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Abstract—We introduce a novel family of adaptive filtering
algorithms based on a relative logarithmic cost inspired by the
“competitive methods” from the online learning literature. The
competitive or regret based approaches stabilize or improve
the convergence performance of adaptive algorithms through
relative cost functions. The new family elegantly and gradually
adjusts the conventional cost functions in its optimization based
on the error amount. We introduce important members of this
family of algorithms such as the least mean logarithmic square
(LMLS) and least logarithmic absolute difference (LLAD) algo-
rithms. However, our approach and analysis are generic such that
they cover other well-known cost functions as described in the
paper. The LMLS algorithm achieves comparable convergence
performance with the least mean fourth (LMF) algorithm and
enhances the stability performance significantly. The LLAD and
least mean square (LMS) algorithms demonstrate similar conver-
gence performance in impulse-free noise environments while the
LLAD algorithm is robust against impulsive interferences and
outperforms the sign algorithm (SA). We analyze the transient,
steady-state and tracking performance of the introduced algo-
rithms and demonstrate the match of the theoretical analyses and
simulation results. We show the enhanced stability performance of
the LMLS algorithm and analyze the robustness of the LLAD al-
gorithm against impulsive interferences. Finally, we demonstrate
the performance of our algorithms in different scenarios through
numerical examples.

Index Terms—Logarithmic cost function, robustness against im-
pulsive noise, stable adaptive method.

I. INTRODUCTION

A DAPTIVE filtering applications such as channel equal-
ization, noise removal or echo cancellation utilize a cer-

tain statistical measure of the error signal1 denoting the differ-
ence between the desired signal and the estimation output .
Usually, the mean square error is used as the cost function
due to its mathematical tractability and relative ease of analysis.
The least mean square (LMS) and normalized least mean square
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1Time index appears as a subscript.

(NLMS) algorithms are the members of this class [1]. Different
powers of the error are commonly used as the cost function in
order to provide stronger convergence or steady-state perfor-
mance than the least-squares algorithms under certain settings
[1].
The least mean fourth (LMF) algorithm and its family use

the even powers of the error as the cost function, i.e.,
[2]. This family achieves a better trade-off between the tran-
sient and the steady-state performance, however, has stability
issues [3]–[5]. The stability of the LMF algorithm depends on
the input and noise power, and the initial value of the adaptive
filter weights [6], [7]. On the contrary, the stability of the con-
ventional LMS algorithm depends only on the input power for
a given step-size [1]. The normalized filters improve the per-
formance of the algorithms under certain settings by removing
dependency to the input statistics in the updates [8]. However,
note that the normalized least mean fourth (NLMF) algorithm
does not solve the stability issues [6], [7]. In [6], the author pro-
poses the stable NLMF algorithm, which might also be derived
through the proposed relative logarithmic error cost framework
as shown in this paper.
The performance of the least-squares algorithms degrades se-

verely when the input and desired signal pairs are perturbed
by impulsive interferences, e.g., in applications involving high
power noise signals [9]. The impulsive noise consists of rela-
tively short duration, infrequent, high amplitude noise pulses.
In this context, we define robustness as the insensitivity of the
algorithms against the impulsive interferences encountered in
the practical applications and provide a theoretical framework
[10]. Note that, the algorithms using lower-order measures of
the error in their cost function are usually relatively less sensi-
tive to such perturbations. For example, the well-known sign al-
gorithm (SA) uses the norm of the error and is robust against
impulsive interferences since its update involves only the sign
of . However, the SA usually exhibits slower convergence per-
formance especially for highly correlated input signals [11].
The mixed-norm algorithms minimize a combination of dif-

ferent error norms in order to achieve improved convergence
performance [12], [13]. For example, [13] combines the robust
norm and the more sensitive but better converging norm

through a mixing parameter. Even though the combination pa-
rameter brings in an extra degree of freedom, the design of the
mixed norm filters requires the optimization of the mixing pa-
rameter based on a priori knowledge of the input and noise sta-
tistics. On the contrary, the mixture of experts algorithms adap-
tively combine different algorithms and provide improved per-
formance irrespective of the environment statistics [14]–[17].
However, these mixture approaches require to operate several
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different algorithms in parallel, which may be infeasible in dif-
ferent applications [18]. In [19], the authors propose an adaptive
combination of the and norms of the error in parallel,
however, the resulting algorithm demonstrates impulsive per-
turbations on the learning curves. This happens since the impul-
sive interferences severely degrade the algorithmic updates. In
general, the samples contaminated with impulses contain little
useful information [10]. Hence, the robust algorithms need to be
less sensitive only against large perturbations on the error and
can be as sensitive as the conventional least squares algorithms
for small error values. The switched-norm algorithms switch be-
tween the and norms based on the error amount such as
the robust Huber filter [20]. This approach combines the better
convergence of and the robustness of together in a dis-
crete manner with a breaking point in the cost function, how-
ever, requires optimization of certain parameters as detailed in
this paper.
In this paper, we are inspired from the recent developments in

the computational learning theory related to the “competitive”
or the “regret” based approaches [21]–[23]. In these approaches,
the well known adaptive or online learning algorithms are “sta-
bilized” or “improved” by using a relative cost measure, i.e., the
regret. Hence, we mitigate the stability or convergence issues
of the well known adaptive algorithms by introducing a relative
cost measure. To this end, we use diminishing return functions,
e.g., the logarithm function, as a normalization (or a regulariza-
tion) term, i.e., as a subtracting term, in the cost function. We
particularly choose the logarithm function as the normalizing di-
minishing return function [24] in our cost definitions since the
logarithmic function is differentiable and results efficient and
mathematically tractable adaptive algorithms. As demonstrated
in this paper, by using such a relative cost measure, we adjust
the conventional cost functions elegantly and gradually in its op-
timization based on the error amount. We intrinsically use the
higher-order statistics of the error for small perturbations. For
larger error values, the introduced algorithms seek to minimize
the conventional cost functions, due to the decreasing weight
of the logarithmic term with the increased error amount. In this
sense, the new framework is also akin to a continuous general-
ization of the switched norm algorithms, hence greatly improves
the convergence performance of the mixed-norm methods as
shown in this paper.
Our main contributions include: 1)We propose the least mean

