of [22], where Z¼ 0, b¼ 0:0004 and
d¼ 1. For CTW-MU, the learning rate is selected as Z¼ 10.
We further present wealth achieved by Cover’s algorithm
‘‘COVERS’’, the investment algorithm from [3] ‘‘MU1’’ and
from [22] ‘‘ONS1’’ with the learning rates given in the
simulation sections of [3], i.e., Z¼ 0:05 and [22], i.e., Z¼ 0,
b¼ 1, d¼ 1

8, respectively. To make a fair comparison with
the CTW-ONS and the CTW-MU algorithms, we also
present results for the algorithm from [22] with learning
rates Z¼ 0, b¼ 0:0004, d¼ 1 ‘‘ONS2’’ and for the algo-
rithm from [3] with Z¼ 10 ‘‘MU2’’. We observe that all
context-tree algorithms achieve wealths that are larger
than the wealths achieved by the algorithm correspond-
ing to the finest partition on the tree, which could be the
straightforward choice as the PCRP. We observe that
although the algorithms are unable to achieve the
performance of best partition on the context-tree, the
results are close and the difference between the wealth of
the context-tree algorithm and the best partition cannot
000 4000 5000 6000
period (days)

ing Rates for CTW−MU

curves in the plot are in the same order with the captions on the plot.
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be larger than the regret given in Theorem 2. In these
simulations, we observe that the CTW-ONS algorithm
achieves the largest wealth gain and all the context-tree
algorithms achieve wealths that are larger than the
wealths achieved by the other simulated algorithms. We
observe that when the stock pairs are ‘‘predictable’’ [30],
e.g., we point out the huge wealth difference when the
stock sets include the Kinark–Iroquois pair or not, the
context-tree algorithms achieve tremendous wealth
gains. This demonstrates the significant modeling power
of the PCRPs. As the next set of experiments, in Fig. 9, we
present the results for the same algorithms when they are
applied to stock sets of three, i.e., m=3, where three
stocks are again selected randomly among 35 stocks
independently in each trial. The presented results are
averaged over 500 trials. We observe similar wealth gains
as in the previous experiments. We note that most of the
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Fig. 10. Wealth achieved under different transaction costs ranging from c=0 to

stocks pairs excluding Kinark and Iroquois stocks. (b) Two stock pairs including

(d) Sets of three stocks including all stocks.
algorithms simulated achieve larger wealth gains when
we increase the stock size.

To illustrate the effect of tree depth on the final wealth,
in Fig. 10, we display wealth gain for the same algorithms
when they are applied to random stock pairs with history
of two, i.e., we partition the space fx½t�2�,x½t�1�g, exclud-
ing Kinark and Iroquois stocks. We observe similar wealth
gains when we increase the history to two, suggesting that
the CTW algorithms are able to exploit enough dependency
from the most recent past. To observe the effect of
parameters selected for the introduced algorithms, as an
example, we simulate the CTW-MU algorithm with
different learning rates Z in Fig. 11 when it is applied to
Kinark–Iroquois pair. We observe that although the
selection of the learning rate affects the performance,
the relative effect is not significant for small changes in the
parameter values.
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0.01, where the results are averaged over 50 independent trials. (a) Two

all stocks. (c) Sets of three stocks, excluding Kinark and Iroquois stocks.
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In the final set of experiments, we apply our algo-
rithms to stock sets under several different transaction
costs. For presentation purposes, we only display context-
tree algorithms that give the largest wealth gains in
Fig. 12. For transaction cost model, we adhere to the
transaction strategy introduced in [17] and apply transac-
tion cost only in buying stocks in accordance with [17].
The results are displayed for several different transactions
costs ranging from c=0 up to c=0.01. In Fig. 12, we present
the final wealths achieved after 22 years for stock pairs
averaged over 50 independent trials. Here, the stock sets
do not include Kinark and Iroquois stocks as in Fig. 10a
and c, however, include these stocks as in Fig. 10b and d.
We note that the context-tree based algorithms intro-
duced in this paper can demand substantial amount of
trading per investment period, which is also the case for
most well-known investment algorithms [17]. However,
we observe that for modest transaction costs, the
tremendous gains achieved by the CTW based algorithms
compensate much of the wealth reduction due to
transaction costs. We note that for large volumes of stock
operations and institutional investors, the transaction
costs can be as low as 6 cents per stock unit. This amounts
to a modest transaction cost ratio and may motivate such
complex, but high yield algorithms. Furthermore, to avoid
such excessive rebalancing, several methods [31,32] exist
that rebalance to the suggested portfolio only if the
difference between the present and the past portfolios
exceeds a certain threshold. This threshold is then
selected based on the volatility and amount of the
transaction cost.

