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Steady State and Transient MSE Analysis of Convexly
Constrained Mixture Methods

Mehmet A. Donmez and Suleyman S. Kozat

Abstract—We investigate convexly constrained mixture methods to adap-
tively combine outputs of two adaptive filters running in parallel to model
a desired unknown system. We compare several algorithms with respect to
their mean-square error in the steady state, when the underlying unknown
system is nonstationary with a random walk model. We demonstrate that
these algorithms are universal such that they achieve the performance of
the best constituent filter in the steady state if certain algorithmic param-
eters are chosen properly. We also demonstrate that certain mixtures con-
verge to the optimal convex combination filter such that their steady-state
performances can be better than the best constituent filter. We also perform
the transient analysis of these updates in the mean and mean-square error
sense. Furthermore, we show that the investigated convexly constrained al-
gorithms update certain auxiliary variables through sigmoid nonlinearity,
hence, in this sense, related.

Index Terms— Adaptive filtering, combination methods, convex mix-
tures, steady-state analysis, transient analysis.

I. INTRODUCTION

In this correspondence, we first investigate and compare four well-
known convexly constrained adaptive mixture methods to combine out-
puts of two adaptive filters [1]–[4] with respect to their mean-square
error (MSE) in the steady state. We then perform the transient anal-
ysis of these convexly constrained updates in the mean and the MSE
senses. In this widely studied framework, we have two adaptive filters
that work in parallel in order to model an unknown system [1]. The
outputs of these algorithms are then combined using another adaptive
method in order to improve the overall performance [1]. The first adap-
tive algorithm [1] uses a stochastic gradient update on the convexly
constrained mixture parameter to minimize the final estimation error.
The second algorithm is based on the exponentiated gradient (EG) al-
gorithm [2], [5]. The EG algorithm has extensive roots in sequential
learning theory [6], [7] and minimizes an approximate final estimation
error while penalizing the distance between the new and the old mixture
parameters. The third [3] and the fourth algorithms [4] use specific per-
formance-based updates on the mixture parameters as further detailed
in Section III. Although we specifically concentrate on the combination
of two filters for presentation clarity, our results can be readily extended
to mixtures having more than two filters [8].

Mixture approaches are shown to improve the steady-state and tran-
sient performance over the constituent filters under certain scenarios
[1], [3], [9], [10]. The steady-state analysis of convexly constrained,
affinely constrained and unconstrained mixtures are carried out in [1],
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[9], [10], respectively. Specifically, the adaptive convex mixture of [1]
is shown to be universal with respect to the constituent filters such
that this algorithm achieves the excess MSE (EMSE) performance of
the best constituent filter and, in certain cases, even outperforms both
[1]. Furthermore, the convexly constrained mixture methods are exten-
sively studied in sequential learning theory under the mixture of ex-
perts framework [2], [3] and shown to be “universal” in a strong and
deterministic sense such that they asymptotically achieve the perfor-
mance of the best algorithm in the mixture for any bounded but arbi-
trary real-valued sequence. However, the results in [2], [3], [6], and [7]
hold for deterministic and bounded sequences. The boundedness as-
sumption is not correct, as an example, for Gaussian random sequences.

In this correspondence, we show that if we use the EG algorithm to
update the mixing parameter, the resulting combination filter is uni-
versal with respect to the constituent filters such that the combination
filter performs, at least, as well as the best constituent filter in the steady
state. Specifically, we show that the EMSE of the combination filter
is as small as the best of the constituent filters and, in some cases,
smaller than EMSEs of the component filters in the steady state. We
also show that the mixture parameter under the EG update converges to
the optimum convex combination parameter that minimizes the EMSE.
Note that the EG algorithm is shown to converge faster and has better
tracking performance than the stochastic gradient algorithms for sparse
impulse responses in certain situations [2], [5], [11]. Hence, the EG al-
gorithm can be preferred over the stochastic gradient based algorithms
for mixtures having more than two filters and when the combination
favors only a few of the constituent filters. We point out that although
the MSE of the EG algorithm is studied using Euler discretization in
[11] under certain assumptions for uncorrelated input regressors, our
framework and the analysis are significantly different since we use the
EG algorithm to combine outputs of adaptive filters, which are nonlin-
early coupled, such that the assumptions of [11] do not hold. The third
algorithm that we investigate is based on a certain performance-based
mixture of the constituent filters [3]. We analyze the steady-state be-
havior of [3] and show that with a proper selection of the forgetting
factor, the combination filter is universal such that it performs as well
as the best constituent filter in the steady state. Although the algorithm
of [3] is also shown to be universal in a strong deterministic sense [3],
however, we show that the mixture parameter does not converge to the
optimum convex combination parameter under our assumptions (which
is also supported by our experiments). The fourth algorithm that we
investigate was studied in [4] and combines filters based on their per-
formances within a time window. We demonstrate that if the mixture
parameter in [4] is selected using a sufficiently large time window, the
combination filter can achieve the performance of the best constituent
filter in the steady state. For all algorithms, we also perform the tran-
sient analysis in the mean and the MSE senses.

