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Online Anomaly Detection Under Markov Statistics
With Controllable Type-I Error
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Abstract—We study anomaly detection for fast streaming
temporal data with real time Type-I error, i.e., false alarm rate,
controllability; and propose a computationally highly efficient
online algorithm, which closely achieves a specified false alarm
rate while maximizing the detection power. Regardless of whether
the source is stationary or nonstationary, the proposed algorithm
sequentially receives a time series and learns the nominal at-
tributes—in the online setting—under possibly varying Markov
statistics. Then, an anomaly is declared at a time instance, if
the observations are statistically sufficiently deviant. Moreover,
the proposed algorithm is remarkably versatile since it does not
require parameter tuning to match the desired rates even in the
case of strong nonstationarity. The presented study is the first
to provide the online implementation of Neyman-Pearson (NP)
characterization for the problem such that the NP optimality,
i.e., maximum detection power at a specified false alarm rate,
is nearly achieved in a truly online manner. In this regard, the
proposed algorithm is highly novel and appropriate especially
for the applications requiring sequential data processing at large
scales/high rates due to its parameter-tuning free computational
efficient design with the practical NP constraints under stationary
or non-stationary source statistics.

Index Terms—Anomaly detection, efficient, false alarm,Markov,
Neyman-Pearson, NP, online, time series, type-I error.

I. INTRODUCTION

D ETECTION of anomalous patterns is of great interest in
signal processing [1]–[4] and machine learning [5] since

the irregular data due to an anomaly often detrimentally affects
the target application and might even require special actions in
certain scenarios [5]–[7]. For instance, a hacked computer/mo-
bile device produces suspicious network traffic [8]; or an il-
legal U-turn in an intersection scene creates anomalous video
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data [3]; or an anomalous pattern in the electricity consump-
tion data of a factory should definitely raise concerns [9]. Sim-
ilarly, visual occlusions generate unpredictably irregular video
data and reduce the object recognition rates [10]. In this paper,
we study the anomaly detection problem for the temporal data
in the online setting and propose a novel and computationally
highly efficient online algorithm. The proposed algorithm se-
quentially receives a time series, learns -in an online manner-
the nominal attributes in the data and detects the anomalous sub-
sequences. We use the Neyman-Pearson (NP) characterization
[11] for the anomalies and nearly achieve a constant control-
lable false alarm rate with maximum possible detection power
regardless of whether the source is stationary or non-stationary.
The proposed algorithm is able to process data in real time at ex-
tremely large scales/high rates with linear complexity in the size
of the stream. Moreover, we do not require parameter tuning to
match the desired rates even if the source statistics change.
There exists an extensive literature on anomaly detection [1],

[3], [5]–[7] and the problem is studied under different nomencla-
ture depending on the anomaly types such as novelty detection
[2], [12], [13], outlier detection [4], [14], [15], one class learning
[16], [17], intrusiondetectionor fault detection [18].However, as
the first time in the literature, we focus on online anomaly detec-
tion in stationary or non-stationary fast streaming temporal data
with online controllability of the Type-I error that maximizes the
detection power without requiring parameter tuning. Thus, the
presented study considerably differs from the literature.We con-
sider that the controllability of the false alarm rate is a crucial
capability especially in the context of anomaly detection since
anomalies in general draw attention and provide actionable in-
formation. In this regard, a number of false alarms more than a
bearable rate is clearly frustrating and hence potentially risks the
practicality of the algorithm [19], [20]. For this reason, we study
the problem in the binary hypothesis framework by using the NP
formulation [11], where we explicitly bound the false alarm rate
(i.e. minimizing Type-I error) while achieving the maximum de-
tection power (i.e. minimizing Type-II error). Although the NP
approach is successfully applied to anomaly detection [4], [19],
[20], the online implementation of the NP solution has been left
unexplored. Furthermore, the existing batch NP solutions are
typically based on the assumption of independent and identi-
cally distributed (i.i.d.) observations, which hardly holds in the
case of temporal observations, where the data is typically highly
correlated in time and non-stationary. In contrast, we model
such intrinsic correlations viaMarkovmodels without assuming
stationary source statistics.
Our method falls in the category of statistical anomaly detec-