logarithmic square (LMLS) algorithm, which achieves a similar
trade-off between the transient and the steady-state performance
of the LMF algorithm, and as stable as the LMS algorithm; 2)
We propose the least logarithmic absolute difference (LLAD)
algorithm, which significantly improves the convergence per-
formance of the SA while exhibiting comparable performance
with the SA in the impulsive noise environments; 3) We ana-
lyze the transient, the steady-state and the tracking performance
of the introduced algorithms; 4) We demonstrate the extended
stability bound on the step-sizes with the logarithmic error cost
framework; 5) We introduce an impulsive noise framework and
analyze the robustness of the LLAD algorithm in the impulsive
noise environments; 6) We demonstrate the significantly im-
proved convergence performances of the introduced algorithms
in several different scenarios in our simulations.

Fig. 1. Generic system identification framework.

We organize the paper as follows. In Section II, we introduce
the relative logarithmic error cost framework. In Section III, the
important members of the novel family are derived. We analyze
the transient, the steady-state and the tracking performances of
those members in Section IV. In Section V, we compare the
stability bound on the step-sizes and robustness of the proposed
algorithms. In Section VI, we provide the numerical examples
demonstrating the improved performance of the conventional
algorithms in the new logarithmic error cost framework. We
conclude the paper in Section VII with several remarks.
Notation: Bold lower (or upper) case letters denote the vec-

tors (or matrices). For a vector (or matrix ), (or ) is
its ordinary transpose. and denote the norm and
the weighted normwith thematrix , respectively (provided
that is positive-definite). is the absolute value operator.We
work with real data for notational simplicity. For a random vari-
able (or vector ), (or ) represents its expectation.
Here, denotes the trace of the matrix and is
the gradient operator.

II. COST FUNCTION WITH LOGARITHMIC ERROR

We consider the system identification framework shown in
Fig. 1, where we denote the input signal by and the desired
signal by . Here, we observe an unknown vector2

through a linear model

where represents the noise. We define the error signal as

where is the weight vector
of the adaptive filter. In this framework, adaptive filtering al-
gorithms estimate the unknown system vector through the
minimization of a certain cost function. The gradient descent
methods usually employ convex and uni-modal cost functions
in order to converge to the global minimum of the error surfaces,
e.g., the mean square error [1]. The different powers of
[2], [11] or a linear combination of different error powers [12],
[13] are also widely used. The authors in [25] demonstrate that
the optimum error nonlinearity function could be expressed as
a linear combination of different orders of the error, i.e., , for
certain combination coefficients; and a mixture of the LMS al-
gorithm and the LMF family of algorithms can approximate the

2Although we assume a time invariant unknown system vector here, we also
provide the tracking performance analysis for certain non-stationary models
later in the paper.
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optimum error nonlinearity better than any of the individual al-
gorithms. However, we emphasize that mixture coefficients are
time varying since they depend on the variance of the a priori
error. Hence, an algorithm combining different orders of the
error terms with combination weights changing in time based
on the error might better approximate the optimum error non-
linearity as shown in this paper.
In this framework, we introduce a normalized error cost func-

tion using the logarithm function given by

(1)

where is a design parameter and is a conven-
tional cost function of the error signal , e.g., or

. By Maclaurin series of the natural logarithm
for , (1) yields

(2)

which is an infinite combination of the conventional cost func-
tions for small values of .We emphasize that the cost func-
tion (2) yields to the second power of the cost function for
small values of the error while for relatively large error values,
the cost function resembles as follows:

Hence, the new methods use mainly the combination of
or cost functions based on the error amount. Note that the
objective functions , e.g., and , e.g., ,
yields the same stochastic gradient update after removing the
expectation in this paper. Hence, the proposed logarithmic cost
function yields error nonlinearities combining different order
of the error terms where the combination weights depend on
the error signal. Particularly, through the new family of algo-
rithms we could better approximate the optimum error nonlin-
earity even during the transient region [1], [26].
The switched norm algorithms also combine two different

norms into a single update in a discrete manner based on the
error amount. As an example, the Huber objective function com-
bining and norms of the error is defined as [20]

(3)

where denotes the cut-off value. As an illustration, in
Fig. 2, we compare , the Huber objective function for ,
and the introduced cost (1) with for (i.e.,

). From this plot, we observe that the loga-
rithm based cost function is less steep for small perturbations
on the error while both the logarithmic cost and absolute dif-
ference cost functions exhibit comparable steepness for rela-
tively larger error values. Furthermore, this new family intrin-
sically combines the benefits of using lower and higher-order

Fig. 2. A comparison of the stochastic cost functions illustrating the decreased
steepness of the absolute difference algorithm in the logarithmic error cost
framework for relatively small error.

measures of the error into a single adaptation algorithm. Our al-
gorithms provide comparable convergence rate with a conven-
tional algorithmminimizing the cost function and achieve
smaller steady-state mean square errors through the use of the
higher-order statistics for small perturbations of the error.
We note that the robust Huber cost definition, i.e., (3), uses

a piecewise-function combining two different algorithms based
on the comparison of the error with the cut-off value . On the
contrary, the logarithm based cost function intrinsically
combines the functions with different order of powers in a con-
tinuous manner into a single update and avoids possible anoma-
lies that might arise due to the breaking point in the cost function
as shown later in the paper.
As a side note, in the context of online learning, authors in