In Section II, we first briefly describe the mixture framework for
the combination of two adaptive filters running in parallel with the
error quantities and performance measures. In Section III, we inves-
tigate four mixture methods in detail and provide MSEs along with
the converged mixture weights in the steady state. In Section IV, we
provide a transient analysis of the corresponding algorithms. We illus-
trate the introduced results through simulations under the setup of [1]
in Section V. Our results accurately describe the behavior of these al-
gorithms both in the steady state and during convergence in the studied
setup. The correspondence concludes with certain remarks.

1053-587X/$31.00 © 2012 IEEE
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II. PROBLEM DESCRIPTION

In this framework, we have two adaptive algorithms that run in
parallel to model a desired signal ����. The desired signal ���� is
given by ���� � ����

� ��������� � ����, where ������� � ��� is the
desired system vector that varies according to a random walk model
[12], i.e., ������ � �� � ������� � ������, where ������ is a zero mean,
i.i.d. random vector with covariance matrix ��� � ������������ ���	,
������ � ��� is the input regressor with zero mean and correlation
matrix 			 � ������������ ���	 and the observation noise ���� is i.i.d.
with zero mean and variance �������	 � 
��. The cross correla-
tion vector between the desired signal and the input regressor is
������ � ������������	. To model the desired signal ����, we have
two parallel running constituent filters each producing estimates

����� � ����

� ��������� and 
����� � ����
� ��������� using the weight vectors

�������� ������� respectively. For each constituent filter, we define the
estimation error, the a priori error and the a posteriori error as 
����

�
�

���� � 
����� � ���� � ����
� ���������, 
������

�
� �������� � �������	

�������

and 
������
�
� �������� � ������ � ��	�������, respectively. For each

filter, we also define MSE as �����
�
� ��
�� ���	 and excess MSE as

��������
�
� ��
�������	, with limiting values ��

�
� ��
��� �����,

�����
�
� ��
��� �������� (if the limits exist). We also define

the cross correlation between the a priori errors as ���������
�
�

��
������
������	 with limiting value ������
�
� ��
��� ���������.

We also define ������ � �������� � ��������� for � � �, 2 with the
limiting values ��� � ����� � ������ [1].

The outputs of the constituent filters are then combined using an-
other adaptive layer to produce the final estimate of the desired signal
as 
���� � ���� 
����� � �� � ����	 
�����, where ���� is the mixing
parameter constrained to be in [0, 1]. If ������

�
� � 
����� 
�����	

� and
������

�
� ����� � � ����	� , then we have 
���� � ���� ���������. The final

estimation error is given as 
��� � ����� 
����. In this correspondence,
we investigate four methods to train the combination weight ����. As-
suming convergence, the optimal mean combination weights in terms
of minimizing the MSE under convex constraint are given by [1]

������
�
�

� � � 	� � ����� � ������ � �����

� � � 	� � ����� � ������ � �����

� �	

�	 ��	

�	

�	 ��	
	� � ������ � ������ ���� �

(1)

in the steady state.

III. STEADY-STATE PERFORMANCES OF CONVEXLY

CONSTRAINED MIXTURES

In this section, we analyze four methods to train the mixture pa-
rameter ����. The a priori error of the combination filter is 
���� �

����
������ � ��� �����
������. If ������
�
� ��
�����	, then we get

������ � � �
����
������� � ��� ������ 
�������

������ ��� ����� 
������
������

and ���
�
� ��
��� ������. Without loss of generality, we assume that

����� � ����� in the following. Hence, for each algorithm, we have two
separate cases depending on the relative value of ������, i.e., ����� �
������ � ����� or ������ � ����� � �����, to investigate the steady-
state behavior.