tionwithmodeled nominal densities [5], [21], where an anomaly
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is an observation that is (suspected to be) not generated by the
assumed nominal stochastic model. Accordingly, we learn a
parametricmodel (a birth-death type discrete timeMarkov chain
in this study) for the time series data; and our anomaly detection
approach is to optimally test (in the sense of NP constraints)
whether the sufficient statistics of a new sequence is consis-
tent with the learned model. A popular approach in statistical
anomaly detection is to consider the distance from a suspicious
instance to the nominal set of data. In [22], if the ’th minimum
distance is sufficiently large, then an anomaly is declared. The
rankings of these ’th distances are used in [23] to bound the
number of false alarms in a computationally relatively more
efficient manner. Such rankings have shown in [20] to be an
asymptotically consistent estimator for inclusion in the Min-
imumVolume (MV) set, which is the complement of the optimal
decision region for anomalies in the NP formulation when the
anomalies are assumed to be uniformly distributed, cf. [19]. The
method in [20] impressively avoids the explicit calculation of
the MV set but rather calculates the sufficient membership in-
dicator via the ’th rankings. Another method is the Geometric
Entropy Minimization (GEM) [24], which compares a test
instance with only the most concentrated subset of the nominal
training data that is asymptotically convergent to the MV set.
We also use the Minimum Volume (MV) set approach to de-

tect anomalies in temporal data. However, our goal is to obtain
a computationally scalable algorithm while maintaining the
NP optimality, i.e., Type-I error controllability with maximum
detection power. These methods [19], [20], [22]–[24] are batch
processing methods, i.e., not online, without any update strate-
gies; and they are computationally too demanding for real time
processing in fast streaming data applications. For instance, the
methods [20], [22], [23] require pair-wise distance calculations
and sorting to obtain the rankings and essentially to order the
likelihoods, which typically results in quadratic complexity in
the data size (and which are even further complex, if one also
considers the model updating for the new data arriving at each
time). The method in [19] is appropriate only for the batch
processing and only when the batch data is of relatively small
number of instances and of low dimensionality, e.g., 2-dimen-
sional, due to the -for instance- computationally heavy and
not scalable dyadic-tree implementation. Similarly, the GEM
method [24] is computationally not tractable, i.e., impractical;
and its tractable version (presented as another algorithm in [24])
still requires computationally heavy batch processing without
the original statistical guarantees. Thus, one can hardly use
such methods in our framework of sequential data processing
at large scales/high rates, although they are impressive batch
processing techniques. On the contrary, instead of such distance
calculations and orderings, we directly approximate the distri-
bution of the likelihoods under the general Markov models for
temporal data and analytically calculate the desired quantile for
the MV set. This allows a computationally highly efficient and
online implementation of the NP approach with controllable
Type-I error and maximum detection rate. Moreover, we do not
require (like [20] and unlike others) parameter tuning to match
the desired false alarm rate and also, we do not assume (unlike
these methods) stationary data source.
The goal in this paper is to detect anomalous subsequences

in a time series. This instance of the problem for temporal data

(not in the i.i.d. batch setting like [5], [19], [20]) has also been
considered, cf. [25]–[36] and the references therein. However,
most studies do not address the problem in the online setting and
they assume stationary source statistics [6], [7]. An anomaly
score is assigned to each fixed length subsequence using the
pair-wise distances among all possible such subsequences in
[25] and the detection is based on the magnitude of the anomaly
score. Several approaches [27]–[30] are then proposed to relieve
the computational burden of the pair-wise distance calculations
such as tree representations and prunings [26], local hashing
[27] and Haar transform [29], [34]. Instead of the standard Eu-
clidean distance, a compression based similarity measure is also
investigated in [31], [32]. Several other methods exists, which
consider unevenly sampled stochastic processes [33] as well as
differently defined anomalies [7], [35], [36]. Despite the impres-
sively efficient implementations (for instance [26], [30], [32],
[36]), the model free setting along this line of research requires
to investigate pair-wise relations or extract/apply complex fea-
tures/transformations. Hence, their solutions are essentially not
appropriate to process large scale data in real time due to their
computationally heavy requirements. In contrast, we exploit the
availability of the data in huge amounts and therefore the ability
to precisely estimate a general Markov model, which conve-
niently avoids such complex computations. Additionally, unlike
these discussed studies, we ensure the false alarm controllability
without parameter tuning even in the case of the non-stationary
sources.
Markovmodels are also frequently used for anomalydetection

