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Abstract— We study sequential prediction of real-valued,
arbitrary, and unknown sequences under the squared error loss
as well as the best parametric predictor out of a large, continuous class
of predictors. Inspired by recent results from computational learning
theory, we refrain from any statistical assumptions and define the
performance with respect to the class of general parametric predictors.
In particular, we present generic lower and upper bounds on this relative
performance by transforming the prediction task into a parameter
learning problem. We first introduce the lower bounds on this relative
performance in the mixture of experts framework, where we show
that for any sequential algorithm, there always exists a sequence for
which the performance of the sequential algorithm is lower bounded
by zero. We then introduce a sequential learning algorithm to predict
such arbitrary and unknown sequences, and calculate upper bounds
on its total squared prediction error for every bounded sequence. We
further show that in some scenarios, we achieve matching lower and
upper bounds, demonstrating that our algorithms are optimal in a
strong minimax sense such that their performances cannot be improved
further. As an interesting result, we also prove that for the worst case
scenario, the performance of randomized output algorithms can be
achieved by sequential algorithms so that randomized output algorithms
do not improve the performance.

Index Terms— Online learning, sequential prediction,
worst-case performance.

I. INTRODUCTION

In this brief, we investigate the generic sequential (online) predic-
tion problem from an individual sequence perspective using tools of
computational learning theory, where we refrain from any statistical
assumptions either in modeling or on signals [1]–[4]. In this approach,
we have an arbitrary, deterministic, bounded, and unknown signal
{x[t]}t≥1, where |x[t]| < A < ∞, and x[t] ∈ �. Since we
do not impose any statistical assumptions on the underlying data,
we, motivated by recent results from sequential learning [1]–[4],
define the performance of a sequential algorithm with respect to
a comparison class, where the predictors of the comparison class
are formed by observing the entire sequence in hindsight, under the
squared error loss, that is

n∑

t=1

(x[t] − x̂s [t])2 − inf
c∈C

n∑

t=1

(
x[t] − x̂c[t]

)2

for an arbitrary length of data n, and for any possible sequence
{x[t]}t≥1, where x̂s[t] is the prediction at time t of any sequential
algorithm that has access data from x[1] up to x[t −1] for prediction,
and x̂c[t] is the prediction at time t of the predictor c such that c ∈ C,
where C represents the class of predictors we compete against. We
emphasize that since the predictors x̂c[t], c ∈ C have the access
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to the entire sequence before the processing starts, the minimum
squared prediction error that can be achieved with a sequential
predictor x̂s [t] is equal to the squared prediction error of the optimal
batch predictor x̂c[t], c ∈ C. Here, we call the difference in the
squared prediction error of the sequential algorithm x̂s [t] and the
optimal batch predictor x̂c[t], c ∈ C as the regret of not using the
optimal predictor (or equivalently, not knowing the future). Therefore,
we seek for sequential algorithms x̂s [t] that minimize this regret
or loss for any possible {x[t]}t≥1. We emphasize that this regret
definition is for the accumulated sequential cost, instead of the
batch cost.

Instead of fixing a comparison class of predictors, we parameterize
the comparison classes such that the parameter set and functional
form of these classes can be chosen as desired. In this sense, in this
brief, we consider the most general class of parametric predictors as
our class of predictors C such that the regret for an arbitrary length
of data n is given by

n∑

t=1

(x[t] − x̂s [t])2 − inf
w∈�m

n∑

t=1

(
x[t] − f

(
w, xt−1

t−a
))2

(1)

where f (w, xt−1
t−a ) is a parametric function whose parameters w =

[w1, . . . , wm]T can be set prior to prediction, and this function uses
the data xt−1

t−a , t − a ≥ 1 for prediction for some arbitrary integer a,
which can be viewed as the tap size of the predictor.1 Although the
parameters of the parametric prediction function f (w, xt−1

t−a ) can be
set arbitrarily, even by observing all the data {x[t]}t≥1 a priori, the
function is naturally restricted to use only the sequential data xt−1

1
in prediction [5]–[7].