A. Algorithm 1

For the convexly constrained algorithm from [1], the mixture param-
eter is given by

�
��� �
�

� � ��� ������	

where ���� is trained using a stochastic gradient update to minimize
the final prediction error as

������������
�


�
�
	�



����

�������

��� 
������ 
����� �
��� ����
���	 � (2)

For (2), we have [1]

��� �
����� � ����� � ������ � �����

������ �
�	 �	

�	 ��	
� ������ � ����� � �����

where������� �	 �	

�	 ��	
� �����. Furthermore, if���
���

�
� ��
��� ��

�
���	
� , then we have [1]

��

���

� ����
���	�
�� �	� � ����� � ������������

� �	

�	 ��	

�	

�	 ��	
	� � ������ � �����������.

Hence, in the steady state, the mixture performs as well as the best
component filter and, in some cases, outperforms both. Moreover, the
combination weight vector ���
��� converges to the optimal weight
vector ������ under the convex constraint.

B. Algorithm 2

The second convexly constrained update is based on the EG algo-
rithm [2]. The EG algorithm has extensive roots in competitive online
learning theory and has been used in different signal processing prob-
lems such as in echo cancellation [5], [11]. Here, we use the EG al-
gorithm to train the mixture weights, where the combination weight is
updated as [2], [5]

����������� 
��

�����


� ��������������
��

�

� 

�����

�������������������

�� 
�
 	�


���� ������ (3)

������ ��� ��
��� 
����� ����� ��� ��
��� 
�����

���� �����	 ��� ��
��� 
����� (4)

where �������������� � � �� 



 	�

������ �� ��


��
 	�

is the Kull-

back–Leibler distance between the old and new weights, the second
term on the right hand side of (3) is the first order Taylor’s approxima-
tion of �����������������

�
around � � �����, measuring the “fit” of the

new weight to the data, ��� � �� �� �	� , �������
�
� ������ �� �����	

�

and 
��� � ���� � ����
� ���������. After recognizing 
��	�
 �

��
 	�



 	�


and some algebra, the update on ����� in (4) can be written as

����� �
�

� � ��� ������	
(5)
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with

������������������ ������� ������

�������� ����������������� ������ �������������

� ��������� �������� � (6)

We note that the update in (6) is similar to the update in (2) without
the extra ������� � ������ multiplier in (2). In [1], it is pointed out
that the update in (2) may slow down when ���� is too close to 0 or 1
due to �������� ������. As a possible remedy to this problem, ���� is
restricted to an interval excluding 0 and 1 [1]. Note that this problem
is not present in (6).

Steady-State Behavior of �����: The derivations follow as in [1].
Here, we first obtain an expression for the adaptation parameter in the
steady state. If 	�����

�
� 	�������, then, as �� �, we get

	 ���������	 ��������� ��	����� 

�������
	�����

���� (7)

after some algebra, where we assume that ����� and ������� are inde-
pendent in the steady state for � � �, 2 [1]. Furthermore, under the
assumption of zero variance for ����� as �� � [1], we get


�� � 	���
���� � ��� 	���
�

���� � �	����� 	���
����� (8)

where 	��
�
� �
����	�������. Depending on variances and cross cor-

relation of the a priori errors, we have two cases:
1) 
���� � 
����� � 
����: Here, we have

� � � and

� 
 � so

that the term ��� 	������

����� 	�����

���� is positive since
� 
 	����� 
 � for all �. Then, we get 	������ � � as � � �.
This implies that ���� � � and ����� � � almost surely as
��� so that 
�� � 
����. That is, in this case, the combination
performs as well as the best component filter. In addition, since we
have �
���� 	��������� � �� ��� , we conclude that the combina-
tion vector ������� converges to the optimum weight vector ������

under the convex constraint.
2) 
����� � 
���� � 
����: We have 

� 
 �, � � �, 2. As ���,

a stationary point of (7) may be characterized by

�� 	����� 

���� � 	�����

����

so that 	�� � ��

�� ���
. If we substitute 	�� in (8), then we

get 
�� � 
����� � �� ��

�� ���
, after some algebra. Using � �

��

�� ���
� � yields 
�� � �
��
����� 
�����. Thus, the com-

bination filter outperforms both of the constituent filters. In addi-
tion, since we have

�
�
���

	 ��������� �


�



� �

�



�



� �

�

�

the combination weight ������� converges to the optimal weight
vector ������ under the convex constraint.

Hence, the combination filter is universal with respect to the constituent
filters and its weight vector converges to its optimal value.