4. Conclusions

In this paper, we consider the problem of investing
using PCRPs from a competitive algorithm perspective.
Using context-trees and methods based on sequential
probability assignment, we have shown a portfolio
selection algorithm the logarithm of whose achieved
wealth is within O(ln(n)) of that of the best PCRP, which
can only be selected using all of the data in hindsight.
We use a method similar to context-tree weighting to
compete well against a doubly exponential class of
possible partitions of the space of observation vectors,
for which we pay at most a ‘‘structural regret’’ propor-
tional to the size of the best context-tree. For each
partition, we use a universal portfolio to compete against
the continuum of all possible CRPs. The results are then
extended to the case when there are also transaction
costs. The resulting algorithms are efficient, with time
complexity only linear in the depth of the context-tree per
combination and perform well for a variety of historical
data. In our simulations, the context-tree investment
strategy using the algorithm from [22] achieved the
largest wealth.

Appendix A. The proof of Theorem 1 and construction of
the sequential algorithm

When the partition is known and fixed, i.e.,
[K

k ¼ 1Vk ¼Rm
þ , we have K independent CRP selection

problems. If we define K time vectors (or index sequences)
of length nk, tnk

k ¼ ft : s½t�1� ¼ k,t¼ 1, . . . ,ng, with k=1,y,K,
and sequences xnk

k ¼ fx½tk½l��g
nk

l ¼ 1, then the universal
sequential portfolio can be constructed using the uni-
versal portfolio of Cover’s [11] independently in each
region, i.e.,

~b½n� ¼ ~bs½n�1�½n�1� ð4Þ

with Cover’s portfolio [11]

~bk½n�9

R
Bb
Qnk

l ¼ 1 bT x½tk½l��lðbÞR
B
Qnk

l ¼ 1 bT x½tk½l��lðbÞ
, ð5Þ

where nk is the number of points of xn that belong to Vk.
This portfolio satisfies for any k and nk [11]:

ln
Ynk

l ¼ 1

~b
T

k ½l�1�xk½l�Z ln
Ynk

l ¼ 1

bT
k xk½l��

ðm�1Þ

2
lnðnkþ1Þ�lnð2Þ

ð6Þ

for any bk. Application of this performance bound into K

separate regions and taking the maximum value for the
right-hand side with respect to nk values yield the
corresponding result in Theorem 1, i.e.,

PK
k ¼ 1 lnðnkþ1ÞrPK

k ¼ 1 lnðn=Kþ1Þ given
PK

k ¼ 1 nk ¼ n since lnð�Þ is a concave
function. This concludes the proof of Theorem 1. &
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Appendix B. Proof of Theorem 2

Given a partition Pi ¼ [
Ki

k ¼ 1 Vi,k of the positive orthant
Rm
þ ,Pi 2 P (the competing class), we consider a family

of portfolios, each with its own set of CRP vectors
Bi ¼ ½bi,1, . . . ,bi,Ki

�. Here, each bi,k represents a CRP
vector for the kth region of partition Pi, i.e., when
x½t�1� 2 Vi,k, we use bi,k. For each pairing of Pi and Bi,
we consider the wealth achieved by the corresponding
algorithm

WðxnjBi,PiÞ9
Yn

t ¼ 1

bT
i,si ½t�1�x½t�,

where si[t�1] is the state indicator variable for partition
Pi, i.e., si[t�1]=k if x½t�1� 2 Vi,k.