Since we have no statistical assumptions on the underlying data,
the corresponding lower and upper bounds on the regret in (1) in this
sense provide the ultimate measure of the learning performance for
any sequential predictor. We emphasize that lower bounds not only
provide the worst-case performance of an algorithm, but also quantify
the prediction power of the parametric class. As such, a positive lower
bound guarantees the existence of a data sequence having an arbitrary
length such that no matter how smart the learning algorithm is, the
performance of this smart algorithm on this sequence will be worse
than the class of parametric predictors by at least an order of the lower
bound. Hence, if an algorithm is found such that the upper bound of
the regret of that algorithm matches with the lower bound, then that
algorithm is optimal in a strong minimax sense such that the actual
convergence performance cannot be further improved [7]. To this
end, the minimax sense optimality of different parametric learning
algorithms, such as the well-known prediction algorithms, least mean
squares (LMSs) [8], recursive least squares (RLSs) [8], and online
sequential extreme learning machine of [1] can be determined using
the lower bounds provided in this brief. In this sense, the rates of
the corresponding upper and lower bounds are analogous to the VC

1All vectors are column vectors and denoted by boldface lower case letters.
For a vector u, uT is the ordinary transpose. We denote xb

a � {x[t]}b
t=a .
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dimension [9] of classifiers and can be used to quantify the learning
performance [1]–[3], [10].

Various sequential learning algorithms have been proposed in
[1], [7], [8], [10]–[12], and [13] in order to efficiently learn the
relationship between the observations and the desired data. One
of the simplest methods is to linearly model this relationship, i.e.,
f (w[t], xt−1

t−a ) = w[t]T xt−1
t−a , and then update w[t] using the well-

known algorithms, such as the LMS or RLS algorithms [1], [8]. In
more recent studies [7], [12], universal algorithms have been proposed
that achieve the performance of the optimal weighting vector without
any statistical assumptions. Kivinen and Warmuth [10] have proposed
a multiplicative update of the weights and provided guaranteed upper
bounds on the performance of the proposed algorithm. On the other
hand, in order to introduce a nonlinear modeling, similar learning
methods are usually extended by either mapping the observations
to higher dimensions as in polynomial and Volterra filters [11] or
partitioning the observation space and fitting linear models in each
partition, i.e., piecewise linear modeling [13].

In order to derive upper and lower bounds on the performance
of such learning algorithms, the mixture of experts framework
is usually used. As an example, linear prediction [5], [7], [12],
nonlinear models based on piecewise linear approximations [13],
and the learning of an individual noise-corrupted deterministic
sequence [14] are studied. These results are then extended to the
filtering problems [15], [16]. In this brief, on the other hand, we
consider a holistic approach and provide upper and lower bounds
for the general framework, which was previously missing in the
literature.

Our main contribution in this brief is to obtain the gener-
alized lower bounds for a variety of prediction frameworks by
transforming the prediction problem to a well known and studied
statistical parameter learning problem [1], [4]–[7]. By doing so,
we prove that for any sequential algorithm there always exists
some data sequence over any length such that the regret of the
sequential algorithm is lower bounded by zero. We further derive
lower bounds for important classes of predictors heavily investi-
gated in machine learning literature, including univariate polynomial,
multivariate polynomial, and linear predictors [4]–[7], [10]–[12],
[14]. We also provide a universal sequential prediction algorithm
and calculate upper bounds on the regret of this algorithm, and
show that we obtain matching lower and upper bounds in some
scenarios. As an interesting result, we also show that given the
regret in (1) as the performance measure, there is no additional
gain achieved by using randomized algorithms in the worst-case
scenario.

The rest of this brief is organized as follows. In Section II,
we first present general lower bounds, and then analyze couple of
specific scenarios. We then introduce a universal prediction algorithm
and calculate the upper bounds on its regret in Section III. In
Section IV, we show that in the worst-case scenario, the performance
of randomized algorithms can be achieved by sequential algorithms.
Finally, conclusions are drawn in Section V.

II. LOWER BOUNDS

In this section, we investigate the worst-case performance of
sequential algorithms to obtain guaranteed lower bounds on the regret.
Hence, for any arbitrary length of data n, {x[t]}t≥1, we are trying to
find a lower bound on the following:

sup
xn

1

{ n∑

t=1

(x[t] − x̂s[t])2− inf
w∈�m

n∑

t=1

(
x[t] − f

(
w, xt−1

t−a
))2
}
.

(2)

For this regret, we have the following theorem that relates the
performance of any sequential algorithm to the general class of
parametric predictors. While proving this theorem, we also provide
a generic procedure to find lower bounds on the regret in (2)
and later use this method to derive lower bounds for parametric
classes, including the classes of univariate polynomial, multivariate
polynomial, and linear predictors [4]–[7], [10]–[12], [14].