C. Algorithm 3

The third update uses a performance-based mixture of the compo-
nent filters and has deep roots in computational learning theory [6], [7].
Here, the combination weights are selected as certain functions of the
accumulated loss of each constituent filter as (9), shown at the bottom
of the page, where � � � � �. After some algebra, the same update on
����� can be written as

����� �
�

� � ��� �������
(10)

with

���� �� � ����� � �� ��������� �������� ������ � ������ � (11)

Steady-State Behavior of �����: To obtain an expression for the
adaptation parameter in the steady state, we use

	����������	���������	��������������������������������

��	��������� �
��������
�������� (12)

where we assume that ������� and ���� are independent for � � �, 2
[12]. Along with the configuration of EMSEs, we need to consider also
� � � � � and � � � cases separately.

a) � � � � �: For convergence of (12), if ����
�
�

�

�	
 �
����
������� � 
�������� �

�

�	
 �
����
���� � 
�����,

then we recognize that ��� � �� � ����� � ��� � �� � �, so
�������� � �������� ��
�������� 
��������� �
����� 
������

by the triangular inequality where ����
�
� 
������� � 
�������

and �
�
� 
���� � 
����. Then, it can be easily shown that

���� � � as � � � so that

�
�
���

	 ������ �
���
���� � 
�����

�� �
� (13)

The final EMSE of the combination filter is 
�� � 	���
���� �

�� � 	���
�
���� � ��� � 	���	��
�����, under the assumption of

zero variance for ����� as � � � [1] for any given � where
	��

�
� �
���� 	�������. Note that (13) does not depend on


�����. Depending on the variances and the cross-EMSE of the a
priori errors, there are two subcases:

a.1) 
���� � 
����� � 
����: Under this configuration, the
optimal combination parameter � in (1) is equal to 1 and the
EMSE of the optimal combination filter is 
����. Hence, for
the combination filter to achieve the performance of the best
constituent filter, we need to have �� � �, i.e., 	��������

as ���, which is true if and only if � � �. For any �, the

����� �
��� ���

���
�	� ��������������

��� ���
���
�	� ��

�������������� � ��� ���
���
�	� ��

��������������
� (9)
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difference between the EMSEs of the combination filter and
the best constituent filter is

������
�
���� � �����

���� ���� �� � ����������� � ������

���� ���������� � ������� � � (14)

where the equality is reached if and only if � � � so that
the update (11) does not achieve the performance of the best
constituent filter if � �� �.
a.2) ������ � ����� � �����: Here, the differ-
ence between the EMSEs of the combination filter
and the best constituent filter is, i.e., ������ in (14),
a convex function of ��� with roots �� ���

�� ���
and 1.

Hence, for ��� � �� ���

�� ���
� � , ���� is negative,

i.e., ��� � �����. We note that ��� � �� ���

�� ���
� �

if and only if � � � � ��
�� ���

��
� � as-

suming that ��
�� ���

��
� �. Then, the combi-

nation filter outperforms the constituent filters for any

� � � � ��
�� ���

��
� � .

b) � � �: We have ��	�
� ��	 � ��	�
�	 ���
�, where ��
�
�
�

���������
� � ������
�� converges to a positive constant since
����� � ����� so that ��	�
�	 � � as 
 � �. This implies
that 	�
� � � and ���
� � � almost surely as 
 � � so that
��� � �����. Thus, the combination filter performs as well as
the best component filter. The final combination weight vector is

������������
�	 � �� �	� .

Hence, � � � is a necessary condition for the combination filter to
achieve the performance of the best constituent filter. Note that when
� �� �, the combination filter may outperform the constituent filters
in specific configurations of EMSEs. However, if the cross EMSE is
������ 
 ����� and � �� �, then the combination performs worse
than the best constituent filter. Hence, unlike [1], the algorithm of [3]
achieves (but not outperforms) the best constituent filter when � � �

and if � �� �, then the algorithm may outperform or perform worse than
the best constituent filter depending on the configuration of EMSEs.
Moreover, the weight vector convergence does not appear.

D. Algorithm 4

The fourth update we investigate is studied in [4]. Here, the combi-
nation weight is given by

���
� �

���
�	
 ����
� ��

�

���
�	
 ����
� ��

�

� ���
�	
 ����
� ��

�

(15)

where � is the time window to evaluate the performance-based
weighting. The same update on ���
� can be written as

���
� �
�

� � 
�� ����
�	

where

��
�
�
�

�

�

�

���
�	
 ����
� ��
���
�	
 ����
� ��

� (16)

Steady-State Behavior of ���
�: To get the steady-state behavior,
we use

� ����
�	 ��
�

� ��
	 �����

	 �����

�

�
�

� �

�	 �����	

�	 �����	

�

� (17)

