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In this paper, we investigate level-crossing (LC) analog-to-digital converters (ADC)s in a competitive
algorithm framework. In particular, we study how the level sets of an LC ADC should be selected in order
to track the dynamical changes in the analog signal for effective sampling. We introduce a sequential LC
sampling algorithm asymptotically achieving the performance of the best LC sampling method which can
choose both its LC sampling levels (from a large class of possible level sets) and the intervals (from the
continuum of all possible intervals) that these levels are used based on observing the whole analog signal
in hindsight. The results we introduce are guaranteed to hold in an individual signal manner without any
stochastic assumptions on the underlying signal.
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1. Introduction

In this paper, we investigate the level-crossing (LC) sampling
method [1–9] in a competitive algorithm framework [2,10–14]. In
particular, we study how the level sets of an LC sampler should
be selected in order to track changes in an analog input signal.
Here, we introduce a sequential LC sampling algorithm asymptot-
ically achieving the performance of the best LC sampling method
that can choose both its LC sampling levels (from a large class of
possible level sets) and the intervals of time over which these lev-
els are used based on observing the whole analog signal [14]. The
results we introduce are guaranteed to hold in an individual signal
manner without any stochastic assumptions [2,13–15].

In conventional and most common (Nyquist–Shannon) analog
signal sampling, the underlying signal is uniformly sampled in
time (at a frequency at least twice the maximum frequency con-
tent of the signal) and analog levels are subsequently quantized
[16,17]. Nevertheless, it has been shown that sampling or quan-
tization methods that incorporate information of the underlying
signal in their framework may drastically improve efficiency and
performance over conventional methods (for certain signals), e.g.,
using sparsity for compressive sensing [18]. In this sense, the level-
crossing (LC) sampling method is akin to opportunistic methods
and has been shown to yield more economical and effective sam-
pling for certain signals [3–5,7–9,19–25]. In this approach, analog
signals are compared to a set of fixed reference levels and samples
are taken on the time axis, indicating the times at which the ana-
log signal exceeded each of the associated reference levels. Hence,
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unlike the conventional sampling, where the time axis, i.e., the
sampling times, are fixed and amplitudes are quantized, here the
amplitude thresholds are fixed and crossing times of these thresh-
olds by the analog signal are quantized. This threshold-based sam-
pling is particularly suitable for processing bursty signals, where
information is delivered in bursts, or temporally sparse regions,
rather than in a constant stream [9]. Sampling by LC visibly mim-
ics the behavior of such input signals such that when the input is
bursty, LC samples also arrive in bursts. Unlike traditional sam-
pling circuits that consume a constant amount of power even
when there is no change in the input signal, the LC sampling of-
fers higher instantaneous bandwidth/precision when sampling is
performed [9,26]. However, we also note that LC ADC is indeed
not a mainstream implementation, which renders it an exciting
alternative to the traditional Nyquist ADCs. Just like the new com-
pressive sensing samplers that take advantage of signal character-
istics to lower sampling rate and hence data throughput, LC ADC is
an event-driven implementation that also demonstrated significant
compression capability when used to collect information on sparse
signals. However, the resolution of (time) samples after the ADC
step, fundamentally, is driven by some synchronous hardware, be
it directly through a clock or indirectly through a token scheme.
Resolving these limitations in hardware design will be a part of
our future work.

The performance gain due to LC sampling heavily depends on
the proper placement of threshold (or reference) levels [26]. The
reference levels are in general selected as uniform [3] similar to
uniform sampling in time [17]. However, instead of setting uni-
formly spaced threshold levels, one can choose the corresponding
levels based on the statistics of the underlying signal. In such a
“static” method, the best set of levels can be selected using differ-
ent methods, such as the Lloyd–Max quantization [17], yielding a
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non-uniformly spaced level set that minimizes the mean-squared
error (MSE) between the reconstructed signal and the original. We
call these methods “static” since the levels are optimized based on
certain statistics of the underlying signal and are fixed from the
beginning, i.e., they do not change with time. We emphasize that
such an approach requires certain probabilistic information a priori.
Although such implementation is optimal in the sense of minimiz-
ing MSE (provided the a priori information), no quality of service
(QoS) is guaranteed since good performance is attained on average,
i.e., in the expectation sense typical of minimum MSE based algo-
rithms [13,14]. Moreover, such an implementation is not adaptive
to the input’s statistical variations. Mismatch between the assumed
(or estimated) and the actual statistics may lead to severe perfor-
mance degradation. Although time adaptive extensions are possible
[17], the same difficulties due to model mismatch and QoS prob-
lems persist [12,27]. Note that after the LC samples are provided,
one can use different methods including [17,28,29] to reconstruct
the original signal. Our results hold for different reconstruction
methods provided that they are sequentially computable.

