
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015 2381

Data Imputation Through the Identification
of Local Anomalies

Huseyin Ozkan, Ozgun Soner Pelvan, and Suleyman S. Kozat, Senior Member, IEEE

Abstract— We introduce a comprehensive and statistical frame-
work in a model free setting for a complete treatment of localized
data corruptions due to severe noise sources, e.g., an occluder
in the case of a visual recording. Within this framework, we
propose: 1) a novel algorithm to efficiently separate, i.e., detect
and localize, possible corruptions from a given suspicious data
instance and 2) a maximum a posteriori estimator to impute the
corrupted data. As a generalization to Euclidean distance, we also
propose a novel distance measure, which is based on the ranked
deviations among the data attributes and empirically shown
to be superior in separating the corruptions. Our algorithm
first splits the suspicious instance into parts through a binary
partitioning tree in the space of data attributes and iteratively
tests those parts to detect local anomalies using the nominal
statistics extracted from an uncorrupted (clean) reference data
set. Once each part is labeled as anomalous versus normal, the
corresponding binary patterns over this tree that characterize
corruptions are identified and the affected attributes are imputed.
Under a certain conditional independency structure assumed for
the binary patterns, we analytically show that the false alarm
rate of the introduced algorithm in detecting the corruptions
is independent of the data and can be directly set without
any parameter tuning. The proposed framework is tested over
several well-known machine learning data sets with synthetically
generated corruptions and experimentally shown to produce
remarkable improvements in terms of classification purposes with
strong corruption separation capabilities. Our experiments also
indicate that the proposed algorithms outperform the typical
approaches and are robust to varying training phase conditions.

Index Terms— Anomaly detection, localized corruption,
maximum a posteriori (MAP)-based imputation, occlusion.

I. INTRODUCTION

IN MANY applications from a wide variety of fields,
the data to be processed can partially (or even almost

completely) be affected by severe noise in several phases,
e.g., occlusions during a visual recording or packet losses
during transmission in a communication channel. Such partial,
i.e., localized, data corruptions often severely degrade the
performance of the target application; for instance, face
recognition or pedestrian detection under occlusion [1]–[4].

Manuscript received February 11, 2014; revised October 14, 2014; accepted
December 9, 2014. Date of publication January 15, 2015; date of current
version September 16, 2015. This work was supported in part by the
Turkish Academy of Sciences Outstanding Researcher Program under
Contract 112E161 and in part by the Scientific and Technological Research
Council of Turkey under Contract 113E517.

H. Ozkan is with the Department of Electrical and Electronics Engineering,
Bilkent University, Ankara 6800, Turkey, and also with the MGEO Division,
Aselsan Inc., Ankara 06370, Turkey (e-mail: huseyin@ee.bilkent.edu.tr).

O. S. Pelvan is with the Department of Electrical and Electronics
Engineering, Middle East Technical University, Ankara 06800, Turkey
(e-mail: ozgun.pelvan@metu.edu.tr).

S. S. Kozat is with the Department of Electrical and Electronics Engineering,
Bilkent University, Ankara 6800, Turkey (e-mail: kozat@ee.bilkent.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2014.2382606

To reduce the impact of this adverse effect, we develop
a complete and novel framework, which efficiently detects,
localizes, and imputes corruptions by identifying the local
anomalies in a given suspicious data instance. We emphasize
that neither the existence nor, if exists, the location of a
corruption is known in our framework. Moreover, the proposed
algorithms do not assume a model but operate in a data-driven
manner.

We consider the local corruptions as statistical deviations
from the nominal distribution of the uncorrupted (clean)
observations. To detect and localize corruptions, i.e., such
statistical deviations, we model a corruption as an anomaly
due to an external factor (communication failure in a channel
or occluder object in an image), which locally overwrites
a data instance and moves it outside the support of the
nominal distribution. However, corruptions that we consider
as examples of anomalies have further specific properties
such that: 1) the corruptions in an instance are confined to
unknown intervals along the data attributes, i.e., localized and
2) not only a corrupted part but also all of its subparts are
anomalous. Thus, a corruption does not provide an anomaly
due to an incompatible combination of normal subparts. Based
on these properties that accurately model a wide variety of
real life applications, we characterize the event of corruption
and formulate the corresponding detection/localization as an
anomaly detection problem [5]–[11].

The introduced algorithm applies a series of statistical
tests with a prespecified false alarm rate to the parts of the
suspicious instance after extracting the nominal statistics from
a reference (training) data set of uncorrupted (clean) observa-
tions. As a result, each part is labeled as anomalous/normal and
the local anomalies are identified. These parts are generated
and organized through a binary tree partitioning of the data
attributes, each node of which corresponds to a part of the
suspicious instance (Fig. 1). Once the nodes (or parts) are
labeled as anomalous/normal on this tree, the patterns of
corruption are identified using the aforementioned character-
ization to detect and localize corruptions (Fig. 2). We point
out that this localization procedure transforms the nominal
distribution into a multivariate Bernoulli distribution with a
success probability that precisely coincides with the constant
false alarm rate of the local anomaly tests. Considering the
hierarchy among the binary labels implied by the tree as a
directed acyclic graph, the resulting multivariate Bernoulli
distribution achieves a certain dependency structure. Under
this condition, we derive the false alarm rate of the proposed
framework in detecting the corruptions and show that it is
a constant rate, that is, no parameter tuning is required to
achieve the desired/specified false alarm rate even if the data
change.

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2382 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

If a corruption is localized, then we impute/replace the
affected attributes with the estimates of the underlying
unknown true attributes. For this purpose, we additionally
develop a novel maximum a posteriori (MAP) estimator using
the score function defined in [8]. Our estimator exploits
the local dependencies among the data attributes, where the
locality is encoded in the binary partitioning tree. We point
out that the implementation of this MAP estimator does not
load extra computational cost since it utilizes the outputs of
our anomaly detection approach, which are computed prior to
the imputation phase. Furthermore, we also propose a novel
distance measure named ranked Euclidian distance a general-
ization to the standard Euclidean distance, which is used in
the course of the labeling of each part as anomalous/normal.
The proposed distance measure is compared with the
standard Euclidean distance in the experiments and shown to
be superior in terms of detecting and localizing corruptions.

We conduct tests over several well-known machine learning
data sets [12], [13], which are exposed to severe data corrup-
tions. Our experiments indicate that the proposed framework
achieves significant improvements after imputation up to 80%
in terms of the classification purposes and outperforms the
typical approaches. The proposed algorithms are also empiri-
cally shown to be robust to varying training phase conditions
with strong corruption separation capabilities.

A. Related Work

In this paper, the corrupted attributes are considered to
be statistically independent with the underlying unobserved
true data, i.e., corrupted attributes are of no use in estimation
of the uncorrupted counterparts. Hence, if one knows which
attributes are corrupted in an instance, then those attributes
can readily be treated as missing data [14]–[19]. For example,
classification and clustering with missing data is a well-studied
problem in the machine learning literature. The corresponding
studies such as [16]–[18], [20], and [21] are related to infer-
ence with incomplete data [17] and generative models [20],
where Bayesian frameworks [18] are used for inference under
missing data conditions. Alternatively, pseudolikelihood [22]
and dependency network [23] approaches solve the data com-
pletion problem by learning conditional distributions. In [24],
the probability density of the missing data is modeled condi-
tioned on a set of introduced latent variables and thereafter,
a MAP-based inference is used. However, all of the
studies [14]–[18], [20]–[24] either assume the knowledge
of the location of the missing attributes or impose strong
modeling constraints, as opposed to the model free solutions
in this paper.

On the other hand, imputation is commonly used as a
preprocessing tool [18]. The mixture of factor analyzers [25]
approach replaces the missing attributes with samples drawn
from a parametric density, which models the distribution of
the underlying true data, whereas the proposed imputation
techniques in [26] and [27] are both nonparametric and
based on the inference of the posterior densities via certain
kernel expansions. On the contrary, the MAP estimator in
this paper does not even attempt to estimate the posterior
density either in a parametric or nonparametric manner.
Instead, the introduced method is only based on the sufficient

rank statistics. We emphasize that unlike our approach, the
incomplete data approaches generally assume the knowledge
of the missing attributes, i.e., they are precisely localized and
provided beforehand. For example, the occluded pixels in the
event of occlusion of a target object in an image cannot be
known a priori, which requires a detection and localization
step. Since the existing studies do not have such a step, an
exhaustive list of the occluded pixels as the result of a manual
inspection of the missing attributes is required as an input
to the algorithms proposed in the corresponding literature.
In this regard, our study is the first to jointly handle the issues
of detecting/localizing missing attributes, i.e., corruptions, as
well as their imputation in a single, complete, and comprehen-
sive framework. Hence, the generic local corruption detection
and imputation algorithm of our framework complements the
missing data imputation approaches as an additional merit.

Data imputation and completion is also essential in
image processing for handling corrupted images [28], [29].
In general, a corrupted image is restored by explicitly
learning the image statistics [30], [31] or using neural
networks [32]–[34]. These denoising studies do not attempt
to localize corruptions in an image, but treat them as a noise
and filter it out using statistical approaches applied to the
image globally. Even though this is a valid approach for
image enhancement, an attempt to correct/enhance an image
globally in case of only a localized corruption might be even
detrimental since the uncorrupted parts are also affected by
global operations. In addition, it is not usually possible to
locally impute corrupted portions using denoising approaches.
There exist several studies that aim localization as well.
He et al. [1] and Dollar et al. [4] indicate that occlusion,
as an example of corruption, is a common phenomenon
and detrimental in pedestrian detection as well as face recog-
nition applications. In this regard, detection of occluded,
i.e., corrupted, visual objects had been previously investigated
in a number of studies [35]–[38]. In these studies, occlu-
sion detection is performed using domain specific knowledge
(visual cues) or external information (object geometry), which,
however, is not always available in general data imputation
setting. From the machine learning perspective, descriptors are
extracted from various parts of the occluded object in [39]
and similarly, part-based descriptors are weighted with the
occlusion measure in [40] to relieve the corresponding degrad-
ing effects. Since these approaches do not directly target
handling occlusions, i.e., corruptions, they only provide partial
or limited solutions. Several other studies propose solutions
via extracting occlusion maps [41], [42]. In [41], histogram
of gradients (HOG)-based classification errors and in [42],
template based reconstruction errors are used to generate such
an occlusion map. However, both studies assume rigid models
and significantly rely on domain specific knowledge and,
in general, fail to remain applicable if the data source belongs
to another domain. In this paper, we assume that data is
generic and no domain information is available, yet detection
and imputation of corruption is necessary for improving the
subsequent processing stages, such as classification.