We emphasize that although the approximations in (17) are strong es-
pecially for small � , we observe a close agreement with our sim-
ulations for relatively large � , e.g., � 
 ��. Since as 
 � �,
����� �
�	 � �	�� � ��� for � � �, 2, we get

���
�
� 
��

���
� ��� �
�	 �

�

� �
� �


� �


�

(18)

and the final EMSE of the combination filter is ��� � ��������� � ���
����

������������������������ for any given� under the assumption
of zero variance for ���
� in the steady state [1]. Depending on � , we
have two cases:

a) � � �: Since we have �� �
 �

�� �
 �

 �, we get


����� �����
�	 � �. Hence,

��� � ������ (19)

Thus, the combination filter performs as well as the best
constituent filter. The final combination weight vector is

����� �������
�	 � �� �	� .

b) � ��: Depending on the a priori errors and the cross-EMSE
between the component filters, there are two subcases:

b.1) ����� 	 ������ � �����: In this case, the optimal com-
bination parameter � in (1) is 1 and the EMSE of the optimal
combination filter is �����. The combination filter achieves
the performance of the best constituent filter if����
�	��

as 
 � � if and only if � � �. The difference between
the EMSEs of the combination filter and the best constituent
filter is

��� � ����� ���� ���� �� � ����������� � ������

���� ���������� � ������� � �

where the equality is reached if and only if � �� so that
the algorithm does not achieve the performance of the best
constituent filter if � � �.
b.2) ������ � ����� � �����: In this case, the difference
between the EMSEs of the combination filter and the best
constituent filter, i.e., ������ in (14), is negative for � �

� �
����� ���
���� ��� �

�
��� �
 ���
��� �
 �
�� so that the combina-

tion filter outperforms the constituent filters, i.e., ��� �

�����.
Hence, � � � is a necessary condition for the combination filter
to perform as well as the best constituent filter. The combination filter
using the update rule (15) with � � � may outperform the con-
stituent filters in certain configurations of the EMSEs. However, if the
cross EMSE is sufficiently large, then the combination filter performs
worse than the best component filter when� ��. Hence, unlike [1],
update (15) achieves (but not outperforms) the best constituent filter
when � � � and if � � �, then the algorithm may outperform
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or perform worse than the best constituent filter depending on the con-
figuration of EMSEs. Moreover, it does not offer the desirable weight
vector convergence.

IV. TRANSIENT ANALYSIS OF THE CONVEXLY

CONSTRAINED MIXTURES

In this section, we perform mean and mean-square convergence anal-
ysis of the studied algorithms. The derivations follow [13]. We use the
following assumptions [13]:

A1) ���� is independent of ������.
A2) ����� ����� ���� vary slowly enough so that

��	�������	
�
������
����
���� � ��	�������	

�
�������
���,

where 
��� � ������ ����� �����, �, � � �, 2 and 
,
� � �� � � � � 	, 
 
 � � 	.

A3) 	������ and 	������ are jointly Gaussian and zero mean,
implying [13] ��	�������� � ����������, � � �, 2,,
��	�������	

�
������� � �, 
 
 � � �, ��	�������	

�
������� �

������������������, 
 � �, � � �, ��	�������	
�
������� �

������������������, 
 � �, � � �, ��	�������	
�
������� �

����������� 
 ����������������, 
 � � � �.

A. Transient Analysis of Algorithm 2

The update (6) can be written as

	���
 �� � ���� 
 �� � �����	
�
������ 
 ��� ������ 	

�
������


 �������� ��	������	������


 ���� �	������� 	������� � (20)

The first order Taylor’s approximation of ��������
�
� �

�����	�����




around 
����
�
� ������� is given by

�� ������ ��� �
����� 

���

�����
�
����� ������ 
�����

� 
����� 
 
����� �� 
����� ������ 
����� (21)

where 
�����
�
� ���
�����. Using (21) in (20) yields
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�������
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�����
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���� �	�������	������� � (22)

Taking the expectation of (22) and using A1), A2) yields


���
 �� � 
���� 
 �� �
������������� 
 �� 
����� ��������


 �
������ � ��������� � (23)

Moreover, by using (21) in 	���� � �����	������
���������	������,
we get

	���� � 
����� 
 
����� �� 
����� ������ 
����� �	������

�	������� 
 	������ (24)

which yields ��	����� � � using A1) and A2). We next find the EMSE
of the combination filter by squaring (24) and taking the expectation,
yielding