Given Pi, the algorithm in the family with the best
CRPs in each region achieves the largest wealth
WðxnjB�i ,PiÞ 9supBi

WðxnjBi,PiÞ. Maximizing WðxnjB�i ,PiÞ

over all Pi (on the tree) yields WðxnjB�i ,P�i Þ9supPi

WðxnjB�i ,PiÞ. Here, WðxnjB�i ,P�i Þ corresponds to the best
PCRPs in the class on the full tree of depth D. Note that
without constraints computational complexity of the
members of the competing class, since this performance is
computed based on observations of the entire sequence in
advance, WðxnjB�i ,P�i Þ corresponds to the algorithm operat-
ing on the finest partition of the space dictated by the leaves
of the full binary tree, with the best CRP used within each
region governed by each leaf in the tree. However, there is
no guarantee that the performance of our sequential
algorithm will perform the best if we choose this finest-
grain model, owing to the dramatic increase in the number
of parameters to be learned sequentially by the algorithm. It
turns out that the finest grain model will generally not have
the best performance when the algorithms within each
node in the tree are required to sequentially compete with
the best batch algorithm within each partition. As such, our
goal is to perform well with respect to all possible partitions
– which enables the algorithm to opportunistically make
use of coarser models when the data is not sufficiently rich
to support those of finest-grain, and to grow the contribu-
tions of finer grain models as the observed data can support
it. As will be shown, the context-tree weighting approach
enables the algorithm to achieve the performance of the
best of any partition-based algorithm. Within each partition,
the algorithm can sequentially achieve the performance of
the best batch process. This property of ‘‘twice-universality,’’
first over the class of partitions of the space of observations,
and then again over the set of parameters within each
partition, enables the algorithm to sequentially achieve the
best possible performance out of the doubly exponential
number, num(D), of partitions and the infinite set of
parameters given the partition.

Given a context-tree with corresponding nodes r,
r¼ f1, . . . ,2Dþ1

�1g and arbitrary sequential portfolios
assigned to each node b̂r½t�, suppose b̂Pi

½t� represents
the sequential portfolio obtained by the combination of
the sequential portfolios corresponding to its piecewise
regions Pi ¼ fVi,1, . . . ,Vi,kg, i.e., b̂Pi

½t� ¼ b̂r½t� if x½t�1� 2 Vi,k

and Vi,k ¼ Vr. For any n, each sequential portfolio b̂Pi
½t�
achieves the wealth

~W ðxnjPiÞ9
Yn

t ¼ 1

b̂
T

Pi
½t�x½t�: ð7Þ

We observe that there exist num(D) such sequential
algorithms corresponding to num(D) partitions. Suppose,
we invest a portion of our initial wealth on each of these
num(D) sequential algorithms and collect the final wealth
at the end. We require that these initial investments
should be recursively computable on the context-tree to
compactly calculate num(D) sequential algorithms. One
such assignment is given in [14] such that for each
sequential portfolio corresponding to each partition Pi,
we invest 2�CðPiÞ portion of our initial wealth. Here,
CðPiÞ ¼ KiþnPi

�1 is defined as the ‘‘cost’’ of partition Pi

and corresponds to number of bits required to represent
the partition Pi on the tree [14], where nPi

is the number
of leaves of Pi that are not the leaves of the original tree.
Note that CðPiÞr2Ki�1, since the leaves of Pi that are not
the leaves of the original tree are just the subset of the
total leaves of Pi, i.e., nPi

rKi. It can be shown thatP
Pi

2�CðPiÞ ¼ 1 [14] and this initial investment is recur-
sively computable on the context-tree. We note that the
values CðPiÞ are only needed for proof purposes and are
not present in the algorithmic description. Then, the final
combined wealth at the end is given by

~W uðx
nÞ9

X
Pi

2�CðPiÞ ~W ðxnjPiÞ: ð8Þ

By this initial wealth assignment, we will next demon-
strate that num(D) such sequential algorithms can be
compactly represented and calculated on the correspond-
ing context-tree.