B. Summary of Contributions

The summary of the contributions are as follows.

OZKAN et al.: DATA IMPUTATION THROUGH THE IDENTIFICATION OF LOCAL ANOMALIES 2383

1) This is the first study that jointly handles localized data
corruptions in a single, complete, and comprehensive
statistical framework that is designed completely model
free for the goal of separating a corruption and imputing
the affected data attributes. We also provide a false alarm
rate (in detecting corruptions) analysis of the framework
via directed acyclic graphs.

2) A novel MAP estimator for data imputation and a novel
distance measure for corruption localization purposes are
proposed.

3) The proposed framework is computationally efficient in
the sense that: a) it effectively utilizes a binary search
for corruption separation and b) the computational load
due to our MAP-based imputation is insignificant.

4) We propose a novel characterization for anomalies, e.g.,
rarities, incompatible combinations, and corruptions.

In Section II, we provide the problem description. We then
present our algorithm in Section III and the associated com-
putational complexity in Section IV. We report the corruption
detection/localization performance of the proposed algorithm
as well as the improvement in classification tasks achieved
by the imputation in Section V. This paper concludes with a
discussion in Section VI.

II. PROBLEM DESCRIPTION

We have a possibly corrupted test instance x ∈ R
d along

with a set of uncorrupted (clean) independent and identically
distributed observations S = {s1, s2, . . . , sNs } as the nominal
training (reference) data, where si = [si 1, si 2, . . . , si d] ∈
R

d ∼ f0(s), d is data dimensionality, and f0 is the unknown
nominal density. The test instance x is considered to be
corrupted with probability π by severe noise in multiple
nonoverlapping intervals along its dimensions (attributes),
which are completely unknown. Suppose that for such an
interval, the corruption is localized and confined to the
attributes xc+β−1

c = {xc, xc+1, . . . , xc+β−1} for some c and β
in [1, d] with c + β − 1 ≤ d . We assume that the cor-
rupted attributes are uniformly and independently distributed,
zi ∈ xc+β−1

c ∼ UZ (z), where UZ is the uniform distribution
defined in a finite support. Moreover, Z is also statistically
independent with the true data and hence, the knowledge
of xc+β−1

c is irrelevant to the uncorrupted counterparts. Note
that this corruption model implies a total erasure of data
in several unknown portions due to an independent source
overwriting the attributes in those portions, e.g., an occluder
in computer vision applications [1], [4]. Typically, since no
information is provided about the independent source in such
applications, we consider that the uniformity assumption draws
a worst case scenario and it is realistic. On the other hand, x is
considered to be uncorrupted with probability 1−π . Therefore,
whether a test instance x includes a corruption is unknown,
and it is generally modeled to be drawn from the mixture
x ∼ (1 − π) f0(x) + π f1(x) [8], where f1 is the probability
density of the corrupted instances.

The density f1 can be derived from the unknown
nominal density f0 using the described corruption model if
the distributions of c, β, and the number of corrupted intervals
are further specified, which is unnecessary in the context of
this paper. Hypothetically, if one can correct an instance x

drawn from the density f1 by replacing all the corrupted
attributes, e.g., xc+β−1

c , with the underlying true attributes,
e.g., x̄c+β−1

c , and obtain x̂, then x̂ should follow the nominal
density f0. Similarly, if the corruptions in x can be localized,
then the corresponding portions would follow the multivari-
ate uniform density UZ(z) of the appropriate dimensionality.
On the other hand, this corruption model potentially creates
significant statistical deviations from the reference data since a
corrupted observation x ∼ f1 and f1, in general, increasingly
diverges from f0 as the corruption strength increases. Here,
the corruption strength can be considered as the number
of corrupted attributes and/or the variance of the corruption
UZ (z) that overwrites the true data. Furthermore, our modeling
of corruptions poses a missing (incomplete) data problem since
the unknown true attributes x̄c+β−1

c in a corrupted interval
are statistically irrelevant to the corrupted attributes xc+β−1

c .
In this paper, by exploiting the statistical deviations from the
nominal distribution of observations, we aim to detect and
localize the possible corruptions in a given instance x and
impute the corrupted or missing attributes.

To this end, we formulate an anomaly detection approach to
define this framework in Section III, where we draw the dis-
tinctions among several examples of anomalous observations
and separate the event of corruption. Then, we propose our
algorithm and analyze the associated false alarm probability in
detecting corruptions as well as the computational complexity.

III. NOVEL FRAMEWORK FOR CORRUPTION DETECTION,
LOCALIZATION, AND IMPUTATION

In this section, we develop a novel framework for a com-
plete treatment of possible corruptions in the input data x.
For presentational clarity and without loss of generality, we
assume that the input data x can be corrupted only in a single
interval throughout this section. Note that the generalization to
the case of corruptions spread onto several intervals is imme-
diate and indeed, we present a corresponding detailed experi-
ment in Section V. Since the corruptions are modeled as local
statistical deviations within this framework, we give a brief
description of the anomaly detection approach that we work
with in Section III-A. Based on the characterization of cor-
ruptions through their distinctive properties in Section III-B,
we present an algorithm named tree-based corruption
separation (TCS). After we derive a novel MAP estimator
for imputation in Section III-C, we derive the false alarm
rate of the proposed framework in detecting the corruptions
in Section III-D.

A. Detection of Statistical Deviations: Anomalies

A localized corruption is considered to affect an instance in
a certain part(s) such that the affected attributes statistically
deviate from the vast majority of the data. The proposed
algorithm in this paper localizes the corrupted attributes by
identifying the local anomalies through a series of statistical
checks of the test instance with the reference data. In this
section, we briefly describe the anomaly detection approach
that we work with and present a novel distance measure for
the corruption localization purpose.

2384 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

Fig. 1. Algorithm TCS with α = 0.5.

The probability density of a possibly corrupted test
instance x can be modeled as

x ∼ (1− π) f0(x)+ π f1(x)

where H0 : x ∼ f0(x) is the null hypothesis from which the
nominal data are drawn, H1 : x ∼ f1(x) is the hypothesis
representing the corrupted observations, and π ∈ [0, 1] is
the corresponding mixing coefficient. Within the framework
of anomaly detection approaches, the nominal distribution f0
is usually assumed unknown or hard to estimate, and instead,
a set of nominal observations is provided. Then for a given
test instance x, the task in [8] is to decide whether the null
hypothesis H0 was realized or the alternative H1 such that the
detection rate (of anomalies) is maximized with a constant
false alarm rate τ . For this purpose, the score function [8]

p̂K (x) = 1

Ns

Ns∑

i=1

1{RS(x;K)≤RS(si ;K)} (1)

is proposed, where 1{.} is the indicator function and
RS(x; K) is the Euclidean distance from x to its nearest
K th neighbor in S, if x /∈ S, and to its nearest (K + 1)th
neighbor in S otherwise. Based on this score function, the test
instance x is declared as anomalous [8], if

p̂K (x) ≤ τ. (2)

When the mixing distribution f1 is assumed uniform, it
is shown in [8] that p̂K (x) is an asymptotically consistent
estimator of the density level of the test instance

p(x) =
∫

∀s
1{ f0(x)≥ f0(s)} f0(s)ds (3)

under certain smoothness conditions. Remarkably,
{x : p(x) ≥ τ } provides the minimum volume set at level τ ,
which is the most powerful decision region for
testing H0 versus H1 with a constant false alarm rate τ [7].
We note that the precision of the test defined in (2) degrades
faster with the dimensionality than it improves with the size
of the training data. As a result, we here point out several
practical issues about detecting the existence of a corruption
with this approach.

Briefly, the conditions are described as follows.
1) A direct test of an instance x does not localize a possible

corruption for imputation.

2) On the contrary, a truly corrupted instance, i.e., an
instance of hypothesis H1, does not necessarily test posi-
tive due to the limited training data, high dimensionality,
as well as that the corruption might not be sufficiently
strong.

3) Corruptions have further specific properties in addition
to that they provide anomalies, which must be incor-
porated to achieve a better false alarm rate compared
with τ .

1) Ranked Euclidean Distances: To address the first issue in
this list, we propose a novel distance measure (not a metric in
the mathematical sense), which is sensitive to only a certain α
fraction of the attributes for a given pair of instances x and y.
For instance, a corruption of only a single attribute in a given
test instance x might be significantly strong such that the
whole instance turns anomalous with the test in (2) used with
the standard Euclidean distance. In this case, any part of the
instance x including the corrupted attribute would test positive,
which creates an ambiguity in terms of the localization, i.e.,
separation, of the corrupted attribute, and in turn requires an
exhaustive search over all possible subsets in the space of the
attributes.

To overcome such ambiguities, we propose a distance
measure so that the test in (2) results positive only when the
corruption has a sufficiently large support, which disregards a
prespecified fraction of the attributes that are most responsible
for a possible corruption. We define this measure for
an α ∈ [0, 1] as

hα(x, y) =
√√√√
�dα�∑

i=1

(xk(i) − yk(i))2 (4)

where k is a permutation of the attributes with

|xk(1) − yk(1)| ≤ · · · ≤ |xk(i) − yk(i)| ≤ · · · ≤ |xk(d) − yk(d)|
and �.� is the floor operator. Since this distance measure
depends only on the α fraction of the least deviated attributes
between x and y, a corruption must have a support of at least
(d−�dα�) length to make an instance anomalous with respect
to the reference data. Here, (1−α) can be seen as the precision
of the localization when an anomalous instance is checked
with the test in (2) using the distance measure defined in (4).
This precision obviously cannot be made arbitrarily large since
as 1 − α approaches 1, the distance hα becomes more prone
to noise and the correlation structure between the attributes
is less exploited. We investigate this tradeoff further in our
simulations. The distance measure hα recovers the standard
Euclidean distance when α = 1 and will be named in the rest
of this paper the ranked Euclidean distance. We note that for
the cases α < 1, hα fails to be a metric in the mathematical
sense, i.e., hα(x, y) = 0 ⇔ x = y is not satisfied, which
requires to specify a nominal density model on f0 to derive
the same asymptotic consistency in [8] for the score values
p̂K (x) in estimating the density levels p(x) with hα . However,
we do not assume—in this paper—any density model for f0
or do not take any stochastic assumptions regarding the data
source.