[27] demonstrate that the LMS algorithm can achieve the op-
timal deterministic performance in hindsight through the step
size decreasing in time. However, such an algorithm cannot re-
spond to the changing statistical profiles since the steps diminish
in time. In the new logarithmic cost definition, we inspire from
[27] in order to attain more gradual steps for small error values
in any conventional algorithm through the diminishing return
property of the logarithm function. In addition, the proposed
cost function can respond to the changes in the statistical pro-
files or to the possible outliers instantly. Particularly, the pro-
posed algorithm achieves smaller error in time and takes more
gradual steps. If the error gets larger due to a statistical profile
change or an outlier, the algorithm can respond immediately by
taking relatively steeper steps.
Remark 2.1: In [28], the authors propose a stochastic cost

function using the logarithm function as follows
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Note that the cost function is the subtracted term in (1)

for . The Hessian matrix of is given by

We emphasize that is positive semi-definite
provided that , thus, the parameter should
be chosen carefully to be able to efficiently use the gradient
descent algorithms.
On the contrary, the new cost function in (1) is a convex func-

tion enabling the use of the diminishing return property [24] of
the logarithm function for stable and robust updates. The Hes-
sian matrix of is given by

which is positive semi-definite provided that is a
positive semi-definite matrix and is a non-negative cost
function.
In the following, we demonstrate that the optimal solution

for the relative logarithmic error cost function, i.e., , is the
same with the cost function . The first gradient of (1) is
given by

which yields zero if is a zero vector or is zero.
The optimal solution for the cost function minimizes

and is obtained by

Since is a non-negative convex function, the global min-
imum and the value yielding zero gradient coincide if the latter
exits. Hence, the optimal solution for the relative logarithmic
error cost function is the samewith the cost function since
the Hessian matrix of the logarithmic cost definition is posi-
tive semi-definite. As an example, the mean-square error cost
function in the logarithmic cost framework, i.e.,

, yields to the Wiener so-
lution .
Remark 2.2: Instead of a logarithmic normalization term, it

is also possible to use various functions having diminishing re-
turns property in order to provide stability and robustness to the

conventional algorithms. For example, one can choose the cost
function as

(4)

and the Taylor series expansion of the second term in (4) around
is given by

Thus, the resulting algorithm combines the algorithms using
mainly (for small perturbations on the error) and .
We note that the algorithms using (4) are also as stable as ,
however, they behave like minimizing the higher-order mea-
sures, i.e., , for small error values.
In the next section, we propose important members of this

novel adaptive filter family.

III. PROPOSED ALGORITHMS

Based on the gradient of we obtain the general steepest
descent update as

where is the step size and is the design parameter.
If we assume that after removing the expectation to generate
stochastic gradient updates yields , e.g.,

, then the general stochastic gradient update is given
by

(5)

In the following subsections, we introduce algorithms im-
proving the performance of the conventional algorithms such
as the LMS (i.e., ), SA (i.e., ) and nor-
malized updates.

A. The Least Mean Logarithmic Square (LMLS) Algorithm

For , the stochastic gradient update yields

(6)

Note that we incorporate the multiplier ‘2’ from the gradient
into the step-size . The algorithm (6) resembles

a least-mean fourth update for the small error values while it
behaves like the least-mean square algorithm for large pertur-
bations on the error. This provides smaller steady-state mean
square error thanks to the fourth-order statistics of the error for
small perturbations and stability of the least-squares algorithms
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for large perturbations. Hence, the LMLS algorithm intrinsi-
cally combines the least mean-square and least-mean fourth al-
gorithms based on the error amount instead of mixed LMF +
LMS algorithms [12] that need artificial combination parameter
in the cost definition.

B. The Least Logarithmic Absolute Difference (LLAD)
Algorithm

The SA utilizes as the cost function, which
provides robustness against impulsive interferences [1]. How-
ever, the SA has slower convergence rate since the norm is
the smallest possible error power for a convex cost function. In
the logarithmic cost framework, for , (5) yields

(7)

The algorithm (7) combines the LMS algorithm and SA into
a single robust algorithm with improved convergence perfor-
mance. We note that in Section V we calculate the optimum

in order to achieve better convergence performance than
the SA in the impulsive noise environments.

C. Normalized Updates

We introduce normalized updates with respect to the re-
gressor signal in order to provide independence from the input
data correlation statistics under certain settings. We define the
new objective function as

for example . The Hessian matrix of
the new cost function is also positive semi-definite
provided that the Hessian matrix of is positive
semi-definite.
The steepest-descent update is given by

For , we get the normalized least mean
logarithmic square (NLMLS) algorithm given by

(8)