in temporal data [3], [5]–[7], [37]–[41]. The unknown Markov
model parameters are first estimated in the training phase and
thereafter, if the probability of a test instance is sufficiently small
compared to a threshold, then an anomaly is declared in these
studies. In [38], this approach is successfully demonstrated for
first order Markov models, where the extension to the desired
generality with higher order is straightforward. Efficient repre-
sentations for large alphabet sizes is considered in via a suffix
tree used in conjunction with a finite state automata in [41];
and also an extended finite state automata in [39], [40]. In [37],
anomalies are defined as labeling errors in case of the hidden
Markov models and their effects on state recognitions are inves-
tigated. In the video anomaly identification [3], the pixel based
motion patterns are modelled under first order Markov statistics
and the sufficiently unlikely patterns are labeled anomalous.
Markov models are generally efficient and can be extended to
online implementations. However, it is difficult to related the
threshold parameters in these studies to the false alarm rates, and
even once tuned correctly; re-adjustments is necessary, if the
source statistics change. In contrast, our online algorithm does
not require parameter tuning, i.e., it is parameter-tuning free,
regardless of the stationary or non-stationary source statistics.
We also guarantee to match the specified bearable false alarm
rate (constant false alarm rate) while operating on the fast
streaming input data in a truly online manner at the maximum
possible anomaly detection power.
We provide the problem formulation in Section II. After the

proposed method is described in Section III, we present our on-
line algorithm in Section IV. We demonstrate the performance
of our algorithm in Section V. The paper concludes with final
remarks in Section VI.
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II. PROBLEM FORMULATION

We first concentrate on the stationary sources, then proceed
to non-stationary settings in Section IV and present examples in
Section V.
We consider a real valued, bounded, stationary and ergodic

discrete time stochastic process1 , i.e., with the
range space being (arbitrarily large and) finite, and

. Our goal is to detect anomalous subsequences, i.e.,
windows, in a given realization from the process . For
this purpose, we define a (sliding) window sequence

of window length at a time with .
Note that the definition of the window sequence depends on the
time , which is not shown in “ ” for notational simplicity.
Then, we decide whether the sequence is statistically con-
sistent with the underlying process , i.e., anomalous, or not.
An anomaly often occurs due to an external factor over-

writing the actual data or an abrupt change in the source
statistics [5], [10]. Since the characteristics of such an external
factor or a sudden change cannot be predicted beforehand, it
is reasonable to assume that an anomaly can be at any point in
the observation domain, i.e., it is uniformly distributed [10],
[19], [20]. To detect anomalies of this kind, we formulate
the problem in the Neyman-Pearson (NP) testing framework,
where one minimizes the miss rate at the cost of a pre-specified
false alarm rate . The NP test in this regard declares
an anomaly when

(1)

such that

(2)
where is the probability mass function (p.m.f.) for a nom-
inal window from and is the length of the se-
quence . We point out that:2 if -for instance- the real-valued
mother sequence is allowed to span the real line, i.e., ,
then the summation in (2) must be replaced with an integra-
tion, which would not affect our derivations or our development.
However, since we will use quantization in the amplitudes in
our signal model later, it is convenient here to use a finite range
space and hence a summation in (2) without loss of gen-
erality. Since is random, the log-likelihood

1Bold font types are used to indicate multiple quantities such as a sequence,
vector or matrix. Upper case letters are used to indicate a matrix or random
quantity. For instance, is a sample, is the sequence, is the stochastic
process; is a scalar, is a random variable, is a vector and is a matrix.
Further distinction is clear from the context with no confusion. is the in-
dicator function such that , if is TRUE; and 0, otherwise. is the
size of a set or determinant of a matrix or an absolute value depending on the
argument. All listings of the form generates a column vector and gen-
erates a set. is the transpose of a matrix . is the floor operation for a
scalar , i.e., . We use the “ ” notation to refer
to corresponding cases respectively, i.e., and .
All logarithms are natural logarithms.