In the following section, we characterize the corruptions by
presenting their specific properties and propose an algorithm
to localize and impute corruptions.

OZKAN et al.: DATA IMPUTATION THROUGH THE IDENTIFICATION OF LOCAL ANOMALIES 2385

Fig. 2. Anomalous observation with several scenarios in its parts. Note
that the starred nodes indicate localized corruptions. (a) Conclusive pattern:
corruption is detected. (b) Conclusive pattern: corruption is rejected.
(c) Inconclusive pattern. (d) Further exploration of the test instance.

B. Modeling of Localized Corruptions

If a test instance is subject to corruption in a small part only,
the corruption might not be detectable when it is checked using
an anomaly detection algorithm without a detailed analysis in
its parts. On the other hand, an anomalous observation does
not necessarily contain a corruption since it might be simply
a false alarm, in fact an uncorrupted observation. To address
these two issues, we propose a statistical analysis of a test
instance through its parts using a binary partitioning tree
in the space of data attributes on which we also provide a
characterization to separate the event of corruption among
possible anomaly scenarios.

Suppose that an instance x = [x1, x2, . . . , xd] ∈ R
d

corresponds to the root node R on a binary tree. Using half-
way splits for presentational simplicity, let the set of attributes
VRl = {x1, x2, . . . , x�d/2�} be assigned to the left child
node Rl of the root and VRr = {x�d/2�+1, x�d/2�+2, . . . , xd}
assigned to the right child node Rr (Fig. 1). Note that
VR = {x1, x2, . . . , xd} with VRl ∩ VRr = ∅ and
VR = VRl ∪ VRr . Based on this strategy for generating
subparts of an instance, we propose Algorithm TCS to
separate and impute corruptions, which recursively expands
a depth-L binary tree to partition the space of attributes.
For each node ν created in the course of this expansion,
the corresponding attributes/part of the test instance,

e.g., xVRl
:= x�d/2�

1 with ν = Rl , is checked whether it is
consistent with the reference data restricted to those attributes,
e.g., SVRl

= {s1
�d/2�
1 , s2

�d/2�
1 , . . . , sNs

�d/2�
1 } with ν = Rl , using

the test defined in (2). We here use the ranked Euclidean
distance hα in this testing with a prespecified α. Therefore,
each node ν encountered in this expansion is assigned a binary
label as anomalous/normal and a fully labeled (possibly unbal-
anced) tree is obtained for the test instance x. We emphasize
that Algorithm TCS does not completely construct this depth
L-binary tree at the beginning, but instead expands it by
creating the nodes and the edges as needed to achieve an
efficient implementation, which continues until that each data
attribute is decided to be corrupted or uncorrupted.

We consider several scenarios where the observation xVν at
a node ν can be anomalous. In Fig. 2, the nodes are shown
as circles if the corresponding part is found to be anomalous
and squares otherwise. An anomaly can be wide spread onto
the attributes and consist of anomalous subparts, as shown
in Fig. 2(a). Since all of the subparts of a corrupted data part
are also corrupted by definition, the pattern in Fig. 2(a) is
regarded as a conclusive pattern. Hence, a corruption at the

starred node in Fig. 2(a) is declared, unless it is the root node.
Note that a global corruption at the root is disregarded in this
paper since it is not localized. In another case, an anomalous
observation could be nonanomalous in its parts, as shown
in Fig. 2(b), which simply happens due to an incompatible or
rare combination of attributes in its subparts. This is a typical
situation, where an anomalous observation is not corrupted.
Hence, this case also provides a conclusive pattern in our
consideration such that a corruption is rejected at the
anomalous node. On the contrary, the case in Fig. 2(c) is an
inconclusive pattern that suggests a corruption at the right
child, however, whether the corruption is spread in the
attributes of that child or localized is unknown. Hence, the
attributes of the right child is further split and explored simi-
larly. Then, if the conclusive pattern in Fig. 2(a) [or Fig. 2(b)]
is realized, then the corruption is accepted and localized
(or rejected) at the starred node in Fig. 2(d). Otherwise, the
search continues. On the other hand, if a significantly small
subset of the corrupted attributes are left at the left child
node in Fig. 2(c), it might not be detectable and labeled as
normal. Then the corresponding attributes should further be
split, as shown in Fig. 2(d). This process recursively defines
a corruption localization with an improved false alarm rate
as several anomalies are rejected as they are false alarms,
i.e., noncorrupted anomalies.

The introduced Algorithm TCS then searches the described
binary tree in a breadth-first-search fashion for a corrup-
tion. When the conclusive (or terminating) pattern shown
in Fig. 2(a) [Fig. 2(b)] is found in the course of this expansion,
the search is stopped at the parent node of the found pattern,
i.e., the tree is pruned on that branch, and corruption is
declared (or no corruption is found and no action is necessary)
for the corresponding attributes. This search of corruption
at each branch starting from the root node continues to the
corresponding leaf node unless a terminating pattern is found.
Finally, if a conclusive pattern is not encountered at a branch
from the root to an anomalous leaf, we opt to accept the
corruption at the leaf to favor a better detection at a cost
of an increased corruption false alarm rate. An illustration
of the progress of the algorithm is given in Fig. 1, where
the corrupted attributes are successfully located. Note that a
small set of the attributes are mislabeled as corrupted, i.e.,
false alarms in the region 3, which can be corrected if the
partitioning resolution is improved by increasing the depth L.

C. Maximum A Posteriori (MAP)-Based Imputation

We emphasize that in most of the detection and estimation
applications, the posterior density, e.g., f0(x̄Vν |x) in (5), of the
target is too complicated to assume realistic parametric models
so that the nonparametric approaches are often favored in
such situations [43]. In accordance, we introduce an algorithm
that works under a completely model free setting regarding
both the localization of the corruptions and the imputation.
Furthermore, we point out that when the posterior density
is multimodal, MAP-based estimators are generally known
to generate more plausible results compared with mmse-
based estimators or simple (possibly weighted) averaging [44],
which can even generate infeasible solutions [45]–[47]. This
is often the case especially for the computer vision and

2386 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

machine learning applications such as edge preserving image
denoising [48]. For instance, the gradients in an occluded
pedestrian image would get too smoothed in an MMSE-based
imputation, which might cause the gradient-based feature
extractors, e.g., HOG [49], to fail in the case of a pedestrian
detection application [4], [43]. For these reasons, we propose
a novel MAP-based imputation technique that always gener-
ates feasible and likely estimates and approximates the true
MAP estimator as the size of the reference data increases.

Once a corruption is localized for an instance x at a node ν,
then our task is to estimate the original attributes x̄Vν using
the training data set S as well as the instance x and impute
accordingly, i.e., replace the corrupted attributes in x with the
estimates. Since we assume the corrupted attributes xVν to be
statistically independent with the underlying true data x̄Vν , we
treat the corrupted attributes as the missing data, which then
should have no effect in the estimation of the true attributes.
Hence, we condition this estimation of the data x̄Vν on the
remaining attributes in x. On the other hand, we note that in
most of the applications such as the image compression [50],
the data attributes being in sufficiently close proximity are
usually modeled to manifest high correlation. In accordance,
we propose to estimate the unknown data x̄Vν conditioned on
the attributes xVνs

associated with its nearest neighbor (NN)
on our tree, i.e., the sibling node νs of ν. Note that due to the
localization of corruptions by Algorithm TCS, the attributes
at the sibling node νs are certainly detected to be uncorrupted
in the case of the standard Euclidean distance; and detected
to be uncorrupted with significantly high probability in the
case of the ranked Euclidean distance (Section III-D). In the
following, we introduce a novel (MAP) estimator of the true
data underlying the corrupted attributes based on the standard
Euclidean distance (hα with α = 1) and then discuss the gen-
eralization over α for the ranked Euclidean distance measure.
We also stress that the implementation of this estimator is only
based on the outputs of our corruption localization algorithm,
which are computed before the imputation phase in the course
of Algorithm TCS. Therefore, computationally, the imputation
phase that we develop is efficient such that it does not require
further computations.

Since the only relevant part of the test instance x to the
proposed MAP estimator is xVνs

, we have

f0(x̄Vν |x) = f0(x̄Vν |xVνs
) (5)

where x̄Vν represents a realization of the conditional
probability density of the true data underlying the corrupted
attributes Vν . Then the MAP estimator of x̄Vν maximizes the
posterior distribution as

xMAP
Vν
= arg sup

x̄Vν∈R|Vν |
f0(x̄Vν |xVνs

).

For any ε > 0 and under certain smoothness constraints on f0
with f0(x̄Vν) = 0, let

Bε(x̄Vν) ∩ SVν = ∅
hold with some probability δNs , where Bε(x̄Vν) (with respect
to the standard Euclidean distance) is the ε-ball around x̄Vν

in R
|Vν | and Ns = |S|. Then we point out that

lim
Ns→∞

δNs = 1.