We point out that (8) is also proposed as the stable normalized
least mean-fourth algorithm in [6].
For , we obtain the normalized least log-

arithmic absolute difference (NLLAD) algorithm as

Remark 3.1: Through the logarithmic cost function, in
general, we can enhance the convergence performance for any
conventional cost function (in such cases, a typical choice for
the design parameter is ). In the environments where the
higher order error measure cannot converge (e.g., in the impul-
sive noise environment the LMS algorithm with mean-square
error cost does not usually converge) the performance of the
corresponding logarithmic cost-induced algorithm (the LLAD
algorithm using the mean absolute difference of the error in
the logarithmic cost framework) may degrade with respect
to the performance of the associated conventional algorithm.
In the definition of the new cost function, we introduce the
design parameter , i.e., an additional freedom of dimension,
such that through the optimization of we can still achieve
enhanced convergence performance even in such unrealistic
environments. Actually, even in such unrealistic conditions
the proposed algorithms provide enhanced convergence per-
formance for the algorithms with the cost function .
As an example, the LMLS algorithms overcome the stability
issues of the LMF algorithm and the LLAD algorithm provides
robustness to the LMS algorithm. Moreover, we can improve
the convergence performance of the logarithmic cost-induced
algorithms further by optimizing with prior information
about the environment.
Remark 3.2: We note that the proposed algorithms enhance

the convergence performance of the conventional algorithms,
e.g., the LMS algorithm and the SA, through similar computa-
tional cost. In Table I, we tabulate the detailed computational
cost of the proposed algorithms, where we compare the esti-
mated computational cost per iteration for the SA, LLAD, LMS,
LMLS and LMF algorithms for real valued data in terms of mul-
tiplications, additions, divisions and sign evaluations.
In the next section, we analyze the transient, steady-state and

tracking performance of the introduced algorithms.

IV. PERFORMANCE ANALYSIS

The performance analysis will be carried out by following
the energy-conversation approach of [1], [25], [29]. We define
a priori estimation error and the weighted form as

where and is a symmetric positive definite
weighting matrix. Note that different choice of leads to the
different performance measures of the algorithm [1]. The gen-
eral weighted-energy recursion for an adaptive filter with error
nonlinearity [26] is given by

(9)

where is the nonlinear error function. For the proposed
algorithms, is defined as

(10)
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TABLE I
A COMPARISON OF THE ESTIMATED COMPUTATIONAL COST PER ITERATION FOR THE PROPOSED

ALGORITHMS AND THE CONVENTIONAL ALGORITHMS ( IS THE FILTER LENGTH)

In the subsequent analysis of (9), we use the following
assumptions:
Assumption 1: The observation noise is zero-mean inde-

pendently and identically distributed (i.i.d.) Gaussian random
variable and independent from . The regressor signal is
also zero-mean i.i.d. Gaussian random variable with the auto-
correlation matrix .
Assumption 2: The a priori estimation error has Gaussian

distribution and it is jointly Gaussian with the weighted a priori
estimation error for any constant matrix . The assumption
is reasonable for long filters, i.e., is large, sufficiently small
step size and by the Assumption 1 [26].
Assumption 3: The random variables and are

uncorrelated, which enables the following split as

We next analyze the transient behavior of the new algorithms.

A. Transient Analysis

The Assumptions 1 and 2 imply that the estimation error
has Gaussian distribution since it is the addition of

two independent Gaussian random variable. Hence, we use the
Lemma 1 and (14) from [29] to get:
Lemma 1: Under Assumptions 1–3, we have

(11)

Proof: The proof of Lemma 1 follows from the Price’s
result [30], [31]. That is, for any Borel function we can
write

where and are zero-mean jointly Gaussian random variables
[32]. Hence by Assumptions 1–3, we obtain (11) and the proof
is concluded.
The weighted-error recursion (9) could be written as follows

[26]

(12)

where

We, next, evaluate and functions of the LMLS
and the LLAD algorithms.
1) Function of the LMLS Algorithm: We have

(13)

where and the first line of the equation follows ac-
cording to the definition of in (10). Since has Gaussian
distribution by the Assumptions 1 and 2, we obtain the last term
in (13) as follows

(14)

where , and the third line follows from
[33] with denoting the complementary error function.
Hence, putting (14) in (13), we obtain for the LMLS
update as

2) Function of the LLAD Algorithm: Correspond-
ingly, we have

(15)
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where the first line follows according to the definition of
in (10). Through the Assumptions 1 and 2, we obtain the last
term in (15) as follows

(16)

where , and , and the third line follows from
[33] with denoting the imaginary error
function and denoting the exponential integral, i.e.,

(17)

We note that is the Cauchy principal value of (17) due to
the singularity of the integrand at [33]. Therefore, putting
(16) in (15), we obtain for the LLAD update as

3) Function of the LMLS Algorithm: We have

where in the last line we applied the interchange of integra-

tion and differentiation property since and

are both continuous in . Hence, we have for
the LMLS algorithm as

4) Function of the LLAD Algorithm: Correspond-
ingly, we have

TABLE II
AND CORRESPONDING TO THE STOCHASTIC COSTS AND

, WHERE AND

where in the last line we applied the interchange of integra-

tion and differentiation property since and

are both continuous in . Therefore, we obtain
for the LLAD algorithm as

where the third line follows from (16).
We tabulate the evaluated results with the results for the LMS

algorithm, LMF algorithm and SA in Table II.
Using (12) and the evaluated and functions,

in the following we construct the learning curves for the new
algorithms.
i) For the white regression data for which , the
time-evolution of the mean square deviation (MSD)

is given by

where the right hand side only depends on .
ii) For the correlated regression data, by the Cayley-
Hamilton theorem, [26] uses the state-space recursion as

where the vectors are defined as

...
...

The coefficient matrix is given by

...
...

. . .
...

where the ’s for are the coefficients
of the characteristic polynomial of . Note that the top
entry of the state vector yields the time-evolution of
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the mean square deviation and the second entry
gives the learning curves for the excess mean square error

. Hence, despite and are functions
of , we can calculate at each iteration through

.
In the following subsection, we analyze the steady-state ex-

cess mean square error (EMSE) and MSD of the LMLS and
LLAD algorithms.