Clearly, for any Pi, ~W uðxnÞZ2�CðPiÞ ~W ðxnjPiÞ, since
2�CðPiÞ

Z0 and ~W ðxnjPiÞZ0, for all i. This yields

lnð ~W uðx
nÞÞZ lnð ~W ðxnjPiÞÞ�CðPiÞlnð2Þ, ð9Þ

Z lnð ~W ðxnjPiÞÞ�ð2Ki�1Þlnð2Þ ð10Þ

for any Pi, where the second line follows since
CðPiÞr2Ki�1. We now have a total wealth ~W uðxnÞ whose
logarithm is as large as the logarithm of the wealth
achieved by the best partition. However, we have not yet
identified a sequential portfolio that achieves ~W uðxnÞ.

We now present a portfolio assignment algorithm
achieving ~W uðxnÞ. By definition

~W uðx
nÞ ¼

Yn

t ¼ 1

~W uðxtÞ

~W uðxt�1Þ
:

We observe that

~W uðxnÞ

~W uðxn�1Þ
¼

P
Pi

2�CðPiÞ ~W ðxnjPiÞP
Pj

2�CðPjÞ ~W ðxn�1jPjÞ

and this product can be written as

~W uðxnÞ

~W uðxn�1Þ
¼

P
Pi

2�CðPiÞ
Qn

t ¼ 1 b̂
T

Pi
½t�x½t�

~W uðxn�1Þ

¼

P
Pi

2�CðPiÞð
Qn�1

t ¼ 1 b̂Pi
½t�x½t�Þb̂

T

li ½n�
½n�x½n�

~W uðxn�1Þ
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¼

P
Pi

2�CðPiÞð
Qn�1

t ¼ 1 b̂Pi
½t�x½t�Þb̂ li ½n�½n�

~W uðxn�1Þ

 !T

x½n�,

where li[n] is the labeling operator for the partition i such
that li[n] provides the node r corresponding to Vi,k if
x½n� 2 Vi,k.

Hence the desired sequential universal portfolio
assignment algorithm is given by

~bu½n� ¼

P
Pi

2�CðPiÞ
Qn�1

t ¼ 1 b̂Pi
½t�x½t�

� �
b̂ li ½n�½n�

~W uðxn�1Þ

0
@

1
A: ð11Þ

Nevertheless, in this form, the sequential algorithm needs
numðDÞ � ð1:5Þ2

K

different sequential algorithms to run on
parallel on the sequence of observations. We will now
demonstrate that this naive sequential portfolio assign-
ment algorithm can be calculated efficiently by using a
context-tree diagram. For this, we will first show that
~W uðxnÞ can be efficiently calculated by using a context-

tree. Next, the ratio ~W uðxnÞ= ~W uðxn�1Þ and the portfolio
~bu½n� will be constructed on this context-tree.

To this end, we next assign a ‘‘wealth’’ to each node r
as follows. For a leaf node, the wealth assigned to that
node is given by the wealth achieved by its corresponding
sequential portfolio, i.e.,

~W rðx
nÞ ¼

Yn

t ¼ 1

b̂
T

r½t�x½t�sr½t�, ð12Þ

which is a function of the performance of the leaf
portfolio on the sequence of observations, where sr½t� is
the indicator variable for node r such that if x½t� 2 Vr,
sr½t� ¼ 1, else sr½t� ¼ 0. The assigned wealth of an inner
node (i.e., not a leaf node) is defined as

~W rðx
nÞ ¼

1

2
~W rR
ðxnÞ ~WrL

ðxnÞþ
1

2

Yn

t ¼ 1

b̂
T

r½t�x½t�sr½t�, ð13Þ

where rR and rL are the left child and the right child of the
node r, respectively. Here, the assigned wealth of an
internal node is a weighted combination of the wealth
assigned to each of the children nodes and the wealth
achieved by the sequential portfolio of Vr. Using the
recursion in (13), it can be shown, as in Lemma 2 of [14],
that the wealth assigned to the root node ~W rðxnÞ is equal
to the sum of weighted wealth of partitions Pi in (8), i.e.,
~W uðxnÞ ¼ ~W rðxnÞ.