2Note that the summation in (2) is over all possible windows of length ,
i.e., ; therefore, the threshold depends on . Since the process
is stationary, the p.m.f. accepts a common form across all windows of

but its form depends on the window length. Although “ ” would be
a proper notation, we drop the subscript for simplification in notation.

is also randomwith the corresponding density3 . Then, the
same test in (1) can also be written in the log-likelihood domain
as

(3)

such that

This test (the Neyman-Pearson (NP) test) is the “most pow-
erful” in the sense that it yields the highest detection rate at the
false alarm level when the anomalies are uniformly distributed
[10], [19], [20]. Our aim is to devise computationally efficient
online (with linear complexity in the number of instance) NP
tests for anomaly detection for time series.

III. ANOMALY DETECTION UNDER MARKOV STATISTICS
The problem described in Section II requires one to determine

not only the log-likelihood but also the density
of the log-likelihood in addition to the threshold . For

this purpose, we propose to model the underlying stochastic
process by a Discrete Time Markov Chain (DTMC) in
Section III-A and obtain the density in Section III-B. Then,
we propose our anomaly detection methods in Section III-C,
for which an efficient algorithm is presented in Section IV that
sequentially operates in a truly online manner.

A. Observation Model
We model the unknown density by a Discrete Time

Markov Chain (DTMC) that is assumed to govern the actual
process , where is the discrete time. Suppose that the
range bounding is split into intervals defining
the states of the underlying DTMC with the
amplitude intervals , where

is the length of each interval. We assume that at
each time step, the process preserves its state , i.e., it stays
in the corresponding amplitude interval, with probability
and makes an up/down or right/left transition with probability

. Since the process is
bounded, no transitions are allowed out of the boundaries. The
resulting birth-death type process is illustrated in Fig. 1. Note
that for any continuous time continuous source, if it is sampled
at a sufficient rate, the number of amplitude levels in this
model can always be chosen/set to obtain a birth-death type
process. The reason is follows: If the sampling period is small
enough, then the condition is guaranteed to be
satisfied for any realization and at any time (after sampling)
due to continuity, which immediately yields a birth-death type
process within our formulation. Also, this sampling rate affects
the scale of the anomalies and our algorithm allows one to
detect anomalies at any desired scale via the choice of window
length . The best choice for the window length , which must
be decided by the user, depends on, first, the target application
and, second, the data through the sampling rate. For instance,

3We simply use “density” or “distribution” interchangeably while referring
to the probability density or mass function of a random variable. The log-like-
lihood is also time varying, however, we drop the subscript for
notational simplicity.
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Fig. 1. A 3-state DTMC modeling of the process and a corre-
sponding window is presented. Note that the sequence is from an under-
lying signal, which is real valued and continuous; and possibly corrupted by an
arbitrary (not necessarily Gaussian) and bounded additive noise. However, the
noise is not illustrated in this figure for presentational clarity. The time series

is anomalous due to the two short-term irregularities: (i) In the boxed region
on the left, it has an abnormally too long waiting time at state 1; and (ii) on the
right, it has abnormally too many state transitions.

in detecting the anomalous power consumption events of the
Dutch research facility [25], the desired scale of the anoma-
lies is 1-day, and since the sampling rate is 96-readings per
day, the best choice for the window length in this example is