Theorem 1: There is no best sequential algorithm for all sequences
for any class in the parametric form f (w, xt−1

t−a ), where w ∈ �m .
Given a parametric class there exists always a sequence such that the
regret in (2) is always lower bounded by some nonnegative value.

This theorem implies that no matter how smart a sequential
algorithm is or how naive the competition class is, it is not possible
to outperform the competition class for all sequences. As an example,
this result demonstrates that even competing against the class of
constant predictors, i.e., the most naive competition class, where x̂c[t]
always predicts a constant value, any sequential algorithm, no matter
how smart, cannot outperform this class of constant predictors for all
sequences. We emphasize that in this sense, the lower bounds provide
the prediction and modeling power of the parametric class.

Proof of Theorem 1: We begin our proof by pointing out that
finding the best sequential predictor for an arbitrary and unknown
sequence of xn

1 is not straightforward. Yet, for a specific distribution
on xn

1 , the best predictor is the conditional mean on xn
1 under the

squared error [17]. Therefore, by this clever transformation, we are
able to calculate the regret in (2) in the expectation sense and prove
this theorem.

Since the supremum in (2) is taken over all xn
1 , for any distribution

xn
1 , the regret is lower bounded by

sup
xn

1

( n∑

t=1

(x[t] − x̂s[t])2 − inf
w∈�m

n∑

t=1

(
x[t] − f

(
w, xt−1

t−a
))2
)

≥ Exn
1

[ n∑

t=1

(x[t] − x̂s [t])2 − inf
w∈�m

n∑

t=1

(
x[t] − f

(
w, xt−1

t−a
))2
]

︸ ︷︷ ︸
�L(n)

where expectation is taken with respect to this particular distribution.
Hence, it is enough to lower bound L(n) to get a final lower bound.
By the linearity of the expectation

L(n) = Exn
1

[ n∑

t=1

(x[t] − x̂s[t])2

]

−Exn
1

[
inf

w∈�m

n∑

t=1

(
x[t] − f

(
w, xt−1

t−a
))2
]

. (3)

The squared-error loss E[(x[t]− x̂s[t])2] is minimized with the well-
known minimum mean squared error (MMSE) predictor given by [17]

x̂s [t] = E
[
x[t]∣∣x[t − 1], . . . , x[1]] = E

[
x[t]∣∣xt−1

1

]
(4)

where we drop the explicit xn
1 -dependence of the expectation to

simplify the presentation.
Suppose we select a parametric distribution for xn

1 with parameter
vector θ = [θ1, . . . , θm]. Then, for the second term in (3), we use
the following inequality:

Eθ

[
E

xn
1

∣∣θ

[
inf

w∈�m

n∑

t=1

(
x[t] − f

(
w, xt−1

t−a
))2
]]

≤ Eθ

[
inf

w∈�m
E

xn
1

∣∣θ

[ n∑

t=1

(
x[t] − f

(
w, xt−1

t−a
))2
]]

. (5)
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By using (4) and (5), and expanding the expectation, we can lower
bound L(n) as

L(n) ≥ Eθ

[
E

xn
1

∣∣θ

[ n∑

t=1

(
x[t] − E

[
x[t]∣∣xt−1

1

])2
]]

−Eθ

[
inf

w∈�m
E

xn
1

∣∣θ

[ n∑

t=1

(
x[t] − f

(
w, xt−1

t−a
))2
]]

.

(6)

The inequality in (6) is true for any distribution on xn
1 . Hence, for a

distribution on xn
1 such that

E
[
x[t]∣∣xt−1

1 , θ
]

= h
(
θ , xt−1

t−a
)

(7)

with some function h, if we can find a vector function g(θ) satisfying
f (g(θ), xt−1

t−a ) = h(θ, xt−1
t−a ) then the last term in (6) yields

Eθ

[
inf

w∈�m
E

xn
1

∣∣θ

[ n∑

t=1

(
x[t] − f

(
w, xt−1

t−a
))2
]]

= Eθ

[
E

xn
1

∣∣θ

[ n∑

t=1

(
x[t] − h

(
θ , xt−1

t−a
))2
]]

.