B. Steady-State Analysis

In [26], the authors demonstrate that the steady-state EMSE,

i.e., , of the adaptive filter with an error nonlinearity
function is given by

(18)

In addition, by the Assumption 1, the steady-state MSD, i.e.,

, yields

where denotes the filter length.
At the steady-state, we additionally use the following as-

sumptions that yield intuitive and neat theoretical results.
Assumption 4: For the LMLS algorithm and for sufficiently

small , the limits as of functions and
are given by

Assumption 5: For the LLAD algorithm and for sufficiently
small , the limits as of functions and
are given by

For the LMLS algorithm, by the Assumption 4, (18) leads to

(19)

By Assumption 1 and 2, is a Gaussian random variable and
, we have

Hence, after some algebra, the EMSE and MSD for the LMLS
algorithm are given by

(20)

where the smaller roots match with the simulations. Note that
(20) for is the same with the EMSE of the LMF algorithm
[1], [26].

Remark 4.1: In (20), let , then

(21)

By (21), we could achieve similar steady-state convergence per-
formance for different by changing the step size , e.g.,

, however, note that larger decreases the weight
of the normalization term, i.e., the logarithm function, in the
proposed cost definition (1).
Correspondingly, for the LLAD algorithm, by the Assump-

tion 5, (18) yields

Hence, by the Assumptions 1 and 2, the EMSE for the LLAD
algorithm is given by

(22)

Note that (22) for is the same with the EMSE of the
LMS algorithm [26]. Hence, for sufficiently small , the LLAD
algorithm achieves analogous steady-state convergence perfor-
mance with the LMS algorithm under the zero-mean Gaussian
error signal assumption.
In Fig. 3, we plot the theoretical and simulated MSD vs. step

size for the LMLS and LLAD algorithms. In the system identi-
fication framework, we choose the regressor and noise signals
as i.i.d. zero mean Gaussian with the auto-covariance matrix

and , respectively. The parameter of interest
is randomly chosen. We observe that the theoretical

steady-state MSDmatches with the simulation results generated
through the ensemble average of the last iterations of
(for the LMLS algorithm) and (for the LLAD algorithm)
iterations of 200 independent trials. In. Fig. 4, under the same
configurations, we compare the simulated MSD curves gener-
ated through the ensemble average of 200 independent trials
with the theoretical results for the step-size . We note
that theoretical performance analyses accurately match the en-
semble averaged results.

C. Tracking Performance

In this subsection, we investigate the tracking performance of
the introduced algorithms in a non-stationary environment. We
assume a random walk model [1] for such that

(23)

where is a zero-mean vector process with covariance
matrix . In this model, we assume that is in-
dependent from the regression and noise signals. We note that
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Fig. 3. Dependence of the steady-state MSD on the step size for the LMLS and LLAD algorithms. (a) The LMLS Algorithm, (b) The LLAD Algorithm.

Fig. 4. Theoretical and simulated MSD for the LMLS anf LLAD algorithms, (a) The LMLS algorithm, (b) The LLAD algorithm.

the model (23) has not changed the definitions of a priori error.
Hence, the weighted energy recursion is given by

Correspondingly, at the steady-state, we have

Hence, assuming the adaptive filter is mean square stable, by
the Assumptions 1–3 and following derivations in [1], at the
steady-state, we get

where denotes the steady-state EMSE of the algorithm.
Then, we can calculate the tracking performance of the pro-

posed algorithms. Under the Assumption 4, the tracking perfor-
mance of the LMLS algorithm is roughly given by

Correspondingly, through the Assumption 5, we obtain the
tracking EMSE of the LLAD as

In the next section, we compare the new algorithms with the
conventional LMS and SA in terms of the stability bound and
robustness.
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V. COMPARISON WITH THE CONVENTIONAL ALGORITHMS

We re-emphasize that the cost function intrinsically
combines the costs, mainly, and based on the rel-
ative error amount. Based on the stochastic gradient approach,
i.e., removing the expectation in the gradient descent,
and results in the same algorithm. Hence, in this section
we compare the stability of the LMLS algorithm with the LMF
and LMS algorithms and analyze the robustness of the LLAD
algorithm in the impulsive noise environments.

A. Stability Bound for the LMLS Algorithm

We again refer to the stochastic gradient update (5), which we
rewrite as

where . Note that irrespective of the
design parameter or the error amount.
Analytically, for stable updates the step size should satisfy

By (9), the Assumptions 1–3, and , the stability bound on
the step size is given by

where

with the Cramer-Rao lower bound for observations [34]. As
an example the step size bound for the LMLS yields

where

Note that the LMS algorithm has a similar bound where .
Hence, we point out that the LMLS achieves comparable sta-
bility performance with the LMS algorithm while performing
analogous performance with the LMF algorithm, which has sev-
eral stability issues [3]–[5].

B. Robustness Analysis for the LLAD Algorithm

Although the performance analysis of the adaptive filters as-
sumes white Gaussian noise signals, in practical applications the

impulsive noise is a common problem [9]. In order to analyze
the performance in the impulsive noise environments, we use
the following model.
Impulsive Noise Model: We model the noise as a summation

of two independent random terms [35], [36] as

where is the ordinary noise signal that is zero-mean
Gaussian with variance and is the impulse-noise that
is also zero-mean Gaussian with significantly large variance
. Here, is generated through a Bernoulli random process

and determines the occurrence of the impulses in the noise
signal with and where
is the frequency of the impulses in the noise signal. The

corresponding probability density function is given by

where .
We particularly analyze the steady-state performance of the

LLAD algorithm (for which ) in the impulsive noise
environments since we motivate the LLAD algorithm as im-
proving the steady-state convergence performance of the SA.
At the steady-state, for , (9) yields

(24)

Since the noise is not a Gaussian random variable in the impul-
sive noise environment, the estimation error is not a Gaussian
process and the Price’s Theorem is not applicable. However,
we can use the Price’s Theorem conditioning the expectations
on the noise as in [37]. Instead of this, we assume that in
the impulse-free environment, since at the
steady-state, the error is assumed to take relatively small values
whereas if the impulse-noise occurs, due
to the large perturbation on the error.We now evaluate each term
in (24) separately. We first consider the numerator of the RHS
of (24) and write

Hence, since , the expectation leads to

(25)
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Fig. 5. Dependence of the steady-state MSD on the step size for the LLAD
algorithm in the 5% impulsive noise environment where (a), (b), (c), and (d)
denote (simulation), (theory), (simulation), and

(theory) cases, respectively.