.
In this study, we concentrate on real valued signals that are

continuous (in the mathematical sense with respect to the time:
amplitude vs time), and possibly corrupted by an arbitrary (not
necessarily Gaussian) and bounded additive noise, where we
use Markov chains to model the data with quantized amplitudes
at discrete times. The Markov assumption here does not actu-
ally bring limitations about the assumed model and the gen-
erality is due to the Wold’s Decomposition [42], which basi-
cally states that any covariance-stationary stochastic process
can be decomposed as the sum of the two terms: an auto-re-
gressive (AR) process (or equivalently a moving average (MA)
process) and a deterministic mean signal. However, a direct ex-
ploitation of Wold’s Decomposition leads to an infinite Markov
state space, which is practically infeasible [43]. Therefore, to
reduce the number of states, we partition the amplitudes into
levels, i.e., intervals. Note that although our model, i.e., the in-
troduced birth-death type DTMC model, is a first order Markov
model, the extension to higher orders is easily possible within
our formulation by re-defining the history, i.e., concatenation, of
sufficiently many previous states as the “new states” of a new
and first order corresponding equivalent model. Regarding this
straightforward extension, if one desires to use previous obser-
vations, i.e., states, for a ’th order Markov chain, then she/he

would obtain a state space of cardinality with possibly a
general Markov chain with almost arbitrary transitions between
states violating our birth-death type chain assumption at the cost
of increased computational complexity. Nevertheless, due to the
almost negligible computational costs of the proposed algorithm
for first order birth-death type Markov chain, one can comfort-
ably use our algorithm at higher orders up to a certain level.
This quantization in amplitudes into levels through the in-

troduced DTMCmodeling can also serve as an effective dimen-
sionality reduction or an effective feature extraction step -in ad-
dition to the noise handling capabilities- with limited or no in-
formation loss. Thus, this quantization technique can actually
improve the learning rates of the model to be learned by re-
ducing the number of parameters/dimensionality and hence by
mitigating the overfitting issues. For instance, the authors of [3]
quantize the pixel intensity readings in time into only
levels for the proposed “statistical behaviour subtraction” [3].
Similarly, in terms of the Gaussian Mixtures Models (GMM)
based background subtraction in video signals, is typically
around 5 [44]. Hence, we consider that quantization in ampli-
tude is, in general, not restrictive and this quantization level
-as a design parameter- should actually be chosen as small as
possible with respect to the target application while preserving
information as much as possible. There is an obvious trade-off
here: the assumed DTMC model might start losing from its
modeling power as gets further smaller, and also cannot
be arbitrarily large since then the noise tolerance of the assumed
DTMC model decreases, i.e., it becomes more sensitive, as
gets larger. Nevertheless, this trade-off can be easily avoided by
straightforwardly extending from birth-death type of Markov
chains to the general Markov chains that allow arbitrary tran-
sitions between any states. Also, it is always possible to use a
suitably smaller to obtain a birth-death type chain. For in-
stance, the non-trivial choice of , which always yields
a birth-death type chain, has been successfully applied to video
anomaly identification [3].
Furthermore, the use of the birth-death type Markov chain in

our study does not cause loss of generality because our formu-
lations can be straightforwardly extended to cover the general
setting of the Markov chains with arbitrary transitions between
any states and remove the birth-death type Markov assumption.
On the other hand, our focus in this study is to obtain, as the first
time in the literature, the online implementation of the Neyman-
Pearson (NP) characterization for the anomaly detection in time
series data in a truly online manner with negligible computa-
tional costs without requiring parameter tuning. To that end, as
an initial study in this direction, we consider the birth-death type
Markov chains, i.e., a special case of general Markov chains,
that has been applied to the data with great success in a wide
variety of signal processing and machine learning applications
[3], [5]–[7], [44]–[49] ranging from the counting processes, e.g.,
queueing theory or population dynamics [45], as well as regres-
sion/classification tasks [48], [49] to video anomaly identifica-
tion [3].
In our approach, we consider the small variations of a signal

at any state as insignificant variations, i.e., as contamina-
tion/noise, and hence discard them. In this sense, we do not
assume that the noise is negligible. Instead, we directly handle
the noise either by discarding within state variations or by
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allowing noisy transitions. Thus, we concentrate on the transi-
tions (large variations)/waiting times (persistency) between/at
states. In fact, within state variations become increasingly
minute as the number of the states/regions of the amplitude
increases. For example, two different sequences
and mapping to the same state sequence , where

is the state of the ’th observation in ,
are considered “same” up to small variations. In this sense,
we can continue our derivations with only the state sequence