Thus, (6) can be written as

L(n) ≥ Eθ

[
E

xn
1

∣∣θ

[ n∑

t=1

(
x[t] − E

[
x[t]∣∣xt−1

1

])2
]]

−Eθ

[
E

xn
1

∣∣θ

[ n∑

t=1

(
x[t] − E

[
x[t]∣∣xt−1

1 , θ
])2
]]

which is by definition of the MMSE estimator is always lower
bounded by zero, i.e., L(n) ≥ 0. By this inequality, we conclude
that for predictors of the form f (w, xt−1

t−a ) for which this special
parametric distribution, i.e., w = g(θ) exists, the best sequential
predictor will be always outperformed by some predictor in this
class for some sequence xn

1 . Hence, there is no best algorithm for all
sequences for any class in this parametric form. The question arises if
a suitable distribution on xn

1 can be found for a given f (w, xt−1
t−a ) such

that f (g(θ), xt−1
t−a ) = h(θ, xt−1

t−a ) with a suitable transformation g(θ).
Suppose f (w, xt−1

t−a ) is bounded by some 0 < M < ∞ for
all |x[t]| ≤ A, i.e., | f (w, xt−1

t−a )| ≤ M . Then, given θ from a
beta distribution with parameters (C, C), C ∈ R+, we generate a
sequence xn

1 such that x[t] = A/M f (w, xt−1
t−a ) with probability θ

and x[t] = −A/M( f (w, xt−1
t−a )) with probability (1 − θ). Then

E
[

x[t]∣∣xt−1
1 , θ

]
= A

M
(2θ − 1) f

(
w, xt−1

t−a
)
.

Hence, this concludes the proof of the Theorem 1. �
As an important special case, if we use the restricted functional

form f (w, xt−1
t−a ) so that f (w, xt−1

t−a ) is separable, then the prediction
problem is transformed to a parameter estimation problem. The
separable form is given by

f
(
w, xt−1

t−a
) = f w(w)T f x (xt−1

t−a)

where f w(w) and f x (xt−1
t−a ) are vector functions of size m × 1 for

some integer m. Then, (7) can be written as

E
[
x[t]∣∣xt−1

1 , θ
]

= f w(g(θ))T f x
(
xt−1

t−a
)

where f w(g(θ)) = A/M(2θ − 1) f w(w). Denoting f n(w) �
A/M f w(w) as the normalized prediction function, and after some

algebra (6) is obtained as

L(n)≥ Eθ

[
E

xn
1

∣∣θ

[ n∑

t=1

(
x[t]−E

[
(2θ−1)

∣∣xt−1
1

]T

× f n(w)T f x
(
xt−1

t−a
))2
]]

−Eθ

[
E

xn
1

∣∣θ

[ n∑

t=1

(
x[t] − (2θ − 1)

× f n(w)T f x
(
xt−1

t−a
))2
]]

so that the regret of the sequential algorithm over the best prediction
function is due to the regret attained by the sequential algorithm
while learning the parameters of the prediction function, i.e., the
parameters of the underlying distribution. To illustrate this procedure,
we investigate the regret given in (2) for three candidate function
classes that are widely studied in computational learning theory.

A. mth-Order Univariate Polynomial Prediction

For an mth-order polynomial in x[t − 1], the regret is
given by

sup
xn

1

⎧
⎪⎨

⎪⎩

n∑

t=1

(x[t]− x̂s [t])2 − inf
w∈�m

n∑

t=1

⎛

⎝x[t] −
p∑

i=1

wi xi [t − 1]
⎞

⎠
2
⎫
⎪⎬

⎪⎭

(8)

where x̂s [t] is the prediction at time t of any sequential algorithm
that has access data from x[1] up to x[t − 1] for prediction, w =
[w1, . . . , wm]T is the parameter vector, and xi [t −1] is the i th power
of x[t − 1].

Since
∑m

i=1 wi xi [t −1] = w1x[t −1] with appropriate selection of
w, considering the following distribution on xn

1 , we can lower bound
the regret in (8). Given θ from a beta distribution with parameters
(C, C), C ∈ R+, we generate a sequence xn

1 having only two values,
A and −A such that x[t] = x[t − 1] with probability θ and x[t] =
−x[t − 1] with probability (1 − θ). Then, E[x[t]∣∣xt−1

1 , θ] = (2θ −
1)x[t − 1], giving h(θ, xt−1

t−a ) = (2θ − 1)x[t − 1]. Since the MMSE
given θ is linear in x[t − 1], the optimum w that minimizes the
accumulated error for this distribution is w = [(2θ − 1), 0, . . . , 0]T .
After following the lines in [5], we obtain a lower bound of the form
O(ln(n)).