Fig. 6. Comparison of the MSD of the LMLS, LMS and LMF algorithms for
the same steady-state MSD where and

.

Following similar steps for the denominator of the RHS of (24),
we obtain

(26)

By (24), (25) and (26), the EMSE of the LLAD algorithm in the
impulsive noise environment is given by

(27)

Note that for (impulse-free) (27) yields (22).

Fig. 7. Comparison of the MSD of the LMLS algorithms with different ’s
and the LMS algorithm for the same steady-state MSD where
and . LMLS-1, LMLS-2 and LMLS-3 correspond to

and , respectively.

Fig. 8. Comparison of the MSD of the LLAD, SA and LMS algorithms in im-
pulse-free noise environment with and
.

Remark 5.1: Increasing , i.e., more frequent impulses,
causes larger steady-state EMSE. However, through the opti-
mization of , we can minimize the steady-state EMSE. After
some algebra, the optimum design parameter in the impulsive
noise environment is roughly given by

In Fig. 5, we plot the dependence of the steady-state MSD with
the step size in 5%, i.e., , impulsive noise environ-
ment where , and after 200
independent trials. We observe that improves the conver-
gence performance and the theoretical analyses through the im-
pulsive noise model matches with the simulation results. We
next demonstrate the performance of the introduced algorithms
in different applications.
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Fig. 9. Desired signal in 1%, 2% and 5% impulsive noise environments. (a) 1%, (b) 2%, (c) 5%.

Fig. 10. Comparison of the MSD of the LLAD, SA and LMS algorithms in 1%, 2% and 5% impulsive noise environments. (a) 1% , (b) 2%
, (c) 5% .

VI. NUMERICAL EXAMPLES

In this section, we particularly compare the convergence rate
of the algorithms for the same steady-state MSD through the
specific choice of the step sizes for fair comparisons. Here, we
have a stationary data where is zero-
mean Gaussian i.i.d. regression signal with an auto-covariance
matrix represents zero-mean i.i.d. noise signal
and the parameter of interest is randomly chosen. In
following scenarios, we compare the algorithms under Gaussian
noise and impulsive noise models subsequently.
Scenario 1 (Impulse-Free Environment): In this scenario, we

use a zero-mean Gaussian i.i.d. noise signal with the variance
and the design parameter . In Fig. 6, we com-

pare the convergence rate of the LMLS, LMF and LMS algo-
rithms for relatively small step sizes.We observe that LMLS and
LMF algorithms achieve comparable performance and LMLS
achieves better convergence performance than the LMS algo-
rithm. In Fig. 7, we compare the LMLS and LMS algorithms
for relatively large step sizes, i.e., and

. We only compare the LMLS and LMS algorithms since
the LMF algorithm is not stable for such a step-size. Hence, the
LMLS algorithm demonstrates comparable convergence perfor-
mance as the LMF algorithm with improved stability perfor-
mance. In addition, the Fig. 7 also demonstrates that does not
have significant impact on the convergence performance for suf-
ficiently small .

In Fig. 8, we compare the LLAD, SA and LMS algorithms in
an impulse-free noise environment. We observe that the LLAD
algorithm shows comparable convergence performance with the
LMS algorithm, particularly, the logarithmic error cost frame-
work improves the convergence performance of the SA.
Scenario 2 (Impulsive Noise Environment): Here, we use the

impulsive noise model with . In this configuration,
we optimize so that the LLAD algorithm could achieve
smaller steady-state MSD. In Fig. 9, we plot sample desired
signals in 1%, 2% and 5% impulsive noise environments and
Fig. 10 shows the corresponding time evolution of the MSD
of the LLAD, SA and LMS algorithms. The step sizes are
chosen as for 1%,
2% and 5% impulsive noise environments, respectively, and

. The figures show that in the impulsive noise
environments, the LMS algorithm does not converge while
the LLAD algorithm, which achieves comparable convergence
performance with the LMS algorithm in the impulse free
environment, performs still better than the SA.
Scenario 3 (Comparison With the Robust Huber Filter): For

this example, we have the auto-covariance matrix of the regres-
sion signal and the variance of the observation noise
is . In Fig. 11, we set the step sizes of the algorithms
as , and . We
observe that the LLAD algorithm outperforms the robust Huber
filter since the Huber filter in general updates similar to the SA
while the LLAD algorithm takes more steeper steps similar to
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Fig. 11. Comparison of the time evolution of theMSD of the SA, robust Huber,
LLAD and LMS algorithms in the impulse-free noise environment.

Fig. 12. Comparison of the time evolution of the MSD of the SA, robust Huber
and LLAD algorithms in the 5% impulsive noise environment.

the LMS algorithm thanks to the smooth transition. In the im-
pulsive noise environment, we can optimize the breaking point
of the robust Huber filter and we found that . The
Fig. 12 compares the learning curves of the algorithm in the 5%
impulsive noise environment where and

. The LLAD algorithm outperforms the robust Huber filter
also in the impulsive noise environment.