There exist other level selection methods that are more inline
with signal tracking [7,8]. In these methods, signal tracking is ac-
complished by extensively increasing the sampling bandwidth of
the ADC, say 1

τ , (which, depending on the actual design of the
ADC, either refers to the circuit bandwidth where τ is the total
delay of one conversion loop, or to the sampling frequency f s)
[26]. Typically only one LC can be acknowledged every τ seconds
due to circuit limitations [7]. When the conversion delay follow-
ing a LC is long with respect to the signal variation, additional
LCs that occurred in this interval will be unaccounted for, erod-
ing the reconstruction fidelity. In order to avoid such a scenario,
either a circuit with larger bandwidth is used [7], or a flash-type
ADC that can sample with a bank of comparators simultaneously
is used [8]. We emphasize that the variable threshold compara-
tors needed for LC sampling is extensively studied in [20], where a
design of a time continuous variable voltage (threshold) compara-
tor with low propagation delay dispersion and power consumption
is presented for LC sampling. In [7] the input is sampled at full
bandwidth to ensure any change between subsequent samples is
bounded between adjacent levels, hence no more than one level
can be crossed within an interval of τ . In [8] the specification
for high circuit bandwidth is alleviated by feeding the input into
multiple analog comparators simultaneously. Implementation dif-
ferences aside, both designs [7] and [8] employ tracking circuits
that rely on the assumption that if a signal is sampled fast enough,
successive samples do not vary arbitrarily. The interval-by-interval
search for the best quantizer dominates the computational com-
plexity, and their good performance comes at the cost of large
sampling bandwidth as well as high power consumption, render-
ing them unattractive in low-cost and low-power applications [2].

In this paper, instead of tracking the analog signal by over-
sampling or by making statistical assumptions, we employ a com-
petitive algorithm framework and compete against a class of LC
ADC algorithms that can select and optimize their level sets even
based on observing the whole analog signal ahead of time. In this
competition class, the underlying analog signal, say y(t), of du-
ration T seconds, is divided into arbitrary length segments, and
for each segment a different level set is selected (from a large
class of possible level sets) by minimizing the reconstruction er-
ror. Note that such selection can only be performed with a delay
of T seconds (i.e., the whole signal must be seen in advance) and
the optimization is over the set of all possible partitions of the
real line. Here, we introduce an algorithm that sequentially ob-
serves the underlying analog signal and immediately selects the
LC levels, however, asymptotically achieves the performance of the
best algorithm in the competition class with the optimal partition
of the real line and the reference levels. We emphasize that in
Fig. 1. An example LC ADC sampling framework. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.)

similar lines, a competitive algorithm is introduced in [2] in order
to achieve the performance of the best static LC sampling scheme
without any statistical assumptions on the underlying analog sig-
nals. However, the corresponding algorithm as well as the setup
significantly differs in here since in [2] the competition class is
“static”, i.e., does not change in time, which significantly simplifies
the algorithm design and implementation.

The organization of the paper is as follows. In Section 2, we
provide a basic architecture for a LC ADC. In Section 4, we intro-
duce a sequential algorithm that tracks the best level set in time,
and provide a complete algorithmic description with the corre-
sponding performance analysis. The performance of the introduced
algorithm is simulated in Section 5 under different scenarios. The
paper concludes with certain remarks in Section 6.

2. A basic LC ADC framework

In this section, we first present a basic architecture for LC sam-
pling. We continue to introduce a class of LC sampling algorithms
that can arbitrarily switch their threshold levels in time and, then,
a sequential algorithm to track the best LC levels in time.

Here, we provide a conceptual LC ADC framework and note
that various hardware implementations of asynchronous LC sam-
plers are investigated in [7,8,30]. The conceptual LC ADC architec-
ture studied in this paper is presented in Fig. 1. Consider a b-bit
(with 2b levels) flash-type ADC with an array of K = 2b − 1 ana-
log comparators that compare the analog input with corresponding
reference levels. We assume that reference levels are implemented
with a voltage divider (or with a digital to analog converter) and
designed to be noise resistant so that fluctuations due to noise
do not cause any chattering, hence, sampling is exact [26]. Sup-
pose the input signal y(t) is bounded such that |y(t)| � A/2, for
a known A > 0. Although our derivations are generic with respect
to how the reference levels are chosen, for notational simplicity,
we assume that the levels of the LC ADC are uniformly spaced in
the dynamic range with δ = A

2b intervals. Let l = {l1, l2, . . . , lK } rep-
resent the set of reference levels used by the comparators with
cardinality |l| = K . Note that we reserve bold letters to represent
sets (or vectors) and given a set (or a vector) l, |l| represents the
cardinality (or length). We emphasize that only a subset of this
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complete set of reference levels is usually active, i.e., used for LC
sampling, due to power limitations [7]. Given a subset of levels, the
LC ADC compares the input y(t) to this subset every τ seconds and
records a level-crossing with lk if the following comparison holds:(

y
(
(n − 1)τ

) − lk
)(

y(nτ ) − lk
)
< 0. (1)

Although the crossing occurs at a time t = cn in the interval
cn ∈ [(n−1)τ ,nτ ), however, only the quantized value of this cross-
ing time is recorded, i.e., Q (cn) = (n − 1)τ + τ/2 is recorded. We
represent the LC sample acquired by the ADC as a quantized time
and level pair, (Q (cn),αn), such that t = cn , y(cn) = αn = lk ∈ l.