B. Multivariate Polynomial Prediction

Suppose the prediction function is given by wT f x (xt−1
t−a ) =∑m

k=1 wk fk(xt−1
t−r ), where each fk(xt−1

t−r ) is a multivariate
polynomial function (as an example fk(xt−1

t−r ) =
x[t − 1]x2[t − 2]/x[t − 3]), and regret is taken over all
w = [w1, . . . , wm]T ∈ �m , that is

sup
xn

1

{ n∑

t=1

(x[t] − x̂s [t])2−inf
w∈�m

n∑

t=1

(
x[t] − wT f x

(
xt−1

t−a
))2
}

where x̂s [t] is the prediction at time t of any sequential algorithm
that has access data from x[1] up to x[t − 1] for prediction, and w

is the parameter for prediction.
We emphasize that this class of predictors are not only the super

set of univariate polynomial predictors, but also widely used in many
signal processing applications to model nonlinearity, such as Volterra
filters [11]. This filtering technique is attractive when linear filtering
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techniques do not provide satisfactory results, and includes cross
products of the input signals.

Since
∑m

k=1 wk fk(xt−1
t−r ) = w1 f1(xt−1

t−r ) with an appropriate
selection of w and redefinition of f1(xt−1

t−r ), we define the following
parametric distribution on xn

1 to obtain a lower bound. Given θ

from a beta distribution with parameters (C, C), C ∈ R+, we
generate a sequence xn

1 having only two values, A and −A, such
that x[t] = fn(xt−1

t−a ) with probability θ and x[t] = − fn(xt−1
t−a )

with probability (1 − θ), where fn(xt−1
t−a ) = A f1(xt−1

t−r )/M , i.e.,
normalized version of f1(xt−1

t−r ). Thus, given θ , xn
1 forms a two-

state Markov chain with transition probability (1 − θ). Hence, we
have E[x[t]∣∣xt−1

1 , θ] = (2θ − 1) fn(xt−1
t−a ). The lower bound for the

regret is given by

L(n) = E

[(
x[t] − (2θ̂ − 1) fn

(
xt−1

t−a
))2
]

−E

[(
x[t] − (2θ − 1) fn

(
xt−1

t−a
))2
]

where θ̂ = E[θ |xt−1
1 ]. After some algebra, we achieve

L(n) = −4E
[
θ̂x[t] fn

(
xt−1

t−a
)]+ 4E

[
θx[t] fn

(
xt−1

t−a
)]

+E
[
(2θ̂ − 1)2]− E

[
(2θ − 1)2].

It can be deduced that

θ̂ = E
[
θ |xt−1

1
] = t − 2 − Ft−2 + C

t − 2 + 2C

where Ft−2 is the total number of transitions between the two states
in a sequence of length (t −1), i.e., θ̂ is ratio of number of transitions
to time period. Hence

E
[
θ̂x[t] fn

(
xt−1

t−a
)]

= E

[
t − 2 − Ft−2 + C

t − 2 + 2C
x[t] fn

(
xt−1

t−a
)]

=
(t − 2 + C)E

[
x[t] fn

(
xt−1

t−a
)]− E

[
Ft−2x[t] fn

(
xt−1

t−a
)]

t − 2 + 2C

= − 1

t − 2 + 2C
E
[
(1 − θ)(t − 2)x[t] fn

(
xt−1

t−a
)]

= t − 2

t − 2 + 2C
E
[
θx[t] fn

(
xt−1

t−a
)]

where the third line follows from E[x[t] fn(xt−1
t−a )] =

E[(2θ − 1)A2] = 0 and E[Ft−2|x[t] fn(xt−1
t−a )] = (t − 2)(1 − θ)

since Ft−2 is a binomial random variable with parameters (1 − θ)
and size (t − 2). Thus, we obtain

L(n) = −4
t − 2

t − 2 + 2C
E
[
θx(t) fn

(
xt−1

t−a
)]+4E

[
θx(t) fn

(
xt−1

t−a
)]

+E
[
(2θ̂ − 1)2

]
− E

[
(2θ − 1)2

]
.

After this line, the derivation follows similar lines to [7], giving a
lower bound of the form O(ln(n)) for the regret.