VII. CONCLUDING REMARKS

In this paper, we present a novel family of adaptive filtering
algorithms based on the logarithmic error cost framework. We
mitigate the stability or convergence issues of the well known
adaptive algorithms by introducing a relative cost measure.
Through the relative logarithmic cost, we intrinsically combine
the higher and the lower order measures of the error into a
single continuous update based on the error amount. We pro-
pose important members of the new family, i.e., the LMLS and

LLAD algorithms. The LMLS algorithm achieves comparable
convergence performance with the LMF algorithm with sig-
nificantly improved stability performance. In the impulse-free
environment, the LLAD algorithm has analogous convergence
performance with the LMS algorithm. Furthermore, the LLAD
algorithm is robust against impulsive interferences and outper-
forms the SA. We also provide comprehensive performance
analyses of the introduced algorithms, which match with the
simulation results. Finally, we show the improved convergence
performance of the new algorithms in several different system
identification scenarios.

REFERENCES

[1] A. H. Sayed, Fundamentals of Adaptive Filtering. New York, NY,
USA: Wiley, 2003.

[2] E. Walach and B. Widrow, “The least mean fourth (LMF) adaptive
algorithm and its family,” IEEE Trans. Inf. Theory, vol. 30, no. 2, pp.
275–283, Feb. 1984.

[3] V. H. Nascimento and J. C. M. Bermudez, “When is the least-mean
fourth algorithm mean-square stable?,” in Proc. 2005 IEEE Int. Conf.
Acoustics, Speech, Signal Process., 2005, vol. 4, pp. iv/341–iv/344.

[4] V. H. Nascimento and J. C. M. Bermudez, “Probability of divergence
for the least-mean fourth algorithm,” IEEE Trans. Signal Process., vol.
54, no. 4, pp. 1376–1385, Apr. 2006.

[5] P. I. Hubscher, J. C. M. Bermudez, and V. H. Nascimento, “A mean-
square stability analysis of the least mean fourth adaptive algorithm,”
IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4018–4028, Aug. 2007.

[6] E. Eweda, “Global stabilization of the least mean fourth algorithm,”
IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1473–1477, Mar. 2012.

[7] E. Eweda andN. J. Bershad, “Stochastic analysis of a stable normalized
least mean fourth algorithm for adaptive noise canceling with a white
Gaussian reference,” IEEE Trans. Signal Process., vol. 60, no. 12, pp.
6235–6244, Dec. 2012.

[8] V. H. Nascimento, “A simple model for the effect of normalization
on the convergence rate of adaptive filters,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Process., 2004, vol. 2, p. ii-453-6.

[9] M. Shao and C. L. Nikias, “Signal processing with fractional lower
order moments: Stable processes and their applications,” Proc. IEEE,
vol. 81, no. 7, pp. 986–1010, Jul. 1993.

[10] S. R. Kim and A. Efron, “Adaptive robust impulse noise filtering,”
IEEE Trans. Signal Process., vol. 43, no. 8, pp. 1855–1866, Aug. 1995.

[11] V. J. Mathews and S. H. Cho, “Improved convergence analysis of sto-
chastic gradient adaptive filters using the sign algorithm,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 35, no. 4, pp. 450–454, Apr.
1987.

[12] J. A. Chambers, O. Tanrikulu, and A. G. Constantinides, “Least mean
mixed-norm adaptive filtering,” Electron. Lett., vol. 30, no. 19, pp.
1574–1575, 1994.

[13] J. Chambers and A. Avlonitis, “A robust mixed-norm adaptive filter
algorithm,” IEEE Signal Process. Lett., vol. 4, no. 2, pp. 46–48, Feb.
1997.

[14] J. Arenas-Garcia, V. Gomez-Verdejo, M. Martinez-Ramon, and A.
R. Figueiras-Vidal, “Separate-variable adaptive combination of LMS
adaptive filters for plant identification,” in Proc. 2003 IEEE 13th
Workshop Neural Netw. Signal Process., 2003, pp. 239–248.

[15] J. Arenas-Garcia, V. Gomez-Verdejo, and A. R. Figueiras-Vidal,
“New algorithms for improved adaptive convex combination of LMS
transversal filters,” IEEE Trans. Instrumen. Measur., vol. 54, no. 6,
pp. 2239–2249, Jun. 2005.

[16] J. Arenas-Garcia, A. R. Figueiras-Vidal, and A. H. Sayed,
“Mean-square performance of a convex combination of two adaptive
filters,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 1078–1090,
Mar. 2006.

[17] M. T. M. Silva and V. H. Nascimento, “Improving the tracking capa-
bility of adaptive filters via convex combination,” IEEE Trans. Signal
Process., vol. 56, no. 7, pp. 3137–3149, Jul. 2008.

[18] S. S. Kozat, A. T. Erdogan, A. C. Singer, and A. H. Sayed, “Steady-
state MSE performance analysis of mixture approaches to adaptive fil-
tering,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4050–4063,
Aug. 2010.



4424 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 17, SEPTEMBER 1, 2014

[19] J. Arenas-Garcia and A. R. Figueiras-Vidal, “Adaptive combination of
normalised filters for robust system identification,” Electron. Lett., vol.
41, no. 15, pp. 874–875, 2005.

[20] P. Petrus, “Robust Huber adaptive filter,” IEEE Trans. Signal Process.,
vol. 47, no. 4, pp. 1129–1133, Apr. 1999.

[21] A. C. Singer, S. S. Kozat, and M. Feder, “Universal linear least squares
prediction: Upper and lower bounds,” IEEE Trans. Inf. Theory, vol. 48,
no. 8, pp. 2354–2362, Aug. 2002.