Remark 2.1. Since αn = lk is in l, it is known with perfect precision.
This is the main difference between quantization of LC samples
from that of uniform-in-time samples such that uniform-in-time
samples are quantized in amplitude, while LC samples are quan-
tized in time.

In the next section, we introduce the class of LC ADC algorithms
that can switch their reference level sets in time. We compete
against this class of algorithms and try to sequentially achieve the
performance of the best in this class.

3. The class of LC ADCs that switch level sets in time

Since the power consumption of an ADC circuitry is dominated
by the comparators [7], say, at most m of the K comparators
with m � K are turned on at any moment [26]. The asynchronous
digital circuitry processes the output of the analog circuitry and
outputs a sequence of bits corresponding to the LCs. How this en-
coding is carried out to maximize the coding efficiency is discussed
in [11,12].

Let L denote the set of all possible m-level sets that can be
activated from l, i.e., L = {L1, . . . , L|L|} with |L| = (K

m

)
, where

Li = {Li,1, . . . , Li,m}, Li, j ∈ l. Given an m-level set Li , let
{(Q (ck),αk)}k∈Z+ represents the LC samples produced by Li .
The corresponding reconstructed signal at time t , starting from
time 0, is represented by ŷ(t,0, Li). For example, using a piece-
wise linear modeling (PWL) approximation scheme, given that
{(Q (ck),αk)}k∈Z+ are the LC samples, the reconstruction is given
by

ŷ(t,0, Li) =
∑

k

{[(
αk+1 − αk

Q (ck+1) − Q (ck)

)(
t − Q (ck)

) + αk

]

× [
u
(
t − Q (ck+1)

) − u
(
t − Q (ck)

)]}
, (2)

for any interval T , where u(t) is a unit step function, i.e., u(t) = 1
when t � 0 and u(t) = 0 otherwise. Note that our derivations are
generic with respect to how the reconstruction is carried out as
long as the reconstruction is causal, i.e., non-anticipating of the
future, [17]. Then, the reconstruction error is given by

e(T ,0, L i) =
T∫

t=0

[
y(t) − ŷ(t,0, Li)

]2
dt, (3)

over any T .
Instead of using a single level set Li for all T (where T is ar-

bitrary), we allow switching between m-level sets and define an
“(R,m, t R)” level set sequence (or an LC sampling algorithm). In
the class of (R,m, t R) algorithms, the m-level set used by the
LC ADC is updated R times over a period of T , at an arbitrary
collection of instances represented by t R = (t1, . . . , tR), such that
t1 < t2 < · · · < tR ,

⋃R
r=0[tr, tr+1) = [0, T ), where we set t0 = 0 and
tR+1 = T for notational simplicity. Here, Lt R denotes a sequence
of m-level sets used over a period of T , over R + 1 segments
formed by R switches, i.e., Lt R = {L(0), L(1), . . . , L(R)} such that
each L(i) ∈ L and L(i) is the m-level set used for the (i + 1)th seg-
ment. One can arbitrarily choose both the switching times t R and
reference level set in each interval. An LC ADC that samples with
(R,m, t R) produces a set of samples, with a slight abuse of no-
tation, {(Q (ck),αk)}k∈Z+ . Using a PWL approximation scheme, the
reconstruction is given by

ŷ
(
t,0, (R,m, t R)

)
=

∑
k

{[(
αk+1 − αk

Q (ck+1) − Q (ck)

)(
t − Q (ck)

) + αk

]

× [
u
(
t − Q (ck+1)

) − u
(
t − Q (ck)

)]}
. (4)

The reconstruction error over an interval of T is given by

e
(
T ,0, (R,m, t R)

) =
T∫

t=0

[
y(t) − ŷ

(
t,0, (R,m, t R)

)]2
dt (5)

=
R∑

r=0

tr+1∫
tr

[
y(t) − ŷ

(
t, tr, L(r)

)]2
dt, (6)

where ŷ(t, tr, L(r)) is the reconstructed signal using L(r) in the
(r + 1)th region, starting from time t = tr . The switching algorithm
with the best performance is one that minimizes the error func-
tion (5) by updating and selecting the most appropriate level sets
at the right times tuned to y(t). This (R,m, t R) algorithm can be
found by evaluating the following optimization problem:(

R∗, t∗
R , (R,m, t R)∗

) = arg inf
R,t R ,(R,m,t R )

e
(
T , t R , (R,m, t R)

)
, (7)

where t R is any partition of [0, T ], for any R � � T
v � for some small

constant v , where � T
v � is the largest integer smaller or equal to T

v .
We limit the number of switches by � T

v � for tractability and v is
an algorithmic parameter explained in Section 4. This optimization
provides for the best R∗ , the best sequence of update times t R

∗
over all possible partitions of [0, T ], and the most suitable L∗

(R,m,t R )

from a set of |L|(|L| − 1)R , i.e., choose for the first segment the
best Li from the set L and continue selection for other segments
subsequently.