C. k-Ahead mth-Order Linear Prediction

The regret in (2) for k-ahead mth-order linear prediction is given
by

sup
xn

1

{ n∑

t=1

(x[t] − x̂s [t])2 − inf
w∈�m

n∑

t=1

(x[t] − wT x[t − k])2

}
(9)

where x̂s[t] is the prediction at time t of any sequential algorithm
that has access data from x[1] up to x[t − k] for prediction for some

integer k, w = [w1, . . . , wm]T is the parameter vector, and x[t−k] =
[x[t − k], . . . , x[t − k − m + 1]]T .

We first find a lower bound for k-ahead first-order prediction,
where wT x[t − k] = wx[t − k]. For this purpose, we define the
following parametric distribution on xn

1 as in [5]. Given θ from a beta
distribution with parameters (C, C), C ∈ R+, we generate a sequence
xn

1 having only two values, A and −A, such that x[t] = x[t − k]
with probability θ and x[t] = −x[t − k] with probability (1 − θ).
Thus, given θ , xn

1 forms a two-state Markov chain with transition
probability (1−θ). Then, E[x[t]∣∣xt−k

1 , θ] = (2θ −1)x[t −k], giving
h(θ, xt−1

t−a ) = (2θ − 1)x[t − k] and g(θ) = (2θ − 1). After this point,
the derivation exactly follows the lines in [5] resulting a lower bound
of the form O(ln(n)).

For k-ahead mth-order prediction, we generalize the lower bound
obtained for k-ahead first-order prediction and following the lines in
[5], we obtain a lower bound of the form O(m ln(n)).

III. COMPREHENSIVE APPROACH TO

REGRET MINIMIZATION

In this section, we introduce a method which can be used to predict
a bounded, arbitrary, and unknown sequence. We derive the upper
bounds of this algorithm such that for any sequence xn

1 , our algorithm
will not perform worse than the presented upper bounds. In some
cases, by achieving matching upper and lower bounds, we prove that
this algorithm is optimal in a strong minimax sense such that the
worst-case performance cannot be further improved.

We restrict the prediction functions to be separable, i.e.,
f (w, xt−1

t−a ) = f w(w)T f x (xt−1
t−a ), where f w(w) and f x (xt−1

t−a )

are vector functions of size m × 1 for some m integer. To avoid
any confusion, we simply denote β � f w(w), where β ∈ �

m .
Hence, the same prediction function can be written as f (w, xt−1

t−a ) =
βT f x (xt−1

t−a ).
If the parameter vector β is selected such that the total squared

prediction error is minimized over a batch of data of length n, then
the coefficients are given by

β∗[n] = arg min
β∈�m

n∑

t=1

(
x[t] − βT f x

(
xt−1

t−a
))2

.

The well-known least-squares solution to this problem is given by
β∗[n] = (Rn

f f )−1rn
x f , where

Rn
f f �

n∑

t=1

f x
(
xt−1

t−a
)

f x
(
xt−1

t−a
)T

is invertible and

rn
x f �

n∑

t=1

x[t] f x
(
xt−1

t−a
)
.

When Rn
f f is singular, the solution is no longer unique,

however, a suitable choice can be made using, e.g., pseudoinverses.
We also consider the more general least-squares (ridge regression)

problem that arises in many signal processing problems, and whose
total squared prediction error is minimized over a batch of data of
length n with

β∗[n] = arg min
β∈Rm

{ n∑

t=1

(
x[t] − βT f x

(
xt−1

t−a
))2 + δ ||β||2

}

=
[

Rn
f f + δ I

]−1
rn

x f .

We define a universal predictor x̃u[n], as

x̃u[n] = βu[n − 1]T f
(
xn−1

n−a
)



650 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 3, MARCH 2015

where

βu[n] = β∗[n] =
[

Rn
f f + δ I

]−1
rn

x f

and δ > 0 is a positive constant.
Theorem 2: The total squared prediction error of the

mth-order universal predictor for any bounded arbitrary sequence of
{x[t]}t≥1, |x[t]| ≤ A, having an arbitrary length of n satisfies

n∑

t=1

(x[t] − x̃u [t])2≤ min
β∈Rm

{ n∑

t=1

(
x[t]−βT f x

(
xt−1

t−a
))2+δ ||β||2

}

+A2 ln
∣∣I + Rn

f f δ−1∣∣.

Theorem 2 indicates that the total squared prediction error of
the mth-order universal predictor is within O(m ln(n)) of the best
batch mth-order parametric predictor for any individual sequence of
{x[t]}t≥1. This result implies that in order to learn m parameters,
the universal algorithm pays a regret of O(m ln(n)), which can be
viewed as the parameter regret. After we prove Theorem 2, we apply
Theorem 2 to the competition classes discussed in Section II.