[22] S. S. Kozat and A. C. Singer, “Universal switching linear least squares
prediction,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 189–204,
Jan. 2008.

[23] S. S. Kozat, A. C. Singer, and G. C. Zeitler, “Universal piecewise linear
prediction via context trees,” IEEE Trans. Signal Process., vol. 55, no.
7, pp. 3730–3745, Jul. 2007.

[24] R. G. Bartle and D. R. Scherbert, Introduction to Real Analysis. New
York, NY, USA: Wiley, 2011.

[25] T. Y. Al-Naffouri and A. H. Sayed, “Adaptive filters with error non-
linearities: Mean-square analysis and optimum design,” EURASIP J.
Appl. Signal Process., no. 4, pp. 192–205, 2001.

[26] T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of adaptive
filters with error nonlinearities,” IEEE Trans. Signal Process., vol. 51,
no. 3, pp. 653–663, Mar. 2003.

[27] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms
for online convex optimization,” Mach. Learn., vol. 69, no. 2–3, pp.
169–192, 2007.

[28] I. Song, P. Park, and R. W. Newcomb, “A normalized least mean
squares algorithm with a step-size scaler against impulsive measure-
ment noise,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 60, no. 7,
pp. 442–445, 2013.

[29] T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of data-normal-
ized adaptive filters,” IEEE Trans. Signal Process., vol. 51, no. 3, pp.
639–652, Mar., 2003.

[30] R. Price, “A useful theorem for nonlinear devices having Gaussian in-
puts,” IEEE Trans. Inf. Theory, vol. 4, no. 2, pp. 69–72, Feb. 1958.

[31] E. McMahon, “An extension of Price’s theorem (Corresp.),” IEEE
Trans. Inf. Theory, vol. IT-10, no. 2, pp. 168–168, Feb. 1964.

[32] T. Koh and E. J. Powers, “Efficient methods of estimate correlation
functions of Gaussian processes and their performance analysis,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 33, no. 4, pp. 1032–1035,
Aug. 1985.

[33] W. Grobner and N. Hofreiter, Bestimmte Integrale. Berlin, Germany:
Springer-Verlag, 1966.

[34] H. L. V. Trees, Detection, Estimation, and Modulation Theory, ser.
ser. Detection, Estimation, and Modulation Theory.. New York, NY,
USA: Wiley, 2004, pt. pt. 1, no..

[35] X. Wang and H. V. Poor, “Joint channel estimation and symbol de-
tection in Rayleigh flat-fading channels with impulsive noise,” IEEE
Commun. Lett., vol. 1, no. 1, pp. 19–21, Jan. 1997.

[36] S. C. Chan and Y. X. Zou, “A recursive least m-estimate algorithm for
robust adaptive filtering in impulsive noise: Fast algorithm and conver-
gence performance analysis,” IEEE Trans. Signal Process., vol. 52, no.
4, pp. 975–991, Apr. 2004.

[37] Y. R. Zheng and V. H. Nascimento, “Two variable step-size adaptive
algorithms for non-Gaussian interference environment using fraction-
ally lower-order moment minimization,” Digital Signal Process., vol.
23, pp. 831–844, 2013.

MuhammedO. Sayinwas born in Erzincan, Turkey,
in 1990. He received the B.S. degree with high honors
in electrical and electronics engineering from Bilkent
University, Ankara, Turkey, in 2013.
He is currently working toward the M.S. degree

in the Department of Electrical and Electronics
Engineering at Bilkent University. His research
interests include distributed signal processing, adap-
tive filtering theory, machine learning, and statistical
signal processing.

N. Denizcan Vanli was born in Nigde, Turkey, in
1990. He received the B.S. degree with high honors
in electrical and electronics engineering from Bilkent
University, Ankara, Turkey, in 2013.
He is currently working toward the M.S. degree

in the Department of Electrical and Electronics
Engineering at Bilkent University. His research in-
terests include sequential learning, adaptive filtering,
machine learning, and statistical signal processing.

Suleyman Serdar Kozat (A’10–M’11–SM’11) re-
ceived the B.S. degree with full scholarship and high
honors from Bilkent University, Turkey. He received
the M.S. and Ph.D. degrees in electrical and com-
puter engineering from University of Illinois at Ur-
bana Champaign, Urbana, IL. Dr. Kozat is a graduate
of Ankara Fen Lisesi.
After graduation, Dr. Kozat joined IBM Research,

T. J. Watson Research Lab, Yorktown, NewYork, US
as a Research Staff Member in the Pervasive Speech
Technologies Group. While doing his Ph.D., he was

also working as a Research Associate at Microsoft Research, Redmond, Wash-
ington, US in the Cryptography and Anti-Piracy Group. He holds several patent
inventions due to his research accomplishments at IBM Research andMicrosoft
Research. After serving as an Assistant Professor at Koc University, Dr. Kozat
is currently an Assistant Professor (with the Associate Professor degree) at the
electrical and electronics department of Bilkent University.
Dr. Kozat is a Senior Member of the IEEE and the President of the IEEE

Signal Processing Society, Turkey Chapter. He has been elected to the IEEE
Signal Processing Theory and Methods Technical Committee and IEEE Ma-
chine Learning for Signal Processing Technical Committee, 2013. He has been
awarded IBM Faculty Award by IBM Research in 2011, Outstanding Faculty
Award by Koc University in 2011 (granted the first time in 16 years), Out-
standing Young Researcher Award by the Turkish National Academy of Sci-
ences in 2010, ODTU Prof. Dr. Mustafa N. Parlar Research Encouragement
Award in 2011, Outstanding Faculty Award by Bilim Kahramanlari, 2013 and
holds Career Award by the Scientific Research Council of Turkey, 2009.