Remark 3.1. Evaluating (7) however requires a delay of T seconds.
In other words, the best (R,m, t R) level sequence cannot be known
a priori (at the start). Our goal is to achieve this “batch” perfor-
mance sequentially.

In the next section, we construct a sequential algorithm, which
has no knowledge of R , the switching times t R or the selected
m-level sets Lt R in each segment, but asymptotically performs as
well as the algorithm that can tune all of these parameters by ob-
serving y(t) in [0, T ] a priori.

4. Achieving the best batch performance sequentially

In this section, we introduce a randomized sequential algorithm
that asymptotically achieves the performance of the best (R,m, t R)

scheme that could only be chosen in hindsight (after observing the
whole signal y(t) ahead of time). At fixed intervals, our algorithm
randomly selects a level set and uses it to sample y(t) until this
level set is replaced by the next selection. The level set is chosen
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from a class of possible level sets according to a probability mass
function (PMF) generated by the cumulative performance of each
level set in this class on y(t) until that time.

4.1. A competitive sequential algorithm

The competitive sequential (CS) algorithm is a sequential algo-
rithm that updates its m-level set at every v seconds based on
certain PMF assigned to level sets, but has no knowledge of the
optimal R , t R or (R,m, t R). We provide the pseudo-code of the CS
algorithm

A Pseudo-Code of the Competitive Sequential Algorithm:

Inputs: η: learning rate, ε: algorithmic parameter, v: update interval for
level sets, y(t): analog signal to be sampled.
Outputs: ŷ(t): reconstructed analog signal, L(n): level set used during
[nv, (n + 1)v), w(n,q,k): assigned weight to Lk at time t = nv .
Set of inputs η, ε, v , where η > 0, ε > 0 and v > 0.

Initialize the reconstructed signal ŷ(0) = 0.
Initialize weights w0(1,1,k) = 1/|L|, k = 1, . . . , |L|.
Initialize ŷ(0,0, Lk) = 0, k = 1, . . . , |L|.
for n = 1 : . . . ,

for k = 1 : |L|,
% Update the weights associated with each level set Lk based on
% performance.
for q = 1, . . . ,n − 1,

w(n,q,k) =
(

1/n1+ε∑∞
j=1(1/ j1+ε )−∑n−1

j=1 (1/ j1+ε )

)
w(n − 1,q,k) (line A)

× exp

(
−η

nv∫
(n−1)v

[
y(t) − ŷ(t,qv, Lk)

]2
dt

)
,

endfor

w(n,n,k) = 1
|L|−1

n−1∑
q=1

( ∑∞
j=1(1/ j1+ε )−∑n

j=1(1/ j1+ε )∑∞
j=1(1/ j1+ε )−∑n−1

j=1 (1/ j1+ε )

)
w(n − 1,q,k) (line B)

×
|L|∑
j �=k

exp

(
−η

nv∫
(n−1)v

[
x(t) − ŷ(t, (n − 1)v, L j)

]2
dt

)
.

endfor
% Select one ŷ(t,qv, Lk) according to the PMF given as follows.
Pr[ ŷ(t,qv, Lk) is selected] = w(n,q,k)∑|L|

k=1

∑n
h=1 w(n,h,k)

, k = 1, . . . , |L|, q = 1, . . . ,n.

% Use the selected set L(n) = Lk to sample x(t) in the interval [nv, (n + 1)v).
% Form the reconstruction ŷ(t) as: ŷ(t) = ŷ(t, LCS) = ŷ(t,qv, Lk),
% t ∈ [nv, (n + 1)v).

endfor
Number of additions Number of multiplications

The sequential algorithm 2|L|n 3|L|n + |L|

Fig. 2. Number of additions and multiplications required for the introduced sequen-
tial algorithm at each decision time, i.e., n = � T

v �.

For the algorithmic parameters, we have τ � v , i.e., the update pe-
riod is much larger than the sampling period. At every update, the
CS algorithm calculates certain “weights” which are subsequently
used to construct a PMF over the class of all possible level sets.
For each level set Lk , k = 1, . . . , |L|, w(n,q,k) in the pseudo-code
denotes a weight generated at update t = nv , computed using level
set Lk over a time interval [qv,nv), where q < n. At each selection
time, one of the level sets, Lk , k = 1, . . . , |L|, is selected based on
the weight w(n,q,k) assigned to it as shown in the pseudo-code
of the competitive sequential algorithm. Number of additions and
multiplications required for the introduced sequential algorithm at
each decision time is given in Fig. 2.