Proof of Theorem 2: We prove this result for a scalar prediction
function such that f x (xt−1

t−a ) = fx (xt−1
t−a ) to avoid any confusions.

Yet for a vector prediction function of f x (xt−1
t−a ), one can follow the

exact same steps in this proof with vector extensions of the Gaussian
mixture.

The derivations follow similar lines to [5] and [10], hence only
main points are presented. We first define a function of the loss,
namely the probability for a predictor having parameter β as follows:

Pβ(xn
1 ) = exp

⎛

⎝− 1

2h

n∑

k=1

(
x[k] − β fx

(
xt−1

t−a
))2
⎞

⎠

which can be viewed as a probability assignment of the predictor with
parameter β to the data x[t], for 1 ≤ t ≤ n, induced by performance
of β on the sequence xn

1 . We then construct a universal estimate of
the probability of the sequence xn

1 , as an a priori weighted mixture
among all of the probabilities, i.e., Pu(xn

1 ) = ∫∞
−∞ p(β)Pβ(xn

1 )dβ,
where p(β) is an a priori weight assigned to the parameter β, and
is selected as Gaussian in order to obtain a closed form bounds, i.e.,
p(β) = 1/(2π)1/2σ exp{−β2/2σ 2}.

Following similar lines to [7] with a predictor of β fx (xt−1
t−a ), we

obtain:
Pu(xn |xn−1) = γ exp

{−1

2h
γ 2
(

x[n] − β[n − 1] f
(
xn−1

n−a
))2
}

where γ �
(
(Rn−2

f f + δ)/(Rn−1
f f + δ)

)1/2
. If we could

find another Gaussian satisfying P̃u(xn) ≥ Pu(xn ), then
it would complete the proof of the theorem.

After some algebra, we find that the universal predictor is given
by

x̃u[n] = γ 2β∗[n − 1] f
(
xn−1

n−a
) =

rn−1
x f

Rn−1
f f + δ

f
(
xn−1

n−a
)
.

Now, we can select the smallest value of h over the region [−A, A],
P̃u(xn |xn−1) is larger than Pu (xn |xn−1), that is

A ≤
√

2h ln(γ )(γ 2 − 1) + γ 2 x̂u[n]2(1 − γ 2)

(1 − γ 2)

which must hold for all values of x̂u [n] ∈ [−A, A]. There-
fore, h ≥ A2(1 − γ 2)/−2 ln(γ ), where γ < 1. Note that for
0 < γ < 1 we have 0 < (1 − γ 2)/−2 ln γ < 1, which implies
that we must have h ≥ A2 to ensure that P̃u ≥ Pu . In fact, since
this bound on the value of h depends upon the value of γ and x̂u[n],

and is only tight for γ → 1, and x̂u [n] = 0, then the restriction that
|x[n]| < A can actually be occasionally violated, as long as P̃u ≥ Pu
still holds. �

To illustrate this procedure, we investigate the upper bound for
the regret in (2) for the same candidate function classes as we also
investigated in Section II.

A. mth-Order Univariate Polynomial Predictor

For an mth-order polynomial in x[t − 1], the prediction func-
tion is given by f (w, xt−1

t−a ) = βT f x (xt−1
t−a ) = βT m[t − 1],

where m[t−1] = [x[t−1], . . . , xm [t−1]]T , i.e., the vector of powers
of x[t−1]. After replacing Rn

f f = Rn
mm =∑n

t=1 m[t−1]m[t−1]T

and rn
x f = rn

xm =∑n
t=1 x[t]m[t − 1], we obtain an upper bound

n∑

t=1

(x[t] − x̃u[t])2 ≤ min
β∈�m

{ n∑

t=1

(
x[t]−βTm[t − 1])2+δ ||β||2

}

+ A2 ln
∣∣I + Rn

mmδ−1∣∣
︸ ︷︷ ︸

≤A2m ln(1+A2n/δ)

.

B. Multivariate Polynomial Prediction

The upper bound for a multivariate polynomial prediction function
f x (xt−1

t−a ) exactly follows the upper bound derivation of mth-order
univariate polynomial predictor giving an upper bound:

n∑

t=1

(x[t] − x̃u[t])2≤ min
β∈�m

{ n∑

t=1

(
x[t]−βT f x

(
xt−1

t−a
))2+δ ||β||2

}

+A2m ln

(
1 + A2n

δ

)
.