Algorithm 1 Algorithm TCS Tree-Based Corruption
Separation
Input: α, K , τ, L; S, x
1: Initialize C← ∅: set of corrupted attributes
2: Initialize y← x: imputed test data
3: Create the root node ν ← R and label
4: procedure RECURSE(ν)
5: Create nodes νl and νr ; and label
6: if the pattern in Fig. 2a then
7: if ν is the root then return
8: else
9: Declare corruption at ν: C ← C ∪ Vν

10: Impute attributes Vν in y
11: return
12: end if
13: else if the pattern in Fig. 2b then return
14: else if ν is a parent of a leaf then
15: if ν j (j = l or j = r) is anomalous then
16: Declare corruption at ν j : C ← C ∪ Vν j

17: Impute attributes Vν j in y
18: end if
19: return
20: else
21: RECURSE(νl) and RECURSE(νr)
22: end if
23: end procedure
Return: C and y

Hence, since ε can be made arbitrarily small, we obtain

xMAP
Vν
= arg lim

Ns→∞
sup

x̄Vν∈SVν

f0(x̄Vν |xVνs
)

and by the Baye rule

xMAP
Vν
= arg lim

Ns→∞
sup

x̄Vν∈SVν

f0(x̄Vν , xVνs
)

f0(xVνs
)

= arg lim
Ns→∞

sup
x̄Vν∈SVν

f0(x̄Vν , xVνs
) (6)

with probability 1, where the denominator is dropped since it
does not depend on the maximizer, i.e., x̄Vν . To approximate
the MAP estimator given in (6), we adapt the nonparametric
k-nn (knn) based density estimation approach [51]. Let us
define a small neighborhood around xVνs

in R
|Vνs | as

NNs (xVνs
) = {

s : RS(xVνs
; γ√

Ns) ≥ hα=1(xVνs
, s)

}
(7)

where hα=1(., .) is the Euclidean distance and
RS(xVνs

; γ√Ns) is the hα=1(., .) distance from xVνs
to

its nearest γ
√

Ns th neighbor in SVνs
for some γ > 0. Note

that as Ns → ∞, L(NNs (xVνs
)) → 0, where L(.) is the

Lebesgue measure. Then (6) yields

xMAP
Vν
= arg lim

Ns→∞
sup

x̄Vν∈SVν

∫
z∈NNs (xVνs) f0(x̄Vν , z)dz

L(NNs (xVνs
))

(8)

with probability 1. When Ns is sufficiently large with
Ns ≥ N∗s for some N∗s or L(NNs) is sufficiently
small, we assume that f0(x̄Vν , xVνs

) is subject to negligible

OZKAN et al.: DATA IMPUTATION THROUGH THE IDENTIFICATION OF LOCAL ANOMALIES 2387

variations only. Then we (with probability 1) obtain
the approximation

xMAP
Vν
= arg lim

Ns→∞
sup

x̄Vν∈SVν

∫
z∈NNs (xVνs) f0(x̄Vν , z)dz

L(NNs (xVνs
))

� arg max
x̄Vν∈SVν ,z∈NN∗s (xVνs)

f0(x̄Vν , z) (9)

where to obtain the corresponding maximum in the reference
set S, knowing the rank statistics in f0(x̄Vν , z) is enough,
i.e., explicitly estimating/computing the density is unnecessary.
Therefore, using the density function defined in (3), we obtain

xMAP
Vν
� arg max

x̄Vν∈SVν ,z∈NN∗s (xVνs)
p(x̄Vν , z) (10)

For sufficiently large Ns , note that p̂K (x̄Vν , z) approximates
p(x̄Vν , z) [8], i.e., ∀(x̄Vν , z)

| p̂K (x̄Vν , z)− p(x̄Vν , z)| � 0 almost surely. (11)

Using the result in (10) in combination with (11), we propose
to use MAP-based estimator of the true data underlying the
corrupted attributes

xMAP
Vν
� x̂Vν = arg max

x̄Vν∈SVν ,z∈NN∗s (xVνs)
p̂K (x̄Vν , z) (12)

based on which we replace, i.e., impute, the corrupted
attributes xVν in the instance x with x̂Vν and obtain the imputed
data as y.

This estimator is implemented in Algorithm TCS at every
node in the tree, where a corruption is detected. For example,
the following have to be performed.

1) Obtain the K neighbors of the test instance in the refer-
ence data set S with respect to the attributes associated
with the node νs .

2) For those neighbors in S, find the one, say s∗, attaining
the largest score value defined in (1) using the attributes
associated with the parent node νp .

3) Then impute the instance x, which is detected to be
corrupted at the node ν, using s∗ for the attributes Vν .

In the realistic case of high-dimensional and limited data,
when the standard Euclidean distance is used as in our deriva-
tions, xVνs

might include corrupted attributes even though
it is detected as normal, which clearly adversely affects the
calculation of the neighborhood NNs (xVνs

) in (7). In addition,
xVν might only include a small support of corruption, and then
we would not like to impute xVν completely. To overcome
these two issues, we propose to use the ranked Euclidean dis-
tance defined in (4). To this end, the neighborhood NNs (xVνs

)
is defined using hα with an appropriate α = 1 in (7). This
cancels the adverse effect, up to a certain degree, of a possible
corruption in xVνs

as desired. Nevertheless, recalling that hα

only uses the α fraction of the attributes Vνs and set the
others free, hα is not a metric in the mathematical sense and
then as Ns → ∞, L(NNs (xVνs

)) → 0 does not hold. As a
result, the correlation structure given in (5) is less exploited
in imputation as α decreases. Meanwhile, as α decreases,
the support of the detected corruption in xVν increases, i.e.,
localization improves. Therefore, we obviously have a tradeoff
between the imputation quality and the localization, which is

sensitive to the choice of α and investigated in the experi-
ments in greater detail. However, α should be set typically
around 0.5–0.75 since we use half-way splits. Finally, note
that the imputation brings almost no further computational
complexity, since these steps do computationally depend only
on the anomaly detection results (1) and (2) at the corrupted
node, its sibling node, as well as its parent node, which are
all generated prior to the imputation steps.

In the following section, the proposed framework is shown
to achieve a constant false alarm rate in terms of the cor-
ruption detection. Moreover, this false alarm rate is precisely
calculated under a certain dependency structure among the
anomalous/normal labels on the partitioning tree.

D. False Alarm Rate in Detecting Corruptions

Since the imputation is an overwriting operation, whether
or not to impute a suspicious instance is certainly a critical
decision. In case of a false decision, if the suspicious instance
is in fact uncorrupted, i.e., a false alarm in detecting corrup-
tions, the imputation would correspond to data loss. In this
section, we study the rate of such occurrences and analyze
the false alarm rate of the proposed algorithms in detecting
corruptions.

The anomaly detection test applied at every node in
Algorithm TCS operates with a constant false alarm rate τ ,
whereas the proposed approach is able to reject corruptions at
anomalous nodes. For example, when the terminating pattern
in Fig. 2(b) is encountered, all the anomalies that can be
present in the tree rooted from the terminating pattern are
rejected, i.e., they are not counted as corruptions. For this
reason, the false alarm rate of the proposed approach must be
defined in the sense of corruptions as opposed to anomalies.
To analyze this false alarm rate in detecting corruptions, one
also must account for the fact that the anomaly detection test
at a node could be strongly correlated with the outputs of
the previous tests in the course of Algorithm TCS, since the
data attributes are in general correlated. In this section, we first
model the labeling of the nodes, i.e., anomalous versus normal,
on the partitioning tree (Fig. 1), as a directed acyclic graph [52]
achieving a certain dependency structure and then derive the
false alarm rate of Algorithm TCS. Under this modeling, we
also show that the constant false alarm rate in detecting the
local anomalies at each node also globally maps to a constant
false alarm rate in detecting the corruptions.

Recall that Algorithm TCS expands the binary tree in Fig. 1
for a given uncorrupted test instance s and declares a corrup-
tion only if the conclusive pattern in Fig. 2(a) is encountered
or a leaf node is found anomalous in the described breadth-first
search. In addition to the corruption localization as well as the
imputation capabilities of the proposed Algorithm TCS, let us
denote the corruption detection in Algorithm TCS by C(s) = 1,
if s is detected to be corrupted and C(s) = 0 otherwise. Then
our task is to find the false alarm probability in detecting the
corruptions, which is given by

Cτ =
∫

∀s
C(s) f0(s)ds (13)

where τ is the constant false alarm rate of the detection at
each node and f0 is the nominal density. Next, we observe that

2388 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

Algorithm TCS maps every data instance to a binary observa-
tion such that the nominal distribution f0 is transformed into
a multivariate Bernoulli distribution p0

R
d → B2L+1−1 via

s → L(s) = u = (u R, u Rl , u Rr , u Rl l , u Rl r , u Rr l , u Rr r , . . .)

where B = {−1, 1}, L is the depth, and u R is the anomaly
decision at the root node such that u R = 1, if an anomaly
detected and u R = −1 otherwise. Similarly for the others
such as u Rl is the decision at the left hand child of the
root and u Rr is the decision at the right hand child. Note
that the proposed algorithm does not completely construct
the binary tree but expands, i.e., the nodes and the edges are
created as needed. Therefore, we do not completely observe
the binary vector u that an instance s maps to, however, we
temporarily suppose that all the labels are available for ease
of exposition. Once s is mapped to u, since Algorithm TCS
declares a corruption based on only the vector of binary
labels u, we equivalently have

Cτ = P (C(s) = 1 | s, in fact, is uncorrupted)

=
∑

u∈{−1,1}2L+1−1

C(u)p0(u)

= 1−
∑

u∈{−1,1}2L+1−1

Cc(u)p0(u) (14)

where C(u) is the corruption decision (with abuse of notation),
Cc(u) is the complement, i.e., Cc(u) = 1−C(u), and p0 is the
corresponding nominal probability mass function such that

p0(u) =
∫

∀s:L(s)=u
f0(s) ds.