Our sequential algorithm works conceptually as follows. Instead
of trying to estimate the best switching times and the best m-lev-
el sets for each segment, we implicitly implement all possible
(R,m, t R) algorithms, for all R , t R and Lt R . Clearly, this is a con-
ceptual implementation since there exist a continuum of t R and
corresponding selection of m-level sets given R and t R . At each
time t = nv , we compare the performance of each such (R,m, t R)

algorithm, for all R , t R and Lt R , and prefer the one with the
best performance until that time (by assigning a larger probabil-
ity mass to it). The weights w(n,q,k) quantify the performance
of these (R,m, t R) algorithms. However, instead of storing a dif-
ferent weight for each possible (R,m, t R) algorithm, we merge
the weights of certain (R,m, t R) algorithms and store cumulative
weights w(n,q,k). For example, w(n,q,k) is the single weight as-
signed to all (R,m, t R) algorithms that use the m-level set Lk in
certain parts of the interval t ∈ [qv,nv) to sample y(t), for q < n,
as explained in more detail in Section 4.2. Accordingly w(n,n,k)

is the initial weight assigned to the kth quantizer that is switched
to at time t = nv and will be used after t = nv . A flowchart of our
sequential algorithm is given in Fig. 3.

Let LCS be a sequence of levels chosen by the CS algorithm up
to time T and ŷ(t,0, LCS) be the reconstructed signal obtained by
sampling y(t) with the sequence of levels chosen by the CS algo-
rithm. Then, we have the following theorem.
Fig. 3. A flowchart of our competitive sequential algorithm with the pseudo-code.
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Theorem. When applied to any bounded input y(t), |y(t)|� A
2 , and for

any parameters η > 0, ε > 0 and v > 0, a consistent reconstruction of
the input signal using the CS algorithm given in the pseudo-code incurs

1

T
E
[
e(T ,0, LCS)

]
� 1

T
e
(
T ,0, (R,m, t R)∗

)
+ R ln T + (R + 1) ln |L|

ηT

+ ηv A4

8
+ O

(
R + 1

T

)
+ O

(
1

εT

)
, (8)

over any T and selecting η to minimize the upper bound yields

1

T
E
[
e(T ,0, LCS)

]
� 1

T
e
(
T ,0, (R,m, t R)∗

) + (9)

×
√

v A4(R ln T + (R + 1) ln |L|)
2T

+ O

(
R + 1

T

)
+ O

(
1

εT

)
,

for any R � � T
v �, t R or Lt R without using R, T , t R or (R,m, t R).

We point out that the expectations in the theorem are with
respect to the PMF generated by the randomization in the pseudo-
code such that there are no stochastic assumptions on y(t), i.e.,
our results hold for any possible bounded analog signal y(t). The
theorem states that the normalized performance of the CS algo-
rithm is asymptotically as good as the normalized performance of
the best LC quantizer that can only be chosen in hindsight. We
observe that the difference between the best algorithm and the
sequential algorithm diminishes as T increases. We point out that
for the optimized value of η in (9), one needs to know T and
R ahead of time. This can be easily surpassed using a “doubling”
method as in [31] by selecting the optimal algorithmic parameters
over exponentially growing time intervals. We emphasize that the
introduced algorithm should store O (�t/v�) variables, i.e., weights
shown in line A and line B of the pseudo-code, at each time t and
should update these variables with O (�t/v�) computational com-
plexity over an ordinary LC quantizer as shown in line A and line B.
Furthermore, the parameter η in line A and line B can be consid-
ered as the learning rate and can be selected accordingly to trade
of between increased convergence speed versus reduced final MSE
[32]. Note that if η is small, then the algorithm favors less the past
performance. The parameter ε is used so that series

∑∞
j=1(1/ j1+ε)

is absolutely summable.

Remark 4.1. We emphasize that the CS algorithm does not depend
on R or t R and the performance bounds in the theorem hold for
any R , t R or (R,m, t R). Clearly, the optimal (R,m, t R) algorithm
(that can only be chosen in hindsight) that minimizes the accu-
mulated error should use maximum number of switchings, i.e.,
R∗ = � T

v �. The regret bound in (9) reflects this such that when
the competition class is more powerful, i.e., R is large, then the
regret bound is large. When the competing algorithm is less pow-
erful such that R is small, the bound is tighter. For both cases, the
sequential algorithm is the same and does not depend on R .

Remark 4.2. While constructing the CS algorithm, the correspond-
ing weights, w(n,q,k), are calculated based on the analog sig-
nal y(t) using analog integration. Naturally, y(t) is not available
(which is the reason for sampling) and analog integration could be
carried out using a digital circuit [26]. To circumvent this problem,
we approximate analog integrations with discrete summations as
in [2]. The competitive sequential algorithm proposed by this work
can easily be incorporated into a flash-type LC ADC, and its im-
plementation is shown by the blue-colored box labeled “sequential
algorithm circuitry” in Fig. 1. The sequential algorithm circuitry is
a separate circuit element that works in parallel to the LC ADC. In
order to generate a recommended level set, input is sampled with
a low-rate ADC at full bandwidth (the sample and hold circuitry
has full bandwidth of the input), followed by an FPGA that per-
forms the needed digital computation to generate the PMF from
which the next level set is selected and fed into the LC ADC. The
sequential algorithm circuit is synchronized with rest of the cir-
cuitry by feeding off the same clock supplied to the rest of the
circuitry. Since algorithm implementation relies only on a low-rate
ADC and similarly low-rate FPGA, such circuitry would not require
significant additional power. According to the technology trend
[33], low-rate-medium-resolution ADC consumes only a few milli-
watts of power. Power consumption of FPGA is driven by algorithm
complexity but is nominally under one watt [33]. Future work on
this subject will report hardware simulation results (performed in
MATLAB SIMULINK with SPICE models to account for electronic
device level characteristics), along with device part list and sys-
tem power summary. Furthermore, it has been shown in [2] that
the algorithm using the approximated sums with the proposed ap-
proaches can sufficiently approximate the competitive sequential
algorithm such that the bounds in (9) hold with additional terms
that diminish as T grows.