without referring to the actual sequence . However, to
emphasize the effect of the introduced DTMC as a mapping
from to and the corresponding equivalence in between,
we opt to use “ ” to refer to both the state sequence and
the actual sequence simultaneously unless it is necessary
to explicitly state the distinction. For example, is -to be
more precise- the probability of the state sequence under the
introduced DTMC model.
Based on this DTMC model, the density of a window
from of finite length is given by, cf. [45],

where is the prior probability for the initial state that ac-
counts for the initial conditions, is the waiting time for the
window at the state observed right before the th transition,
i.e., , for , where is the time
of the last observation before the ’th transition with .
Also, with is the corresponding se-
quence of states observed before each transition. Note that the
last transition is hypothetically assumed to be and
is the total number of transitions, which can be as small as only
1 transition. If we accumulate a total waiting time at state
as , then the log-likelihood is given by

(4)

where is the total number of state observations
in with the exception that and

is the number of “up/right” (“down/left”) transitions
from state in , i.e., and

. Note that the log-likelihood expression
in (4) is exact with the convention
when or to handle the boundary conditions.
Remark: We observe that a significant reduction via the pro-

posed observation model is possible with no or limited informa-
tion loss. Since our DTMC model is a birth-death type Markov
chain, the number of up and down transitions between two states
must be (almost) equal due to the Global Balance (GB) equa-
tions, i.e., . Therefore, the accumulated total
waiting times ’s at each unique state as well as the corre-
sponding number of transition occurrences provide suffi-
cient statistics and are the only signal attributes to be necessarily
stored. In this sense, is a complete set of de-
scriptors of dimensionality that is independent of the
length of the sequence .

We derive the log-likelihood density in the following
Section III-B in order to later devise our anomaly detection
methods in Section III-C.

B. The Log-Likelihood Density
In this part, we approximate the probability density of the log-

likelihood in order to efficiently find the threshold
of the anomaly detection test formulated in Section II. We start
with concentrating on the random variables , i.e., and ,
in ; and then continue with for this derivation.
Let us define and

, in which and are the corresponding estimation
errors. Then, we can write (4) as

(5)

where is a constant with

and is an approximation term with

By ergodicity of the process and by weak law of large
numbers (WLLN), , as the length of the sequence

goes to infinity, i.e., as in probability.
Furthermore, we point out that as is random, the log-likeli-
hood is also random with the density , to
which the initial condition has a negligible contribution
for large . Conditioned on the knowledge of , since
( and ) are Maximum Likelihood (ML) estimators
of the two parameters of a multinomial random variable (with
three outcomes), they are unbiased with covariance and
normally distributed for large , i.e.,

, where

We point out that ’s are correlated, which can be observed
from the Global Balance (GB) equations from our birth-death
type Markov chain, i.e., . Nevertheless, conditioned
on the complete knowledge of ; we naively sup-
pose that is also normally distributed for large with mean

, where (contribution of
the initial and termination conditions is neg-
ligible for sufficiently long observations), is the transpose of

; and variance , where

(contribution of is negligible), i.e.,

(6)
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Fig. 2. The log-likelihood density model based on the mixture of Gaussians
in (8). First the parameter is sampled from ; then, the log-likelihood is
sampled from .

Similarly, the steady state probability can be approximated
[50] by the estimator , which is unbiased with
covariance , where

is the matrix of transition probabilities consisting of the terms
, and with being the diagonal matrix of

. For sufficiently large , is normally distributed,
i.e., and hence,

(7)

Note that the density effectively defines a Gaussian prior
on the mean and the variance of the conditional density

. We can further obtain a reduced set of random param-
eters , where4 with the
corresponding density .
As a result of this, we obtain

yielding to the (unconditional) log-likelihood density as

(8)

is a mixture of Gaussians, cf. Fig. 2.
As a final remark in this section, our derivations can be

straightforwardly extended to the general Markov chain with
arbitrary transitions between any states (not only between
the neighboring states as in the birth-death type chain) at
the cost of increased computational complexity. For this
purpose, the log-likelihood in (4) is first updated to incorpo-
rate the new probabilities s of such arbitrary transitions
from state to state with with the corresponding
number of observed transitions s. Then, the same func-
tional log-likelihood form in (5) can be obtained with the new
variables defined as ,

, where is
similarly the corresponding error term. Therefore, all of the
log-likelihood density derivations and the Gaussian approx-
imations in our formulation remain valid and the rest of the
derivations for the extension to the general Markov chain fol-
lows similar lines. Hence, the corresponding reduced mixture
of Gaussians form of (8) is straightforwardly derived in the
same exact way to obtain our algorithm HNP as illustrated in
Fig. 2 in the case of the general Markov chains.