� 	
�
���� � 
������ 
 �

�
����
�

�
���� �� 
�����

�

� ��������� 
 ��������� �����������


 �
����� ����������� ��������� 
 �������� (25)

where ������
�
� �������� 
������� with A1) and A2). To evaluate (25),

we need have ������. To obtain a recursion for ������, we square (22),
take the expected value and subtract the square of (23), yielding, using
A1), A2), and A3), after straightforward algebra,

�
�
���
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 �
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�
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 �

�
�� ��� (26)

where, omitting �,

� �����
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�
�
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������ �
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����������
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	 (27)
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������������
���������

�	������������	�����������
�
�
���� � (29)

Here, we analyze the bias/variance relation of Algorithm 2. From (23),
when the step size is large, the combination filter could better track
the constituent filters. However, a larger step size may cause ������

to be large so that the EMSE of the combination filter (25) may be-
come unstable during the initial iterations. Note that from (26) when

��

�
� ������


����� � � or 1, ������ is unbounded as � 	 


since ��
�
� ������ ����� � �, ��

�
� ������ ����� � � and

�
�
� ������ � ��� � �. However, in our simulations, we observe

that 
�������� � 
������
� converges to 0 faster than ������ goes to in-

finity so that the term ������ ������
�
�
������ � 
������

� � � in (25).
Hence, the effect of the variance of the combination parameter on the
EMSE of the combination filter diminishes in the steady state when

�� � � or 1 so that the EMSE of the combination filter converges
to the EMSE of the best constituent filter in the mean and the MSE
senses. When 
�� � �


�
 ��

, we observe from (26) that ������ con-

verges when �� 
 � ������� 
 ��������� � � for all �, i.e., �� �

� ������� 
 �������� � � and under this condition

�
�
�

�
� ���

���
�
�
���� � �

���

��� 
 ����
�

We observe from (27) that � � � and from (28) and (29) that ��� 


���� � � when �� � � ������� 
 �������� � � for all � so that
��� � � and the term ������
�

�
�������
������

� in (25) converges. Hence,
from (25), there is a bias term ���
�

�
��� � 
���

����� 
 ���� in the
EMSE of the combination filter in the steady state which introduces a
bias/variance tradeoff as in the stochastic gradient algorithms [12], e.g.,
the tradeoff between the bias and the step size of LMS algorithm. Since
all the terms in (27), (28), and (29) can be calculated (recursively), this
concludes the transient analysis of Algorithm 2.
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B. Transient Analysis of Algorithm 3

The update rule for ���� can be written as

���� �������� � �� �
�
��������

�
�����������������������������

(30)
yielding

����� �� � ������ � �� ���������� ��������	 (31)

with A1). We next use the first order Taylor’s approximation of �����
around the expected value �����

�
� 	�����	 as����� � ����������������

������������� ������, where ������
�
� ��������. Applying this to ����� �

������������ � �� � ������������� yields

������ ������������� �������� ������������ ����������������	

�������� (32)

and 	������	 � 
 with A1) and A2). We obtain EMSE of the combi-
nation filter by squaring (32) and taking the expectation as
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� ��������� � ��������� ����������	

� ������� ����������� ��������� � �������� (33)

where 
�� ���
�
� 	������� �������	 is the variance of ���� using A1) and

A2). To obtain a recursion for 
�� ���, we square (30), take expectation
and then subtract the square of (31). This yields, using A1), A2), and
A3),
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Here, we analyze the bias/variance relation of Algorithm 3. From (31),
the combination filter could better track the constituent filters when
the step size is large. However, a larger step size may cause 
�� ��� to
be large so that the EMSE of the combination filter (33) may become
unstable during the initial iterations. When 
 � � � �, we have ��

�
�

��
��� ����� �
� �� �� �

���
and ���

�
� ��
���

������. From (34),

�� ��� converges and
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Hence, the term 
�� �����
�
������� �������

� in (33) converges. Note that
from (33) this term introduces a bias in the EMSE of the combina-
tion filter in the steady state. When � � �, it follows from (31) that
��� � 
 or 1. From (34), 
�� ��� is unbounded as � � �. However, in
our simulations, we observe that �����������������

� converges to 0 faster
than 
�� ��� goes to infinity so that the term ��
��� 
�� �����

�
������ �

�������
� � 
 in (33). Hence, the effect of the variance of the combi-

nation parameter on the EMSE of the combination filter diminishes in
the steady state when � � � so that the EMSE of the combination filter
converges to the EMSE of the best constituent filter in the mean and
the MSE senses. This concludes the transient analysis of Algorithm 3.