Remark 4.3. We emphasize that the algorithm in the pseudo-code
requires storing the weights w(n,k,q) with perfect precision. It has
been shown that the corresponding weights can be adequately rep-
resented without increasing the corresponding bit rate in [11,12,
27].

4.2. Proof of the theorem and construction of the CS algorithm

Proof of the theorem uses averaging ideas from [34] used in
[14] for prediction, however, requires different formulation due
to continuous time processing and the particular application. We
mainly concentrate on these differences here. Given R and for
an interval [0, T ), an infinite number of possible partitions of
[0, T ) into R + 1 segments can be defined, each represented by
(t1, . . . , tR), t1 < t2 < · · · < tR , ti ∈ [0, T ]. However, we only al-
low the sequential algorithm to switch between m-level sets every
v seconds, where for the notational simplicity, we take v = Mτ
for some integer M and τ is the sampling period of the LC ADC.
Hence, given y(t) and the corresponding interval [0, T ), there ex-
ist only U � �T /v� possible switching points for our sequential
algorithm. Furthermore, for presentation purposes, at the start of
the proof, we assume T = U v , for some integer U . At the end
of the proof, we demonstrate that the additional error in the
segment [U v, T ), i.e., if T is not an integer multiple of v , will
only contribute O (1) to the total error. Additionally, at the start
of the proof, we only allow (R,m, t R) sequences to switch at
only integer multiple of v and represent the switching points as
t̃ R = (t̃1, . . . , t̃R). We note that for a possible switching pattern
(t1, . . . , tR), we can find the closest point for each ti on [0, T ) and
construct a (t̃1, . . . , t̃R) on [0, T ). We demonstrate that the error of
choosing path (t̃1, . . . , t̃R), instead of (t1, . . . , tR), will be negligible
for large T and sufficiently small switching intervals v .

At each time, that is an integer multiple of v , say t = U v , there
exists

(U−1
R

)
possible ways of choosing switching pattern t̃ R , a to-

tal of 2U−1 possible switching patterns for all R = 1, . . . , U − 1
and corresponding (R,m, t̃ R) algorithms after selecting LC levels
for each region. To each (R,m, t̃ R) algorithm, we assign a weight

β
(
(R,m, t̃ R)

)
� W

(
t̃ R , (R,m, t̃ R)

)
exp

(−ηe
(
U v, t̃ R , (R,m, t̃ R)

))
(10)
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based on its performance on y(t) up to t = U v , where W (t̃ R ,

(R,m, t̃ R))’s are certain weights from [34] only used for proof
purposes and are not required for the construction of the CS al-
gorithm. We next construct a randomized algorithm, such that at
time t = U v this algorithm selects any of the switching algorithms
with probability β((R,m, t̃ R))/(

∑
R,Lt̃ R

β((R,m, t̃ R))) and uses it in

the interval [U v, (U + 1)v) for sampling and reconstructing, say,
ŷ(t). Then, it can be shown that this brute force algorithm achieves
[31]

ηE

[ U v∫
0

(
y(t) − ŷ(t)

)2
dt

]

� ηe
(
U v,0, (R,m, t R)

) + (
R + (R + 1)ε

)
ln(U/R)

+
(

(R + 1) ln
1 + ε

ε
+ lnε

)
+ (R + 1) ln

(|L|) + η2 B2

8
,

(11)

where B is an upper bound on the error in one segment, i.e., B �
maxi,a

∫ v
0 (y(t) − ŷ(t,a, Li))

2 dt � A2 v, for any t̃ R and (R,m, t R),
r = 1, . . . , U − 1, using Hoeffding’s inequality [35]. Hence, repeat-
ing this construction of ŷ(t) at each time t yields the required
universal algorithm. We next show that ŷ(t, LCS) in the pseudo-
code is equal to ŷ(t) by construction. Note that at each time
t = U v , ŷ(t) needs to construct all (R,m, t R) algorithms and cal-
culate the corresponding weights. However, instead of storing a
different weight for each possible (R,m, t R) algorithm, we merge
the weights of (R,m, t R) algorithms that use the same m-level set,
say, Lk in t ∈ [qv,nv) to sample y(t), and store cumulative weights
w(n,q,k). It can also be shown as in [14] that the randomization
over w(n,q,k) and β((R,m, t̃ R)) yields the same bound in (11)
and the cumulative weights w(n,q,k) can be calculated recursively
using the updates in line A and line B of the pseudo-code. Hence,
ŷ(t, LCS) provided the same performance, i.e., competitive with re-
spect to the switching class, as ŷ(t).