To calculate the probability mass function p0, we model
the binary tree, where each node corresponds to a binary
random variable, as a directed acyclic graph [52] such that
the binary random variables at any two sibling nodes are
independently conditioned on the knowledge of the label at
the parent node. For any non leaf node ν and its children
νl and νr on the binary partitioning tree, we assume the
following conditional independency for the associated random
labels: p0(uνl , uνr |uν) = p0(uνl |uν)p0(uνr |uν), from which
we obtain (Fig. 3):

p0(uν, uνl , uνr) = p0(uνl , uνr |uν)p0(uν)

= p0(uνl |uν)p0(uνr |uν)p0(uν). (15)

Here, we emphasize that s (or u) is assumed to be
uncorrupted in the false alarm analysis to calculate the prob-
ability given in (13), i.e., it does not have any localized
corruptions by definition. Then, without loss of generality,
if s is declared as anomalous at the root node, then this
anomaly is not due to a corruption but simply a rarity as the
test in (2) is based on density levels. On the contrary to the
case of corruption, since a rarity at a node is not a localized
phenomenon, we expect that the children inherit the parent
label independently. Therefore, we assumed the conditional
independency in (15) as a generating dependency structure for
the simplest graph presented in Fig. 3, which straightforwardly

Fig. 3. Assuming the conditional independency: p0(uν , uνl , uνr) =
p0(uνl |uν)p0(uνr |uν)p0(uν). Moreover, p0(uνl |uν) = (1 − θ)p0(uνl) +
θ1{uνl=uν }, where θ defines the dependency between the parent node
and its siblings such that a positive covariance is embedded. Note that θ = 0
implies independency.

generalizes to the binary tree of the anomalous versus normal
labels from root to the leaves. Based on this, we obtain

p0(u) = p0(uR |u R)∗ p0(u R)

= p0(uRl uRr |u R, u Rl , u Rr)p0(u Rl , u Rr |u R)p0(u R)

= p0(uRl |u Rl)
∗ p0(uRr |u Rr)

∗ p0(u Rl |u R)

× p0(u Rr |u R)p0(u R) (16)

where uR is the collection of the binary variables associated
with the nodes in the tree rooted from node R that excludes u R ,
and the last equation follows from (15) and the Bayes rule.
We observe that the starred factors in the expression (16) are
of similar forms such that the last equation can be expanded
further using similar lines of derivations up until the leaves
appear.

Thus, the calculation of p0(u) requires the calculation of
the probabilities of the form p0(uνl |uν) or p0(uνr |uν), e.g.,
p0(u Rr |u R) in (16). Let us denote any child of the node ν by νs
for generalization. Note that if uν and uνs were independent,
then we would have p0(uνs |uν) = p0(uνs) = τ when uνs = 1.
However, we anticipate a statistical dependency between
uν and uνs generating a positive covariance. That is, con-
ditioned on the knowledge of uν , we would like to impose
that uνs is more likely to attain the value uν compared with
the prior conditions, i.e., νs is likely to inherit the label
of its parent. On the other hand, provided that uν and uνs

are identically dependent, we would have that p0(uνs |uν) =
1{uν=uνs }, where 1{.} is the indicator function. To introduce
this into the derivations, we parameterize the probability mass
function p0(uνs |uν) as the weighted average between p0(uνs)
and 1{uν=uνs } as

p0(uνs |uν) = (1− θ)p0(uνs)+ θ1{uν=uνs }

= (1− θ)(0.5− uνs (0.5− τ))+ θ
1+ uνuνs

2
(17)

where θ ∈ [0, 1] is a parameter defining the degree of
dependency, which generates an increasing covariance as θ
increases in the interval [0, 1] such that θ = 0 implies the
statistical independency of uν and uνs ; and θ = 1 implies
identical dependency. Then, the probability mass function
p0(u) can be calculated using this parametrization based on
the recursion in (16). Hence, exhaustively enumerating all
possible us and running Algorithm TCS for each of them, one

OZKAN et al.: DATA IMPUTATION THROUGH THE IDENTIFICATION OF LOCAL ANOMALIES 2389

can calculate the false alarm rate Cτ in (14), which is not a
practical choice. Instead, through the conditional factorization
in (15), we opt to simplify the expression (14) and obtain an
efficient recursion. To this end, for a given node ν with depth
1 ≤ i ≤ L− 2, let us define the probability conditioned on uν

that Algorithm TCS does not declare a corruption in the tree
rooted from ν denoted by F(ν; uν) as

F(ν; uν) =
∑

uν∈B2L−i+1−2

Cc((uν, uν))p0(uν |uν).

Here, F(ν; uν) solely depends on the depth variable i due to
the symmetric factorization by the conditional independency
from parents to children. Therefore, the notation simplifies to
F(i ; 1) or F(i ; −1). Using the four possible configurations
for (uν = 1, uνl , uνr), we can calculate F(i ; 1) as a function
of F(i + 1; .). Noting that two of those configurations are the
conclusive patterns, termination and corruption patterns, we
obtain

F(i ; 1) = q2
1 (−1)+ 2q1(−1)q1(1)F(i + 1; 1)F(i + 1; −1)

where qi (j) = p0(vs = j |v = i) as a short-hand notation,
the second term corresponds to the continuation of
Algorithm TCS, and the first term corresponds to the termi-
nating pattern. Unlike the second term, the first term does
not have a multiplier since the search stops at such a node.
Note that the corruption pattern is disregarded by definition.
Similarly, we also have

F(i ; −1) = q2−1(1)F2(i + 1; 1)+ q2−1(−1)F2(i + 1; −1)

+ 2q−1(1)q−1(−1)F(i + 1; 1)F(i + 1; −1).

Recalling that we declare corruptions at leaf nodes on the basis
of local anomalies, we can further define

F(L − 1; 1) = q2
1 (−1) and F(L − 1; −1) = q2−1(−1)

and provide the initialization to the recursion F(i ; 1) and
F(i ; −1). On the other hand, we never declare corruptions
at the root since we are focused only on localized corruptions,
which is an exception and can be straightforwardly incorpo-
rated in our recursions. In terms of the recursions regarding
F(i ; 1), the only change is that the corruption pattern should
not be disregarded, which does not lead to a corruption
detection and so does not stop the search. Then, we simply
have

F(0; 1) = q2
1 (−1)+ q2

1 (1)F2(1; 1)

+2q1(−1)q1(1)F(i + 1; 1)F(i + 1; −1)

and the recursion F(i ; −1) stays valid for F(0; −1). Now that
we have the recursion equations defined for all depth levels
on the binary tree, we can efficiently calculate the false alarm
rate of Algorithm TCS as follows. Letting R represent the root

Fig. 4. Solid (dashed-dotted) curves correspond to the realizations (hypothet-
ical results). The constant false alarm rate τ in detecting the local anomalies
maps to a global constant false alarm rate Cτ in detecting the corruptions with
algorithm TCS. We observe that setting θ ∈ [0.75, 0.8] well approximates the
relation between τ and Cτ . In case of the identical dependency, i.e., θ = 1
and Cτ = τ .

node, we obtain from (14)

1− Cτ =
∑

u∈B2L+1−1

Cc(u)p0(u) = p0(u R = 1)

×
∑

uR∈B2L+1−2

Cc((u R, uR))p0(uR |u R = 1)

+ p0(u R = −1)
∑

uR∈B2L+1−2

Cc((u R, uR))

× p0(uR |u R = −1).

Then, recalling that p0(u R = 1) = 1− p0(u R = −1) = τ , the
false alarm rate Cτ is given by

Cτ = 1− τF(0; 1)− (1− τ)F(0; −1) (18)

which is equivalent to first calculating the probability that
Algorithm TCS never declares a corruption and then subtract-
ing this probability from 1.

Since the false alarm rate Cτ of Algorithm TCS in detecting
the corruptions as found in (18) is independent from the
data, we conclude that the false alarm rate τ of the anomaly
detection at each node maps to a constant false alarm proba-
bility of our corruption detection Cτ . Second, even though the
dependency parameter θ does not appear, i.e., hidden, in (18),
Cτ is clearly affected by θ . For example, if θ = 1, i.e., if
the binary label of a child node is identically dependent on
the parent label and hence p0(uνs |uν) = 1{uνs=uν }, then it
can be shown that Cτ = τ . If θ = 0, i.e., if the binary
label of a child node is independent with the parent label
and hence p0(uνs |uν) = p0(uνs), then obviously Cτ > τ .
We experimentally discuss the quality of this hypothetical
relation between τ and Cτ (Fig. 4) and the further details
in Section V.

In the following section, we explain the important points of
our implementation and discuss the corresponding computa-
tional complexity.

2390 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

IV. COMPUTATIONAL COMPLEXITY

Computationally, the main building block in Algorithm TCS
is the application of the anomaly test defined in (2),
which computes the train-to-train distance matrix
DS(i, j) = d(si , s j) and the test-to-train distance vector
DX (j) = d(x, s j). Operating on these distances, the score
function defined in (1) for the test instance must be computed,
which then requires the computation and sorting of RS(si ; K).
In addition, since we label each node as anomalous or not in
our tree expansion, these distances must actually be computed
at each node with respect to the corresponding attributes,
e.g., DSVν

(i, j) and DXVν
(j) at a node ν. For this purpose,

we adapt the integral image approach for the cases where
the standard Euclidean distance is used. For example, let us
define the volume DS(i, j, k) =∑k

h=1(si h − s j h)2, ∀i, j with
1 ≤ k ≤ d; and DS(i, j, 0) = 0, ∀i, j [similarly for DX (j)].
Then, we simply have DSVν

(i, j) = (DS(i, j, k2)−
DS(i, j, k1))

1/2 at a node ν, where Vν corresponds to
the set of attributes in positions between k1 + 1 and k2.
The volume DS(i, j, k) and the sorting of RS(si ; K) can be
computed offline once the training set is provided, which
defines a training phase complexity O(2L+1 N2

s log2 Ns),
where sorting is the dominant contributor. For a given test
instance, we compute DXVν

(j) and sort at each node ν in the
expansion of our tree, which defines the test phase complexity
O(2L+1 Ns log2 Ns) for our algorithm, where sorting is the
dominant contributor. The computational load is multiplied by
constant factors in the case of the ranked Euclidean distance.

V. EXPERIMENTS

In this section, we first discuss the efficacy of the false alarm
rate estimation method explained in Section III-D and evaluate
the performance of the critical steps in Algorithm TCS, which
are the corruption detection, localization, and imputation.
Then, we report the improvements achieved by the proposed
framework in several classification tasks in comparison with
a baseline of two state-of-the-art algorithms.