C. k-Ahead mth-Order Linear Prediction

For k-ahead mth-order prediction, the prediction class is given by
f (w, xt−1

t−a ) = βT f x (xt−1
t−a) = βT x[t − k] where x[t − k] = [x[t −

k], . . . , x[t −k −m +1]]T as before. After replacing Rn
f f = Rn

xx =
∑n

t=1 x[t − k]x[t − k]T and rn
x f = rn

x x = ∑n
t=1 x[t]x[t − k] with

suitable limits, we obtain an upper bound
n∑

t=1

(x[t] − x̃u[t])2 ≤ min
β∈�m

{ n∑

t=1

(x[t]−βTx[t − k])2+δ ||β||2
}

+A2m ln

(
1 + A2n

δ

)
.

IV. RANDOMIZED OUTPUT PREDICTIONS

In this section, we investigate the performance of randomized
output algorithms for the worst-case scenario with respect to linear
predictors with using the same regret measure in (2). We emphasize
that the randomized output algorithms are a super set of the
deterministic sequential predictors and the derivations here can be
readily generalized to include any prediction class. In particular,
we consider randomized output algorithms f (θ(xt−1

1 ), xt−1
1 ) such

that the randomization parameters θ ∈ Rm can be a function of
the whole past. Hence, a randomized sequential algorithm introduce
randomization or uncertainty in its output such that the output
also depends on a random element. Note that such methods are
widely used in applications involving security considerations. As an
example, suppose there are m prediction algorithms running in
parallel to predict the observation sequence {x[t]}t≥1 sequentially.
At each time t , the randomized output algorithm selects one of
the constituent algorithms randomly such that the algorithm k is
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selected with probability pk [t]. By definition
∑m

k=1 pk [t] = 1 and
pk [t] may be generated as the combination of the past observation
samples xt−1

1 and a seed independent from the observations.
For such randomized output prediction algorithms, we consider

the following time-accumulated prediction error over a deterministic
sequence {x[t]}t≥1 as the prediction error:

Prand(n) =
n∑

t=1

Eθ

[(
x[t] − f

(
θ
(
xt−1

1
)
, xt−1

1

))2
]

. (10)

This expectation is taken over all the randomization due to indepen-
dent or dependent seeds. Hence, our general regret can be extended
to include this performance measure

sup
xn

1

{
Prand(n) − min

w∈�m

n∑

t=1

(
x[t] − wT x[t − 1]

)2
}

. (11)

Expanding (10), we obtain

Prand(n) =
n∑

t=1

{(
x[t] − Eθ

[
f
(
θ
(
xt−1

1

)
, xt−1

1

)])2

+Varθ

(
f
(
θ
(
xt−1

1
)
, xt−1

1

))}

noting that x[t] is independent of the randomization. Since
Eθ [ f (θ(xt−1

1 ), xt−1
1 )] is a sequential function of xt−1

1 and
Varθ ( f (θ(xt−1

1 ), xt−1
1 )) is always nonnegative, the performance of

a randomized output algorithm can be reached by a deterministic
sequential algorithm.

Since deterministic algorithms are subclass of randomized
output algorithms, upper bounds we derived for k-ahead
mth-order prediction in (9) also hold for (11). Since we also
proved that the lower bound for such linear predictions of mth order
are in the form of O(m ln(n)), the lower and upper bounds are tight
and of the form O(m ln(n)).

V. CONCLUSION

In this brief, we consider the problem of sequential prediction from
a mixture of experts perspective. We have introduced comprehensive
lower bounds on the sequential learning framework by proving that
for any sequential algorithm, there always exists a sequence for which
the sequential predictor cannot outperform the class of parametric
predictors, whose parameters are set noncasually. The lower bounds
for important parametric classes, such as univariate polynomial,
multivariate polynomial, and linear predictor classes, are derived in
detail. We then introduced a universal sequential prediction algorithm
and investigated the upper bound on the regret of this algorithm. We
also derived the upper bounds in detail for the same important classes
that we discussed for lower bounds, where we further showed that

this algorithm is optimal in a strong minimax sense for some
scenarios. Finally, we have proven that for the worst-case scenario,
randomized output algorithms cannot provide any improvement in
the performance compared with the sequential algorithms.
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