The weight w(n,q,k) is the summation of all weights β(·) as-
signed to all (R,m, t R) algorithms that have the last switching
time qv and use the kth algorithm in the last segment for sam-
pling. This assigned weight is updated as follows [36]. We assign
to each time point, t = nv , a distribution over the discrete time, z,
z � n, for the probability that the next transition occurs just before
time z, i.e., the probability that the next switching time will occur
just before zv is

π(z) = 1

z1+ε
. (12)

From (12), we observe that as time progresses, it is less likely to
have a switching. The form (12) is shown to yield the bound in
the theorem in [34]. Hence, the assigned probability of transition
at time n+1 is (12) normalized by the infinite summation of π(z),
z � n, i.e.,(

1/n1+ε∑∞
j=1(1/ j1+ε) − ∑n−1

j=1(1/ j1+ε)

)
. (13)

Note that in (12), we have ε > 0 in the exponent so that series∑∞
j=1(1/ j1+ε) is absolutely summable.
Up to this point, we proved that, the universal algorithm can

approximate the reconstruction error of any switching LC quan-
tizer when the transition instants are integer multiples of v . We
next demonstrate that we can approximate any e(T ,0, (R,m, t R))

sufficiently well enough with e(U v, t̃ R , (R,m, t̃ R)).
Given any t R , for each ti , we can choose the closest t̃i and then

construct the corresponding t̃ R . The difference between any ti and
t̃i can be at most v
2 . Hence, the difference between the error of

using t̃ R with respect to t R for each ti to t̃i can be at most

max
i, j,a,b

∣∣∣∣∣
v
2∫

0

(
y(t) − ŷ(t,a, Li)

)2
dt −

v
2∫

0

(
y(t) − ŷ(t,b, L j)

)2
dt

∣∣∣∣∣, (14)

which is bounded by A2 v . Since there are R transitions,

e
(
U v,0, (R,m, t R)

)
� e

(
U v,0, (R,m, t̃ R)

) + R A2 v. (15)

Since this is also true for the last segment of [0, T ), i.e., the interval
[U v, T ), we have

e
(
T ,0, (R,m, t R)

)
� e

(
U v,0, (R,m, t̃ R)

) + (R + 1)A2 v. (16)

Combining these equations yields

E

[ T∫
0

[
y(t) − ŷ(t, LCS)

]2
dt

]

� e
(
T , t R , (R,m, t R)

) + (R + ε)
ln(U )

η

+ 1

η

(
ln(1 + ε) + R ln

1

ε

)
+ Uηv2 A4

8
+ (R + 1)A2 v (17)

= e
(
T , t R , (R,m, t R)

) + (R ln(T ) + (R + 1) ln(|L|))
η

+ ηT v A4

8
+ O (R + 1) + O

(
1

ε

)
. (18)

Selecting the η parameter to minimize the left hand side of (17)
yields the bound in (9). This concludes the proof of the theo-
rem. �
5. Numerical examples

In this section, we demonstrate the performance of the intro-
duced algorithm under different scenarios. We note that the ex-
periments carried out here are algorithmic simulations performed
on MATLAB to emulate the LC sampling framework, rather than a
simulation of hardware performance.

The first set of experiments include processing of speech sig-
nals, where the analog signals and analog integrations are mim-
icked using uniform sampled versions with sufficiently large sam-
pling rate. Note that speech signals are selected for these exper-
iments since voiced and unvoiced parts of speech signals clearly
require different level sets for efficient sampling due to different
characteristics in amplitude and shape. Here, the analog speech
signal is already processed by an ADC such that the signal is al-
ready uniformly sampled (with a sampling rate above the Nyquist
sampling rates) and converted to digital format. The sampling rate
is f s = 8000 Hz with a 16-bit quantization. The amplitude range
of the speech signals are normalized to 1 after mean removal. We
next emulate the corresponding LC quantization framework using
this setup. Note that such uniform sampling setup is analogous to
the framework discussed in Remark 4.2 that approximates analog
integrations with discrete summations.