In the first set of experiments, we adapted a 0− 1 digit
classification task consisting of a training set of 1500 samples
and a test set of 750 samples based on the U.S. Postal Service
(USPS) data [12]. Each of these samples is a 16 × 16 gray
scale image of either a 0 image or a 1 image, where each
pixel has a real intensity value in [0, 1]. We synthetically
generate a corruption as described in Section II and apply to
each instance in the test set with probability π = (1/2). To
be more precise, for a test instance chosen to be corrupted,
we (uniformly) randomly specify a square region of size
between (10− 50)% of the total area, i.e., the number of
pixels in the chosen region is not less than 25 and not more
than 128, and overwrite each pixel in this region with a
value randomly [using the uniform distribution UZ (z)] drawn
from the interval [0, 1]. Then, after the training and test
instances are vectorized column wise such that s, x ∈ R

256, the
proposed Algorithm TCS is provided with the clean training
data and run over the test set. We emphasize that by this
vectorization scheme, the corrupted square region corresponds
to multiple corrupted intervals in the vectorized observation.
Hence, this example also illustrates that Algorithm TCS can
handle multiple corruptions. Ideally, the neighborhood size

Fig. 5. Receiver operating characteristic curves for detection and local-
ization of corruptions. Solid (dashed-dotted) curves correspond to detection
(localization) performances.

parameter K for both imputation and corruption separation
purposes should be optimized at every node of our binary
tree since the data dimensionality from node to node varies.
However, we opt not to optimize K for presentational clarity
and set as K = 8 near the midpoint of [1, 16], which is
empirically found appropriate. Using the 0 − 1 digit USPS
data, we investigate the response of the Algorithm TCS
to the local anomaly detection false alarm rate τ ∈
� = {0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}
and the ranked Euclidean distance parameter α ∈ � =
{0.375, 0.5, 0.75, 1}. As for the depth parameter, we use the
deepest possible tree with L = 6 such that the leaves are
associated with four pixels and hence, one pixel at least is
then used in the distance calculation with α = 0.375.

In Fig. 4, we compare the hypothetical false alarm rate Cτ

we derive in Section III-D with the corresponding experimen-
tal realizations with respect to varying local anomaly detection
false alarm τ ∈ �. The hypothetical map from τ to Cτ is
generated with several choices for the dependency parameter
θ ∈ {0.75, 0.8, 0.85, 1}, whereas the realizations correspond
to several choices for the distance parameter α ∈ �. Our
experiments indicate that when the statistical dependency θ
in (17) from a parent node to one of its children nodes (Fig. 3)
is chosen around 0.75, the relationship between the local
anomaly false alarm rate τ and the corruption detection false
alarm rate Cτ is accurately modeled. This experimentally
shows that the labeling of local anomalies over a binary par-
titioning tree shown in Fig. 1 can be considered as a directed
acyclic graph. We also observe that in the case of Euclidean
distance, i.e., hα with α = 1, while θ ∼ 0.75 is more accurate
for small τ s, θ tends to approach 0.8 as τ increases for a
better modeling. This small deviation mainly happens since the
conditional independency assumption explained in Fig. 3 does
not hold in case of Euclidean distance for a certain pattern.
Although the labeling for a parent and its children nodes
as −1, 1, 1 (a normal parent node with anomalous children
nodes) is not possible with the standard Euclidean distance due
to the test defined in (2), the directed acyclic graph modeling
assigns it a positive probability, which then overestimates
the corruption detection false alarm rate. Nevertheless, this
positive probability is the smallest among the ones assigned

OZKAN et al.: DATA IMPUTATION THROUGH THE IDENTIFICATION OF LOCAL ANOMALIES 2391

Fig. 6. Distance-wise imputation quality with τ ∈ �.

to the all possible patterns of three nodes as desired and hence,
the ordering of the patterns in terms of their probabilities is still
reasonable even in the case of the Euclidean distance. On the
contrary, since this pattern is also possible in the case of the
ranked Euclidean distance, the accuracy of our hypothetical
results improves as α decreases.

Next, we study the corruption detection and localization
performance of our algorithm on the 0−1 digit USPS data.
In Fig. 5, we plot the empirical false alarm rates versus the
empirical true detection rates in terms of both corruption detec-
tion and corruption localization with respect to τ ∈ �. Here,
the true detection rate is the empirical probability, i.e., relative
frequency, of a truly corrupted data instance (data attribute in
case of localization) to be declared corrupted, and the false
alarm rate is the empirical probability of a truly uncorrupted
data instance (data attribute in case of localization) to be
declared corrupted. As we discuss in Section III, the ranked
Euclidean distance is experimentally shown to produce a better
detection as well as localization performance on the USPS
data as α decreases. Recall that for a small α around 0.5, we
enforce a corruption to be widely spread for Algorithm TCS
to detect it at a node, which then clearly improves the
localization. Similarly, the corruption detection performance
also improves as α decreases. Since the ranked Euclidean dis-
tance disregards a certain fraction of the largest attribute-wise
deviations, Algorithm TCS behaves conservatively in declaring
corruptions. This reduces the false alarms in terms of the local
anomalies and in turn, reduces the false encounters of the
terminating pattern shown in Fig. 2(b). Hence, the corruption
search is not stopped mistakenly, and Algorithm TCS does not
miss certain corruptions, which leads to a better detection rate
with the ranked Euclidean distance using a small α around 0.5.
We emphasize that the local anomaly detection false alarm
rate τ can be set independently for detection and localization
to precisely determine the operating point on the Receiver
Operating Characteristic curves in Fig. 5. However, in this
paper, we use one single τ in all phases of Algorithm TCS.
Note that when the false alarm rate is set around 0.1–0.2, our
algorithm is able to provide a detection rate around 0.9 and a
localization rate around 0.8.

On the other hand, the ranked Euclidean distance
parameter α cannot be made arbitrarily small. Observe that
with small α, only a small fraction of attributes is used in
determination of NNs (xVνs

) in (7) despite that the rest of the

Fig. 7. Several visual examples on USPS data set.

Fig. 8. Left: (uncorrupted) true data scatter; mean separation between
two classes: 5.95 and linear SVM accuracy: 99.71%. Middle: corrupted
data scatter; mean separation: 4.19, and classification accuracy: 90.57%.
Right: imputed data scatter; mean separation: 5.37, and classification accuracy:
96.85%, which corresponds to ∼68.0% improvement both in terms of the
mean separation and classification.

attributes might be informative through the local correlations
and, hence, the imputation quality degrades. We illustrate this
effect in Fig. 6, where we use the improvements in the distance
wise deviations after imputation to measure the imputation
quality. For this purpose, we define

1

Nc

Nc∑

i=1

hα=1(x̄i , xi)− hα=1(x̄i , x̂i)

hα=1(x̄i , xi)
(19)

as the distance wise imputation quality, where Nc is the
number of the corrupted test instance (which is approximately
750π), xi is a corrupted test instance, x̄i is the uncor-
rupted original instance, and x̂i is the corresponding instance
after imputation. Note that this quality metric measures on
average how much of the distortion by the corruption is recov-
ered after imputation. The average imputation quality defined
in (19) is plotted versus the local anomaly detection false alarm
τ ∈ � in Fig. 6. We first observe that for large τ , since the false
alarm rate is also large, the imputation even further disturbs the
data. Second, for small τ around 0.01, the proposed imputation
technique is able to correct a corrupted instance up to 12% in
case of α ∼ 0.75. Moreover, our experiments also indicate
that for α less than 0.5, the ranked Euclidean distance is not
able to produce desirable results despite its superiority in terms
of detection and localization, which reinforces our discussion
that α cannot be made too small.

Unlike an mmse-based approach, our MAP-based
imputation does not target at minimizing the reconstruction
error but the most likely replacement for a corruption.
Indeed, an mmse-based estimator for imputation would
produce visually blurry results, for instance, on the USPS
data. In this regard, we present several visual examples that
the proposed framework generates on the USPS data with

2392 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

TABLE I

PROPOSED ALGORITHM TCS-MAP IS COMPARED WITH TWO BASELINE ALGORITHMS TCS-NN AND M-NN (CONSTRUCTED USING THE METHODS

IN [11] AND [19]) IN TERMS OF THE CLASSIFICATION TASKS ON SEVERAL BENCHMARK DATA SETS. AVERAGE IMPROVEMENTS

IN CLASSIFICATION ACCURACIES AFTER IMPUTATION ARE PRESENTED FOR ALL METHODS IN THE CASES OF

CLEAN DATA TRAINING AND %5 CORRUPTED TRAINING

τ = 0.016, α = 0.75, K = 8 in Fig. 7. Note that the presented
visual examples tend to generate image gradients that are
naturally aligned with the image statistics. We also observe
some cases, where the corruption along a border between the
cells of our partitioning tree remains after the imputation (see
the second last column in Fig. 7). The residual corruptions in
such cases can be handled by increasing the depth of the tree
or using m-ary trees refer to the trees, where one has m many
splits at each nodes. For example, if m = 2, the tree is a binary
tree. In addition to the visual comparisons, we also evaluate
the performance of the introduced framework in terms of the
classification purposes. On the described 0−1 digit USPS data,
we report the data scatter plots of the test instances in Fig. 8,
where we project the original, corrupted, and imputed test data
onto the two eigen vectors of the training set with the largest
eigenvalues for visualization. We clearly observe a better class
separation between two classes after the imputation, when
compared with the class separation in the corrupted data.

We emphasize that since the proposed tree-based corruption
separation framework is a comprehensive one such that it
operationally covers the partial solutions in the correspond-
ing literature, it is not possible to provide a perfectly fair
comparative analysis. Nevertheless, we compare the proposed
framework with a baseline of algorithms constructed using
the methods [11], [19] in terms of the classification tasks over
the several well-known machine learning data sets [12], [13].
One of these methods, tree-based corruption separation nearest
neighbor (TCS-NN), consists of the same TCS procedure that
we propose but utilizes—instead of our MAP imputation—
but utilizes the Nearest Neighbor (NN) imputation technique
[19], which finds the NN of a corrupted instance with respect
to the sibling attributes of the corrupted node and imputes.