4 is the transpose of a matrix .

C. Anomaly Detection Methods
In this section, we propose two Neyman-Pearson (NP) test

based anomaly detection methods that we compare in our
experiments. A) An NP test with the threshold in (3)
that is based on extensive Monte Carlo simulations named
as “MCNP”. B) A hierarchical NP test based on the derived
mixture of Gaussians form of the log-likelihood density, named
as “HNP”, for which we also present a computationally highly
efficient online algorithm without requiring Monte Carlo simu-
lations or parameter tuning (“Sequential HNP”) in Section IV.
Regardless of whether the source is stationary or non-stationary,
the method HNP successfully achieves the desired false alarm
rate while maximizing the detection power.
The proposed anomaly detection method HNP is a hierar-

chical application of two successive NP tests: the first one uses
the marginal density of and the second one uses the log-like-
lihood density conditioned on , cf. Section III-C-2. During
this hierarchical application, HNP allows one to analytically cal-
culate the thresholds (of its two individual NP tests) as simple
functional evaluations without requiring Monte Carlo simula-
tions and complicated parameter tunings; and hence, yields a
computationally highly efficient and online algorithm (Sequen-
tial HNP in Section IV). On the contrary, the NP test in (3) is
not analytically tractable. Namely, the threshold of the NP test
cannot be determined analytically, i.e., Monte Carlo simulations
are necessarily used in theMCNPmethod. Secondly, the overall
detection rate of anomalies for the test method HNP is not the
best achievable when the anomalies are uniformly distributed;
however, it is preferable in our study due to its efficiency. Nev-
ertheless, the individual tests in the HNP test are all separately
the most powerful as they are NP tests and the resulting HNP
test is uniformly the most powerful over the variable while
achieving the desired false alarm rate . Moreover, when the
anomalies are not uniformly distributed but appear as a change
in the statistics of the underlying process , the optimality in
the NP test is certainly lost and the proposed method HNP out-
performs the method MCNP, cf. our experiments in Section V.
1) An NP Test Based on Extensive Monte Carlo Simulations

(MCNP): In order to avoid the effects of the imperfect Gaussian
approximation in deriving the log-likelihood density when
the window length is not sufficiently large, the first method
we propose is an NP test, which is based on the exact form and
the exact density of the likelihood in (4); however,
it heavily relies on extensive Monte Carlo simulations. We em-
phasize that this test is a generalization of the anomaly iden-
tification method in [3] to multi state birth-death type Markov
chains and serves as a comparison basis in our experiments. In-
stead of approximating the density of and calcu-
lating an approximate threshold for a specified false alarm rate
, we estimate this threshold via extensive Monte Carlo simu-
lations. In these simulations, we first randomly generate
many samples of and obtain a set of realizations.
Note that while generating a sample , we actually sample a
sequence of a fixed and specified window length using
the DTMC model and calculate via (4). Sup-
pose that the set is sorted in the ascending order, i.e.,

for any , then we estimate the true threshold in (3)
as , which precisely provides the anomaly
detection method described in Section II.
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Algorithm 1: Sequential HNP
Input:
1:
2: while is sequentially streamed; and for do
3: via the update rule in (14)
4: via the rule in (13) using the window
5: Update the model parameters via the rule in (12)
6:
7:
8: if then
9: Declare anomaly at
10: else
11:
12: if then
13: Declare Anomaly at
14: end if
15: end if
16: end while
Return: All found anomalies