For this LC quantization framework, the level sets are checked
every 5 samples, i.e., τ = 5

f s
= 6.25 × 10−4 seconds. After the LC

samples are taken, the signal is reconstructed using PWL, however,
our results and implementation hold for any casual reconstruc-
tion scheme [17,28,29]. We point out that since we work with
sampled speech signals, the integrations in the pseudo-code are
replaced with summations. Such a scheme is suggested in [2] to
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Fig. 4. A sample speech file used in the experiments.

replace analog integrals. Furthermore, replacing the analog integra-
tions with discrete summations does not affect the corresponding
theorems since derivations from (11) towards (17) still hold when
integrations are replaced by discrete summations. In the first set
of experiments, we divide the amplitude range using 16 uniformly
spaced levels, i.e., |l| = 16. We then construct all possible 10-level
LC quantizers using these 16 levels, i.e.,

(16
10

)
10-level LC quantiz-

ers, and we randomly choose 50 10-level quantizers, i.e., |L| = 50,
from this set. In Fig. 4, we plot a sample speech file used for LC
quantization. For such a randomly selected speech file of length
approximately 4 seconds, we plot the MSE, i.e., the average of the
error, corresponding to the CS algorithm, labeled “single file, CS”,
and MSEs corresponding to the 50 LC quantizers in L, labeled “sin-
gle file, LC” in Fig. 5. The MSEs of the LC quantizers are sorted
in the figure. We note that the CS algorithm nearly achieves the
performance of the best LC quantization scheme that can only be
chosen in hindsight. To avoid any bias, we next perform the ex-
periments over nearly 20 different speech files and plot in Fig. 5
the averaged MSEs corresponding to the switching algorithm, la-
beled “all files, CS”, and LC quantizers in L, labeled “all files, LC”. To
see the time evolution of the accumulated error, we next plot the
accumulated MSE normalized with time, i.e., at each T , the accu-
mulated MSE up to that time is normalized by T . In Fig. 6, we plot
the normalized MSE for the introduced algorithm, labeled “CS”, for
the optimal batch algorithm, labeled “minimum”, and for the av-
erage MSEs of all the LC quantization methods, labeled “average”.
We observe that the CS algorithm nearly achieves the performance
of the optimal in hindsight LC quantizer and it has a better nor-
malized MSE than the average normalized MSEs.

We next simulate the corresponding algorithm over a signal
constructed as a summation of sinusoids with different frequen-
cies and phases. Here, the underlying signal is generated as y(t) =
0.4 sin(t + π/3) − 0.8 sin(0.8t) + sin(2t + π/4) + w(t), where w(t)
is the additive noise. We simulate the algorithms under different
SNRs, including SNR = 20 dB, 10 dB, 0 dB. In the first set of algo-
rithms, the additive noise is zero mean and i.i.d., i.e., white noise,
with Gaussian statistics, where the variance is set to yield the cor-
responding SNR. In the second set of experiments, the additive
noise is generated from a first order auto-regressive model such
that w(t + 1) = −0.9w(t) + b n(t), where n(t) is zero mean i.i.d.
Gaussian random process. Here, b is selected to yield the corre-
sponding SNR. As the LC-quantizers, we choose |l| = 16 and ran-
domly select 80 8-level LC quantizers. We plot in Fig. 7 averaged
Fig. 5. MSEs corresponding to the introduced algorithm and the LC quantizers in L
for a randomly selected sample speech file and averaged over all speech files.

Fig. 6. Accumulated MSEs normalized with time corresponding to the introduced
algorithm and the LC quantizers in L averaged over all the speech files.

MSEs over 20 independent trials under different SNRs and noise
statistics. In Fig. 7, we have MSEs corresponding to 80 8-level LC
quantizers, labeled “all-sorted”, the competitive algorithm, labeled
“CS”. To test the performance of the CS algorithm with respect to
ordinary uniform quantizers, we also plot the MSEs corresponding
to uniform quantizers using 3 bits, labeled “quant, 3” and using
2 bits, labeled “quant, 2”, respectively. We emphasize that an ordi-
nary uniform quantizer, in our setup, produces samples with four
times higher rate than the LC quantizers since τ = 4

f s
in our sim-

ulations. Furthermore, for the LC quantizer we use only 8 levels,
i.e., 3 bits, and for the CS algorithm we choose v = 5τ . In this
sense, we compare the performance of the CS algorithm with a
uniform quantizer using 2 bits. We observe in these simulations
that although the performance of the LC quantizers are affected
from SNR, such affects are less visible compared to uniform quan-
tizers. We emphasize that as the SNR drops, the performance of
the CS algorithm degrades since as SNR drops the signal is domi-
nantly noise and a single LC quantizer is sufficient, i.e., switching
does not contribute to performance. We also observe that the CS
algorithm is fairly robust to noise statistics used in our simulations.
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Fig. 7. Accumulated MSEs normalized with time corresponding to the introduced algorithm and the LC quantizers in L over sinusoids. (a) SNR = 20 dB uniform noise.
(b) SNR = 10 dB uniform noise. (c) SNR = 0 dB uniform noise. (d) SNR = 20 dB colored noise. (e) SNR = 10 dB colored noise. (f) SNR = 0 dB colored noise.
6. Conclusion

In this paper, we introduce a novel LC sampling scheme that
can track the best LC threshold levels (from a large class of possi-
ble threshold levels) uniformly for any deterministic and bounded
analog signal without any stochastic assumptions on the underly-
ing analog signal. The algorithm asymptotically achieves the per-
formance of the best algorithm that can select both the partition
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of the real line as well as the best LC levels in each interval by
observing the whole analog signal in hindsight. We achieve this
using a randomized sequential algorithm and demonstrate its per-
formance on speech signals.
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