C. Transient Analysis of Algorithm 4

Taking expectation of (16) yields
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�
�

�
��

���
��	 �������� ��
���
��	 ��
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�

If we use the first order Taylor’s approximation of �	��� around the
expected value �
���

�
� 	�
���	, then we get

�	��� � ��	��� � ��	��� �� ��	��� �
���� �
���� (35)

where ��	���
�
� ���
����. Using (35) in ����� yields

����� � ��	��� � ��	��� �� ��	��� �
���� �
����

� ��������� �������	 � ������� (36)

and 	������	 � 
 under A1) and A2). To get the EMSE of the combi-
nation filter, we first use the first-order Taylor’s approximation of ��	���

around the expected value �
���
�
� 	�
���	 to get

�
�
	���

�
� ���	��� � ����	������ ��	�����
���� �
����� (37)

Using (35) and (37) in ������ and taking expectation yields
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�
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�
��������

�����	��� �� ���	��� ���������� (38)

This concludes the transient analysis of Algorithm 4.

V. SIMULATIONS

In this section, we present performance of the combination al-
gorithms through simulations using the setup of [1]. Here, we
have two LMS filters with the same input regressor and different
step sizes running in parallel as the constituent filters with updates
���
��� �� � ���
��� � �
�
���������, for � � �, 2, where �� � 
�� and
�� � 
�

�. The input regressor ������ � ��
 is zero mean and i.i.d.
Gaussian with variance selected to yield������� � �, where����� is the
trace. The underlying signal is generated as ���� � ����

� ��������������,
where ���� is the additive i.i.d Gaussian noise with variance 
�� � 
�
�

and��������� � ��������������. The initial value of������� is selected as
�����
� � �
��
��
���� 
�����
�
��� 
���� 
�����
�
�	� [1]. The-
oretical EMSEs of the combination filters and the cross-EMSE
between them are given by ����
 �

� 
 �������
� �������

��� �������
,

������ �
� 
 �������
�

��� �������
under the separation assumption

[1], where ��� � �� �

� 
�
and theoretical ����
 attains the minimum

at ���� � �������
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� ���������

�

�

�������

�

. We measure the per-

formance using the same figure of merit as in [1]. The normalized
square deviation (NSD) of the component filters and the combina-
tion filters are defined as ���


�
�

�

�
, �������

�
�

�

�
,

�������
�
�

�

�
, �������

�
�

�

�
, where �������
 is the

EMSE of the �th combination filter and ������� is the EMSE calculated
using ����.

In Fig. 1, we plot the NSDs for all algorithms as a function of�������,
��� � 	����������� ���	. For these simulations, the step size in (6) is set to
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Fig. 1. Theoretical and simulated NSDs as a function of �������. (a) Second
and third combination filters, � � ��, � � ����. (b) Fourth combination
filter, � � ��, � � 	, � � ��
�.

�� � �� and the step size in (11) is set to �� � �� to guarantee
convergence. To test our theoretical analysis on the forgetting factor in
(11), we simulate (11) using � � � and � � ����. We test the update in
(15) using a time window � � ����. The simulations are done over
����� samples, averaged over 20 independent trials. The final EMSEs
are calculated by averaging the last 1000 samples of each iteration.

We observe in Fig. 1(a) that the combination filter using the EG up-
date (6) is universal with respect to the combination filters and even
performs better than both when ������ � 	
�������� ������ (as shown
in Section III-B). The update (15) with� � ���� achieves the perfor-
mance of the best constituent filter since� � ���� is sufficiently large
to yield (19). Similarly, the update (11) is also universal when � � �

such that it achieves the performance of the best constituent filter for
all �
����� in Fig. 1(b). For the update (11) with � � ����, we observe
that for certain �
�����, the update performs better than both constituent
filters. However, since � �� �, the update (11) performs worse than the
best constituent filter as predicted in (14) and Section III-Ca2) for cer-
tain �
�����. For all algorithms, we observe that our steady-state anal-
ysis accurately describes the simulations.