The other method, M-split with Nearest Neighbor Imputation
(M-NN), also utilizes the NN imputation, but does not have
a fine/detailed corruption separation step. Instead, it splits
an instance into M different segments [11], applies anomaly
detection to each segment, and imputes an anomalous segment
by its NN that is found with respect to the neighboring
segment.

In these experiments, we use a depth-4 tree for our
Algorithm TCS leading to 16 leaves/segments in the finest
level with K = 8. For each data set, after scaling each data
attribute into the interval [0, 1], we randomly choose 11 splits
of the scaled data such that 2/3 of each split is reserved as the
training (reference) data set (at most 1000 instances), and the
rest is reserved as the test data set (at most 500 instances)
in each split. Moreover, every instance in the test set of
each split is randomly corrupted/overwritten from the uniform
distribution with the support [0, 1] in a random interval of
attributes, which includes at least 10% of the attributes (dimen-
sionality) and at most 50% of them. Since 30 = (50+ 10)/2%
of each test instance is corrupted on average, choosing M = 4
is appropriate for the method M-NN. We also present results
for the case M = 16. The first split is used for parameter
selection purposes,1 e.g., C parameter of a linear SVM α

1The same values for the parameters α, τ is used for both TCS-MAP,
and TCS-NN to fairly and clearly observe the effect of using
NN imputation instead of MAP imputation since using the same
rate τ for both methods leads to the same Constant False Alarm
Rate (CFAR) in corruption detection. In another separate experiment
(Table II), we directly and explicitly compare the two imputation methods
with the standard Euclidean distance only. The same τ is also used
for M-NN, which definitely favors M-NN since it corresponds to a lower
CFAR for M-NN. Euclidean distance, α = 1, is always used for M-NN.
Depth is always 4 with K = 8. C is always common to all methods.

OZKAN et al.: DATA IMPUTATION THROUGH THE IDENTIFICATION OF LOCAL ANOMALIES 2393

and the remaining 10 splits are used for performance analysis.
Then, in each of the remaining 10 splits, we train a linear SVM
classifier on the training set and compute the classification
accuracy on the uncorrupted, corrupted, and the imputed test
data. In Table I, we report the average of improvements and the
corresponding standard deviation of the average improvement
(standard deviation (std) of the improvements divided by

√
10

is reported, i.e., std of the mean value estimator) in terms of the
classification accuracy on the imputed test data over 10 splits.
The improvement in classification accuracy is calculated as

% Improvement = 100× acc(X̂)− acc(X)

acc(X̄)− acc(X)
(20)

where acc(X̄) [acc(X), acc(X̂)] is the classification accuracy—
after clean data training—on the original uncorrupted test
data X̄ (on the corrupted test data X, on the imputed data X̂).
Furthermore, to evaluate the robustness to corruptions in the
training sets and to address the cases where clean data is not
available, we randomly choose the 5% of each training data
of each split, corrupt with the same corruption model, and
then repeat2 the same experiments. The results are summarized
in Table I.

We observe that the proposed framework is successful at
undoing the adverse effects of corruption and always provides
(positive) improvements up to ∼80% after imputation in terms
of the classification performance. In addition, when the drop in
accuracy due to the corruptions is relatively low, e.g., 5 units
of drop from 80% to 75%, even a 1 unit gain after imputation
corresponds to 20% = (1/5) improvements, which naturally
results in relatively high standard deviations (see Sonar data
set in Table I). Moreover, the proposed framework is shown
to be robust to corruptions in the training data by these
experiments.

Our algorithms, TCS-MAP, perform significantly better than
the method M-NN and comparably with the method TCS-NN.
We point out that the method TCS-NN strongly relies on the
proposed TCS framework, which is the main reason underly-
ing the success of TCS-NN. (Note that both of the methods
M-NN and TCS-NN uses the NN imputation but M-NN does
not have the proposed TCS step and the method M-NN is
outperformed by TCS-NN.) The method M-NN occasionally
even further corrupts the data; see the negative improvements
for Sonar or G241c or G241n. Moreover, it is difficult to
choose between the methods 4-NN and 16-NN since there is
no clear superiority. For example, there is definitely a scaling
issue for the method M-NN. If the corruption in an instance
covers a small portion, e.g., 10%, then choosing M too large
would leave several undetectable corruptions in addition to
imputing large chunks of clean data due to the false alarms
(negative improvements). Similarly, if the corruption in an
instance covers a large portion, e.g., 50%, then choosing M
too small would not only again harden the anomaly detection
(due to the use of insufficient data in detecting corruptions)
but also complicate the imputation since on what to condition

2Exactly the same splits with the same parameters are used. The only
difference is that 5% of each training set is corrupted. Note that in these
experiments, we first train a linear SVM using clean training data and then,
test the trained model on uncorrupted (clean) test data, corrupted test data,
and corrupted test data imputed by the clean training data and corrupted test
data imputed by %5 corrupted training data.

the imputation becomes ambiguous. For a good imputation
in this case, one would need to identify (with significant
imperfections due the use of insufficient data because of a
small M) all the corrupted and uncorrupted segments and
then condition at which the imputation is on uncorrupted
ones, which leads to a nonhomogenous different evaluation
for every instance that requires computationally a very high
load. Therefore, choosing an appropriate M is in general hard
since it must depend on the amount of the corruption, which
might be unknown and random. The proposed framework
resolves this scaling issue in a computationally efficient way
via the binary searches and fast imputations. Moreover, our
algorithm TCS-MAP is experimentally shown to be also robust
to corruptions in training data in the sense that it strongly
preserves its corruption separation/imputation capabilities even
after including 5% corruptions in training.

In our experiments with uncorrupted (clean) data training,
the MAP imputation and the NN imputation (only when
combined with the proposed tree based corruption separation)
performs comparably, which is due to the sparsity of the
data compared with the dimensionality. However, we first
note that the MAP estimator yields the NN estimator, if the
neighborhood size is set K = 1 in the imputation phase, which
can easily be achieved via cross validation for K . Clearly, with
such a cross validation, the MAP imputation can only perform
better than the NN imputation and we opt not to optimize K
for presentational clarity. In addition, the NN imputation is
definitely sensitive to corruptions in the training data since
the attributes of the NN that are used for imputation can also
be corrupted with a certain probability, e.g., with probability
0.05 in our experiments. On the other hand, that possibly
(with probability 0.05) corrupted NN would achieve a lower
score value p̂K (x) if it was truly corrupted and it would not
be picked by our MAP estimator for imputation. Thus, the
proposed MAP estimator can handle such situations and is
robust to corruptions, where the NN imputation performance
potentially degrades more. In our experiments, the MAP
imputation either enhances its superiority or becomes superior,
or approaches NN imputation for most of the data sets after
including corruptions in training, e.g., Image or Ringnorm data
sets in Table I.

To further demonstrate the power of the proposed estimator,
we devise a separate experiment, where we use a data set
consisting of two Gaussian components with unitary covari-
ances. We use the means [1,−1] and [−1, 1] for positive
and negative classes, respectively. We generate 1000 samples
as the training data, (500 for each class) and next suppose
that the second attribute of each sample is corrupted/missing
and, therefore, imputed by our MAP estimator with varying
neighborhood size K and the NN estimator. Note that in this
part, we use standard Euclidean distance only. After repeating
this 100 times, the resulting imputed data is compared with
the original training data in the MSE sense and in terms
of the classification accuracy. We summarize our findings
in Table II, where the MAP imputation with K = 1 coincides
with the NN imputation. The MAP imputation is consistently
better than the NN imputation as expected. For instance, when
K = 12, we obtain 26% improvements in the mse sense
and 10% improvements in terms of the classification (original
classification accuracy is around 92%).

2394 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

TABLE II

PERFORMANCE (MSE AND CLASSIFICATION) OF THE PROPOSED MAP

IMPUTATION ON THE DATA SAMPLED FROM A 2 COMPONENT

GAUSSIAN MIXTURE MODEL. THE MAP IMPUTATION IS

CONSISTENTLY BETTER THAN THE NN (K = 1)

IMPUTATION FOR ALL K s

VI. CONCLUSION

In this paper, we proposed a comprehensive framework
for handling localized and severe data corruptions. The novel
contributions of the proposed framework includes: 1) a first
algorithm to jointly detect and localize such corruptions by
identifying the local anomalies; 2) a maximum a posteriori-
based estimator for imputation and a distance measure for
corruption separation purposes; 3) computational efficiency
via the binary searches and the fast imputations; and
4) a characterization for anomalous observations, e.g., rarities,
incompatible combinations, and corruptions. We point out that
our algorithm does not assume prior information or a model for
the input data and, instead, works in a completely data driven
way. Furthermore, we conducted a false alarm rate analysis
and showed that the desired false alarm rate in detecting
corruptions can be set independently with the input data. Our
algorithm is tested against the corruptions in several well-
known machine learning data sets and experimentally shown
to provide significant improvements in terms of classification
purposes with strong corruption separation. The proposed
algorithms outperform the typical approaches and are robust
to varying training phase conditions.

REFERENCES

[1] R. He, W.-S. Zheng, B.-G. Hu, and X.-W. Kong, “Two-stage
nonnegative sparse representation for large-scale face recognition,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 35–46,
Jan. 2013.

[2] S. Zafeiriou, G. Tzimiropoulos, M. Petrou, and T. Stathaki, “Regularized
kernel discriminant analysis with a robust kernel for face recognition
and verification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3,
pp. 526–534, Mar. 2012.

[3] S. Z. Li and J. Lu, “Face recognition using the nearest feature line
method,” IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 439–443,
Mar. 1999.

[4] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detec-
tion: An evaluation of the state of the art,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 34, no. 4, pp. 743–761, Apr. 2012.

[5] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional distri-
bution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, Jul. 2001.

[6] G. Li, C. Wen, Z. G. Li, A. Zhang, F. Yang, and K. Mao, “Model-based
online learning with kernels,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 24, no. 3, pp. 356–369, Mar. 2013.

[7] C. D. Scott and R. D. Nowak, “Learning minimum volume sets,”
J. Mach. Learn. Res., vol. 7, pp. 665–704, Jan. 2006.