We now have an efficient way of calculating the
universal weighted wealth ~W uðxnÞ. From the bottom of
the tree, i.e., from the leaves, we start calculating the
assigned wealth recursively until we reach to the root
node. For each new sample x½n�, we need to repeat this
procedure to update the assigned wealth of each node.
However, we will next present a sequential update from
~W uðxn�1Þ to ~W uðxnÞ on the context-tree with complexity

linear in the depth of the context-tree, i.e., O(D), instead of
updating all 2D+ 1

�1 nodes. This update will be used in
(11) to get the final recursion for the universal portfolio
and is similar to the sequential update used in [13].
Hence, we will present only the main points in here.
Given xn�1 and ~W uðxn�1Þ, assigned wealth of each node
Wrðxn�1Þ should be adjusted after observing x½n� to form
~W uðxnÞ. However, owing to the tree structure, only the

assigned wealth of nodes that include x½n�1� need to be
updated to form ~W uðxnÞ. We have D+1 nodes that contain
x½n�1�: the leaf node that contains x½n�1� and all the
nodes that contain the leaf that contains x½n�1�. Hence, at
each time n, only D+1 node wealth in ~W uðxn�1Þ must be
adjusted to form ~W uðxnÞ. This enables us to update
~W uðxn�1Þ, a mixture of all num(D) sequential portfolios

with only D+1 updates, instead of updating all
numðDÞ � ð1:5Þ2

K

nodes to reach ~W uðxnÞ.
Suppose x½n�1� belongs to the lowest leaf of the tree in

Fig. 11, i.e., fx1½n�1�Zx2½n�1�41�g. All the nodes along
the path of nodes indicated by filled circles in Fig. 11
include x½n�1� and only these need to be updated after
observing x½n�. For any x½n�1� there exits such a path of
D+1 nodes. Here, we represent the root node as r¼ r; left
and right children of the root node as rL and rR; and
recursively, the left child of the left child of the root node
as rLL and the right child of the left child of the parent
node as rLR. By this notation it can be shown that ~W uðxn�1Þ

can be compactly represented as sum of D+1 terms [13],
collecting all terms that will not be affected by x½n�, i.e.,

~W uðx
n�1Þ ¼

XD

k ¼ 0

bk½n�1�
Yn�1

t ¼ 1

b̂
T

rk
½t�xrk

½t�srk
½t�, ð14Þ

where rk are the nodes that will be affected by x½n�, i.e., for
this example, r0 ¼ r, r1 ¼ rR, r2 ¼ rRR, and bk½n�1� are
terms generated by the nodes that are not affected by x½n�.
We will enumerate the affected nodes using the notation rk,
k¼ 0, . . . ,D and for each affected node rk, bk½n�1� contains
products of node wealth ~WrðxnÞ that share the same parent
nodes with rk but will be unchanged by x½n� (i.e., the sibling
node of an affected node that does not include x½n�1�). As
an example, consider the same tree of depth D=2 in Fig. 12
with the assigned node wealth. Then, it is shown in [13] that
for each time n�1, bk½n�1� can be calculated recursively.
We start from the root node r0 ¼ r, b0½n�1� ¼ 1

2. We
next recursively define: bk½n�1� ¼ 1

2bk�1½n�1� ~W rk,sib
ðxn�1Þ,

where rk,sib is the sibling node of the affected node rk, e.g.,
for r1 ¼ rR, sibling node is r1,sib ¼ rL, for r2 ¼ rRR, sibling
node is r2,sib ¼ rRL. Hence, at each time n�1, bk½n�1� can be
calculated recursively with only D updates. Clearly in the
calculation of bk½n�1�, we use the nodes that will be
unchanged by x½n�. Thus, to obtain ~W uðxnÞ, we need to
update only the product terms in (14). Since for all the
product terms in (14) the last sample is x½n� by definition

~W uðx
nÞ ¼

XD

k ¼ 0

bk½n�1�
Yn�1

t ¼ 1

b̂rk
½t�xrk

½t�srk
½t�

 !
b̂

T

rk
½n�x½n�,

hence the sequential update for ~W uðxnÞ from ~W uðxn�1Þ. A
complete algorithmic description of this tree update with
required storage and number of operations will be given in
Section 2.4.