For the simulations related to the transient analysis, the underlying
signal is generated from a stationary model as 	�
� � ����

� ����
� � 
�
�

[1], where 
�
� is the additive i.i.d noise with variance ��� � ����

and���� � ������������������ ����������� ����� ������ . Moreover,
to test the switching performance, we abruptly change ���� to ���� �

������ ����������� ����� ������������������ in the middle of the
simulations [1]. Here, the input regressor ����
� � ��� is zero mean
i.i.d. Gaussian, where the variance of each entry is set to 1. As the con-
stituent filters, we have two LMS filters with the same input regressor
and different step sizes running in parallel with updates �����
 � �� �

�����
� � �����
�����
�, for � � 1, 2, �� � ����, �� � �����. For the
combination algorithms, we set �� � � for Algorithm 2, �� � � and
� � ���� for Algorithm 3, � � ��� for the Algorithm 4. Results are
averaged over 1000 independent trials. In Fig. 2(a), we plot the MSE
curve for Algorithm 2, labeled as “�������	
�”, the theoretical derived

Fig. 2. MSE curves for all algorithms. Labels are described in the text. (a) Al-
gorithm 2, � � 	. (b) Algorithm 3, � � 	 and � � ��
�. (c) Algorithm 4,
� � ���.

MSE curve using (25), labeled as “������
����”. In Fig. 2(a), we also
plot the theoretical derived MSE curve, where we set ���
� � �, la-
beled as “������
������ ���”, as suggested in [13]. We observe that
our analysis closely describes the transient behavior of Algorithm 2 in
these simulations. We repeat the same experiment for Algorithm 3 and
display the results in Fig. 2(b). We use the same labeling as in Fig. 2(a),
however, use (33) to calculate the theoretical curves. We point out that
since � � ����, as predicted from the steady-state analysis, the mix-
ture does not converge to the best constituent filter as seen in Fig. 2(b)
(unlike Algorithm 2 in Fig. 2(a)). The same simulations are performed
for Algorithm 4 as shown in Fig. 2(c), however, we used (38) to calcu-
late the theoretical curve. We again observe that our transient analysis
closely describes the behavior of Algorithm 3 and 4. We observe that
� � ��� is sufficiently large for these simulations that the mixture
converges to the best constituent filter.

Here, we investigate the tradeoff between the transient and
steady-state behaviors for the combination algorithms as follows. In
this setup, the desired signal is generated as 	�
� � ����

� ����
� � 
�
�,
where 
�
� is the additive i.i.d noise with variance ��� � ����,
���� � ������������������ ����������� ����� ������ and the input
regressor ����
� � ��� is zero mean i.i.d. Gaussian, where the variance
of each entry is set to 1. As the input filters, there are two LMS filters
running in parallel to model 	�
� with the same input regressor and
the step sizes �� � ����, �� � �����, respectively. We first fix the
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TABLE I

COMPARISON OF COMBINATION ALGORITHMS

step size of Algorithm 1, i.e., �� � ���, and generate the theoretical
������ curve versus iteration index �. Then, we determine the value
of � where ������ is 3 dB above the minimum MSE and label it
��. We adjust the step size of Algorithm 2 ��, the step size �� and
the forgetting factor � of Algorithm 3 and the time window � of
Algorithm 4 such that the final MSE of each algorithm is equal to the
final MSE of Algorithm 1. Then, the theoretical ������ curve versus
iteration index � for each algorithm is generated and the values of �
where ������ is 3 dB above the minimum MSE are determined and
labeled by ��� ��� ��, respectively. The performance of the combina-
tion algorithm with the smallest �� is the best for this example. We
repeat this process for different selections of �� including �� � �

and �� � 	�� and summarize the results in Table I. We observe that
in these simulations Algorithm 2 provide a better converge tradeoff.

VI. CONCLUSION

We investigated and compared four convexly constraint adaptive
mixture methods to adaptively combine outputs of constituent filters
that work in parallel on system modeling. We derive the corresponding
MSEs and the converged mixture weights in the steady state under
nonstationary random walk model. We also performed the transient
analysis in the mean and MSE sense for all algorithms. We observe
that these convex mixture methods are universal such that they achieve
the performance of the best constituent filter in the steady state. We
observe that the EG update (6) under the mixture of experts framework
can also outperform the best constituent filter under certain configura-
tion of the EMSEs of the constituent filters (similar to the algorithm
from [1]). We also demonstrate that the MSE in the steady state of
the algorithms from [3] and [4] heavily depends on the corresponding
algorithmic parameters, i.e., the forgetting factor in [3] and the window
length in [4]. We observe that our derivations accurately describes
the behavior of all algorithms under the setup of [1]. Our main con-
tributions are as follows: 1) we show that the algorithm from [2] is
universal and its combined weight vector converges to the optimal
convex mixture; 2) we demonstrate that the algorithm from [3] is only
universal if the memory constant is unitary (no decay is allowed if
universality is required), but the weight vector does not convergence
to the optimal convex mixture; and 3) we show that the algorithm from
[4] is always universal (but not better than the best filter) only for very
long windows, however, does not offer the desirable weight vector
convergence.
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