[8] M. Zhao and V. Saligrama, “Anomaly detection with score functions
based on nearest neighbor graphs,” in Advances in Neural Information
Processing Systems. Red Hook, NY, USA: Curran & Associates Inc.,
2009.

[9] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, 2009, Art. ID 15.

[10] R. Perdisci, G. Gu, and W. Lee, “Using an ensemble of one-class
SVM classifiers to harden payload-based anomaly detection systems,”
in Proc. 6th Int. Conf. Data Mining (ICDM), Dec. 2006, pp. 488–498.

[11] V. Saligrama and M. Zhao, “Local anomaly detection,” in Proc. Int.
Conf. Artif. Intell. Statist., 2012, pp. 969–983.

[12] K. Bache and M. Lichman, “UCI machine learning repository,” School
Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep., 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[13] J. Kim and C. D. Scott, “L2 kernel classification,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 10, pp. 1822–1831, Oct. 2010.

[14] J. Sun and S. Keates, “Canonical correlation analysis on data with
censoring and error information,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 24, no. 12, pp. 1909–1919, Dec. 2013.

[15] Y. Wang and J. Hu, “Global ridge orientation modeling for partial
fingerprint identification,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 1, pp. 72–87, Jan. 2011.

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Roy. Statist. Soc.,
Ser. B, vol. 39, no. 1, pp. 1–38, 1977.

[17] D. B. Rubin, Multiple Imputation for Nonresponse in Surveys (Wiley
Series in Probability and Mathematical Statistics). New York, NY, USA:
Wiley, 1987.

[18] R. J. A. Little and D. B. Rubin, Statistical Analysis With Missing Data,
vol. 539. New York, NY, USA: Wiley, 1987.

[19] O. Troyanskaya et al., “Missing value estimation methods for DNA
microarrays,” Bioinformatics, vol. 17, no. 6, pp. 520–525, 2001.

[20] P. Smolensky, Information Processing in Dynamical Systems: Foun-
dations of Harmony Theory. Cambridge, MA, USA: MIT Press,
1986.

[21] G. E. A. P. A. Batista and M. C. Monard, “An analysis of four missing
data treatment methods for supervised learning,” Appl. Artif. Intell.,
Int. J., vol. 17, nos. 5–6, pp. 519–533, 2003.

[22] J. Besag, “Statistical analysis of non-lattice data,” J. Roy. Statist. Soc.,
Ser. D (The Statistician), vol. 24, no. 3, pp. 179–195, 1975.

[23] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and
C. Kadie, “Dependency networks for inference, collaborative filtering,
and data visualization,” J. Mach. Learn. Res., vol. 1, pp. 49–75,
Jan. 2001.

[24] B. M. Marlin, “Missing data problems in machine learning,”
Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON,
Canada, 2008.

[25] Z. Ghahramani and M. I. Jordan, “Supervised learning from incomplete
data via an EM approach,” in Advances in Neural Information Process-
ing Systems. Cambridge, MA, USA: MIT Press, 1994.

[26] X. Zhu, S. Zhang, Z. Jin, Z. Zhang, and Z. Xu, “Missing value estimation
for mixed-attribute data sets,” IEEE Trans. Knowl. Data Eng., vol. 23,
no. 1, pp. 110–121, Jan. 2011.

[27] Q. Wang and J. N. K. Rao, “Empirical likelihood-based inference under
imputation for missing response data,” Ann. Statist., vol. 30, no. 3,
pp. 896–924, 2002.

[28] A. Rajwade, A. Rangarajan, and A. Banerjee, “Image denoising using
the higher order singular value decomposition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 4, pp. 849–862, Apr. 2013.

[29] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jun. 2005, pp. 60–65.

[30] Y. Weiss and W. T. Freeman, “What makes a good model of natural
images?” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2007,
pp. 1–8.

[31] S. Lyu and E. P. Simoncelli, “Statistical modeling of images with
fields of Gaussian scale mixtures,” in Advances in Neural Information
Processing Systems. Cambridge, MA, USA: MIT Press, 2006.

[32] P. Galllnarl, Y. Le Cun, S. Thlrla, and F. Fogelman Soullé, “Mémoires
associatives distribuees: Une comparaison,” in Proc. Cognitiva, vol. 87.
1987, p. 93.

[33] V. Jain and S. Seung, “Natural image denoising with convolutional
networks,” in Advances in Neural Information Processing Systems.
Red Hook, NY, USA: Curran & Associates Inc., 2008.

[34] M. Ranzato, V. Mnih, J. M. Susskind, and G. E. Hinton, “Modeling nat-
ural images using gated MRFs,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 9, pp. 2206–2222, Sep. 2013.

[35] P.-S. Toh and A. K. Forrest, “Occlusion detection in early vision,” in
Proc. 3rd Int. Conf. Comput. Vis., Dec. 1990, pp. 126–132.

[36] N. H. C. Yung and A. H. S. Lai, “Detection of vehicle occlusion using a
generalized deformable model,” in Proc. IEEE Int. Symp. Circuits Syst.,
vol. 4. May/Jun. 1998, pp. 154–157.

[37] C. C. C. Pang, W. W. L. Lam, and N. H. C. Yung, “A novel
method for resolving vehicle occlusion in a monocular traffic-image
sequence,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 3, pp. 129–141,
Sep. 2004.

OZKAN et al.: DATA IMPUTATION THROUGH THE IDENTIFICATION OF LOCAL ANOMALIES 2395

[38] W. Zhang, J. Q. Wu, X. Yang, and X. Fang, “Multilevel framework to
detect and handle vehicle occlusion,” IEEE Trans. Intell. Transp. Syst.,
vol. 9, no. 1, pp. 161–174, Mar. 2008.

[39] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-
based object detection in images by components,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 23, no. 4, pp. 349–361,
Apr. 2001.

[40] M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila, “Multi-cue
pedestrian classification with partial occlusion handling,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 990–997.

[41] X. Wang, T. X. Han, and S. Yan, “An HOG-LBP human detector with
partial occlusion handling,” in Proc. IEEE 12th Int. Conf. Comput. Vis.,
Sep./Oct. 2009, pp. 32–39.

[42] X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai, “Minimum error
bounded efficient 1 tracker with occlusion detection,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 1257–1264.

[43] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine
Learning, vol. 1. New York, NY, USA: Springer-Verlag, 2006.

[44] M. A. Donmez and S. S. Kozat, “Steady state and transient MSE analysis
of convexly constrained mixture methods,” IEEE Trans. Signal Process.,
vol. 60, no. 6, pp. 3314–3321, Jun. 2012.

[45] S. Godsill, A. Doucet, and M. West, “Maximum a posteriori sequence
estimation using Monte Carlo particle filters,” Ann. Inst. Statist. Math.,
vol. 53, no. 1, pp. 82–96, 2001.

[46] Y. Bar-Shalom and X.-R. Li, Multitarget-Multisensor Tracking:
Principles and Techniques. New York, NY, USA: Academic,
1995.

[47] J. M. Mendel and C. S. Burrus, Maximum-Likelihood Deconvolu-
tion: A Journey into Model-Based Signal Processing (Signal Process-
ing and Digital Filtering). New York, NY, USA: Springer-Verlag,
1990.

[48] G. K. Chantas, N. P. Galatsanos, and A. C. Likas, “Bayesian
restoration using a new nonstationary edge-preserving image prior,”
IEEE Trans. Image Process., vol. 15, no. 10, pp. 2987–2997,
Oct. 2006.

[49] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jun. 2005, pp. 886–893.

[50] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,” IEEE Trans. Image Process., vol. 1, no. 2,
pp. 205–220, Apr. 1992.

[51] B. W. Silverman, Density Estimation for Statistics and Data Analysis,
vol. 26. Boca Raton, FL, USA: CRC Press, 1986.

[52] K. Thulasiraman and M. N. S. Swamy, Graphs: Theory and Algorithms.
New York, NY, USA: Wiley, 2011.

Huseyin Ozkan received the B.Sc. degrees in
electrical engineering and mathematics from
Bogazici University, Istanbul, Turkey, in 2007, and
the M.Sc. degree in electrical engineering from
Boston University, Boston, MA, USA, in 2010. He
is currently pursuing the Ph.D. degree in electrical
engineering with Bilkent University, Ankara,
Turkey.

His current research interests include statistical
learning, statistical signal processing, and computer
vision. He is also with the MGEO Division, Aselsan

Inc., Ankara, where he conducts research about large area surveillance.

Ozgun Soner Pelvan received the B.Sc. degree
in electrical engineering from Middle East
Technical University, Ankara, Turkey, in 2004, and
the M.Sc. degree from Kaiserslautern Technical
University, Kaiserslautern, Germany, in 2007. He is
currently pursuing the Ph.D. degree in electrical
engineering with Middle East Technical University.
His current research interests include statistical
signal processing and wireless networks.

Suleyman S. Kozat (SM’99) received the
B.Sc. degree from Bilkent University, Ankara,
Turkey, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Illinois at Urbana-Champaign, Champaign, IL,
USA, in 2001 and 2004, respectively.

He joined the IBM Research Thomas J. Watson
Research Center, Yorktown Heights, NY, USA,
as a Research Staff Member with the Pervasive
Speech Technologies Group, where he focused on
problems related to statistical signal processing

and machine learning. He was a Research Associate with the Cryptography
and Anti-Piracy Group, Microsoft Research, Redmond, WA, USA. He is
currently an Assistant Professor with the Department of Electrical and
Electronics Engineering, Bilkent University. His current research interests
include intelligent systems, adaptive filtering for smart data analytics, online
learning, and machine learning algorithms for signal processing.

Dr. Kozat was a recipient of the IBM Faculty Award by IBM Research in
2011, the Outstanding Faculty Award by Koc University, İstanbul, Turkey,
in 2011, the Outstanding Young Researcher Award by the Turkish National
Academy of Sciences in 2010, the ODTU Prof. Dr. Mustafa N. Parlar
Research Encouragement Award in 2011, and the Career Award by the
Scientific Research Council of Turkey in 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