Thus, ~W uðxnÞ= ~W uðxn�1Þ can be written as

~W uðxnÞ

~W uðxn�1Þ
¼
XD

k ¼ 0

ak½n�1�b̂
T

rk
½n�x½n�,
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where weights ak½n�1� are defined as

ak½n�1�9
bk½n�1�

Qnrk
�1

t ¼ 1 b̂
T

rk
½t�xrk

½t�

~W uðxn�1Þ
:

Hence the final universal portfolio is given by

~bu½n� ¼
XD

k ¼ 0

ak½n�1�b̂rk
½n�,

where rk are the nodes such that x½n�1� 2 Vrk
, i.e., affected

nodes. This completes the proof of Theorem 2. &

Appendix C. Outline of proof of Theorem 3

To get the universal algorithm of Theorem 3, we select
particular sequential portfolios b̂r½t� for each node. For
each node r, we assign a sequential portfolio from [11]
that is trained just on the sequence of observations
belonging to that node, i.e.,

b̂r½n� ¼

R
Bb
Qnr

k ¼ 1 bT dr½k�lðbÞR
B
Qnr

k ¼ 1 bT dr½k�lðbÞ
, ð15Þ

where t
nr
r ¼ ft : x½t�1� 2 Vrg, dnr

r ¼ fx½t
nr
r ½k��g

nr
k ¼ 1 and nr is

the length of the sequence that belongs to node r until
time n. From the proof of Theorem 1, we observe that each
b̂r½t� asymptotically achieves the performance of best CRP
for that region yielding the performance bound

ln
Ynk

l ¼ 1

~b
T

k ½l�1�xk½l�Z ln
Ynk

l ¼ 1

bT
k xk½l��

ðm�1Þ

2
lnðnkþ1Þ�lnð2Þ:

Application of this performance bound into Ki separate
regions for each Pi and combining the result with the
bound of Theorem 2 yields Theorem 3. &

Appendix D. Outline of proofs of Theorems 4 and 5

Proofs of Theorems 4 and 5 parallel the proof of
Theorem 1. Given the achieved wealth Wcðxnjb̂Pi

,PiÞ for
any Pi, we again define a weighted mixture of the wealth
as

~W
c

tempðx
nÞ9

X
Pi

2�CðPiÞ ~W
c
ðxnjb̂Pi

,PiÞ: ð16Þ

Here, ~W
c

tempðx
nÞ would corresponds to investing on each

partition Pi, 2�CðPiÞ of the initial money and collecting the
wealth at time n. However, instead of dividing the money
to all Pi, we can again implement this investment strategy
using a context-tree (as in Theorem 1). Since using the
context-tree we just efficiently implement the ordinary
weighting in (16), our implementation using the context-
tree can achieve even larger final wealth due to occasional
savings in commission costs, e.g., if b̂Pi

½n� is selling a stock
and b̂Pj

½n� is buying the same stock, they can just
exchange the stocks instead of selling and buying to
avoid the commission. Hence,

~W
c

uðx
nÞZ ~W

c

tempðx
nÞ ¼

X
Pi

2�CðPiÞ ~W
c
ðxnjb̂Pi

,PiÞ

for each Pi, where ~W
c

uðx
nÞ is the achieved wealth by the

context-tree. For implementation on the context-tree, we
define the wealth of a leaf node as ~W
c

rðx
nÞ as the wealth

achieved by the node portfolio over the sequence dnr
r of

observations belonging to this node with commission c.
We next define the ‘‘assigned’’ wealth of an inner node as

~W
c

rðx
nÞ ¼ 1

2
~W

c

rL
ðxnÞ ~W

c

rR
ðxnÞþ1

2
~W

c

rðx
njrÞ, ð17Þ

where ~W
c

rðx
njrÞ is the wealth achieved by this inner node

portfolio over the sequence dnr
r of observations belonging

to this inner node with commission c. Applying the
recursion in (17) we obtain that the assigned wealth of
the root node is ~W

c

r ðx
nÞ ¼ ~W

c

uðx
nÞ. Following similar steps

to those of Theorem 1, the final portfolio is given by

~bu½n� ¼
XK

k ¼ 0

ac
k½n�1�b̂rk

½n�srk
½n�,

where rk are the nodes such that x½n�1� 2 Vrk
, i.e.,

affected nodes, b̂rk
½n� is the corresponding sequential

portfolio for that node and the weights are defined as

ak½n�1�9
bk½n�1� ~W

c

rk
ðxnjrkÞ

~W
c

uðx
n�1Þ

:

This completes the outline of proof of Theorem 4. &

For Theorem 5, as the first step, given any Pi, we
will try to find a sequential algorithm that achieves
WcðxnjBi,PiÞ for any Bi ¼ ½bi,1, . . . ,bi,Ki

�, i.e., the wealth
achieved using CRPs bi,k for each region independently
with transaction cost c. We will then generalize this result
using a double mixture approach to get the final universal
algorithm following the steps of Theorem 1 or Theorem 4.

We first construct Ki time vectors (or index sequences)
of length ni,k each, t

ni,k

i,k ¼ ft : si½t�1� ¼ k,t¼ 1, . . . ,ng, with
k=1,y,K, and sequences x

ni,k

i,k ¼ fx½ti,k½k��g
ni,k

k ¼ 1. We then
define the wealth achieved by a CRP on this sequence of
observations with transaction cost c as Wcðx

ni,k

i,k jbÞ. By this,
we replace Cover’s algorithm in Theorem 1 with algorithm
from [17]

~b
c

j ½t�9

R
BbWcðx

ni,k

i,k jbÞlðbÞR
BWcðx

ni,k�1
i,k jbÞlðbÞ

, ð18Þ

where lðbÞ is now an mth order uniform distribution. We
define the wealth achieved by this algorithm over the
period x

ni,k

i,k as Wcðx
ni,k

i,k j
~bÞ which has the following result:

lnðWcðx
ni,k

i,k j
~bÞÞZ lnðWcðx

ni,k

i,k jbÞ�ðm�1Þlnð1þð1þcÞni,kÞÞ

ð19Þ

for any b. Hence, the algorithm given in (18) asymptoti-
cally achieves the performance of the best CRP for that
region. Given any Pi, we define ~W

c
ðxnjPiÞ as the wealth

achieved by using the portfolio defined in (18) for each
region. We derive a bound on ~W

c
ðxnjPiÞ by applying (19)

for each region, however, we also need to account for the
cost of switching portfolios at region change. If we switch
from region k to l in Pi, then we need to adjust the
portfolio vector ~b

c

k½t�1� to ~b
c

l ½t�1�, where ~b
c

k½t�1� and
~b

c

l ½t�1� are the corresponding sequential portfolios for
that regions, respectively. Hence, we need to account for
this transaction cost. At each switch, in the worst case, we
can only lose the fraction c of total wealth. Hence, further
reducing the wealth by ln((1�c)) (i.e., scaling down the
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wealth by (1�c) in the worst case per transition)
results in

lnð ~W
c
ðxnjPiÞÞZ lnfWcðxnjBi,PiÞg�ðm�1Þ

XKi

k ¼ 1

lnð1þð1þcÞni,kÞ

�ln
1

ð1�cÞNi

� �
: ð20Þ

After this point, the proof of Theorem 5 follows that of
Theorem 1 (or Theorem 4) where we construct weighted
universal portfolios on context-trees. This completes the
outline of proof of Theorem 5. &
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