2) A Hierarchical NP Test (HNP): Based on the conditional
independency structure that is observed as a mixture of Gaus-
sians in the final form of the log-likelihood density in (8), one
can intuitively separate the anomaly detection problem into two
pieces. Accordingly, we finally propose a hierarchical anomaly
detection test method HNP that first applies an NP test for an
anomaly against and -if not found an anomaly- secondly ap-
plies an NP test for an anomaly against . We formulate this
hierarchical test as

(9)

In order to ensure an overall false alarm rate , we also require
the condition , where and are the false
alarm rates of the tests for and the conditional observation ,
respectively.
Unlike theMCNPmethod, the HNPmethod requires in ad-

dition to the log-likelihood that is directly observable through
from a window sequence of length to be tested. Then,

we determine the threshold from

where is exponentially distributed with mean 2 since the ex-
ponent of a bivariate Gaussian is chi-squared distributed with
degree of freedom 2, and
is related to the normalization constant of a bivariate Gaussian.
Hence, we obtain

(10)

Similarly, we obtain

(11)

where is the cumulative distribution function for normal
distribution. Finally, the overall false alarm budget is to be
shared between and such that is
satisfied to maximize the detection. This is a design issue and in
this work, we set .
We point out that the method HNP does not require Monte

Carlo simulations even for varying window lengths and varying
source statistics since the thresholds are derived analytically.
This allows a sequential and computationally highly efficient
anomaly detection algorithm, cf. Section IV.
3) Estimation of the Model Parameters: Both the proposed

methods MCNP and HNP require the knowledge of the model
parameters and recall that in this study, we
are presented a sequence and we would like to detect anoma-
lous (sliding) windows in . To estimate these model parame-
ters, we use another sliding estimation window with length

, where note that and includes .
Then, our model parameter estimators using the signal attributes

extracted from are as follows:

(12)

where we use the “ ” notation to refer to both cases respec-
tively, i.e., we have two equations in (12) respectively for
and . Although the steady state distribution can be an-
alytically calculated by using the global balance equations for
a birth-death type process, we also estimate it for the sake of
completeness.

IV. SEQUENTIAL HNP
We observe that the estimation of the model parameters, the

evaluation of the log-likelihood expression in (4) and the calcu-
lation of the HNP thresholds can all be sequentially performed
through a simple update. Based on this observation, we present
our sequential and computationally highly efficient algorithm
for the proposed anomaly detection method HNP (Sequential
HNP). In the following, we describe the details of the updates
for parameter learning and log-likelihood calculations that are
necessary in our sequential implementation.
Parameter Learning Updates: We need to develop sequen-

tial updates for the observation dependent variables in our
parameter estimation equations in (12). Suppose that we have

calculated based on the sequence
at time ; and let be the state of the

’th observation in the sequence . After reading the instance
, we can update these variables as

(13)

and as well as are similarly updated and
we slide the parameter estimation window by one step.
Log-Likelihood Updates: Suppose that we have

, where , and we would like to calculate
with an update over without a re-calculation after

reading the instance . Let be the state
of the ’th observation in the sequence , then it is straight-
forward to show that

(14)
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TABLE I
AVERAGE FALSE ALARM RATES ACHIEVED BY THE HNP METHOD APPLIED TO 100 RANDOMLY INITIALIZED MARKOV MODELS OVER 5000 SEQUENCES PER

EACH MODEL FOR VARYING NUMBER OF STATES , SEQUENCE LENGTH AND DESIRED RATES

and similarly for all of the other cases: i) and
; ii) and ; and iii) otherwise.

Based on these sequential likelihood and parameter updates
in (13) and (14), as well as the threshold rules of HNP in (10)
and (11), we present the sequential HNP in Algorithm 1.
Unlike the method MCNP, we analytically calculate the

appropriate thresholds for a specified desired false alarm rate
without using Monte Carlo simulations in our anomaly

detection method HNP. This is a strong attribute of HNP
that allows a generalization of our problem formulation to
non-stationary sources with real time processing capabilities
in a computationally highly efficient framework. Here, we
assume “slow changes”, i.e., “continuous drifts over time”, in
the source statistics to define the non-stationarity whereas an
abrupt, i.e., sudden, change is used to define an anomaly, which
differentiates non-stationarity from anomalies. Thus, anomaly
detection in non-stationary environments is still reasonable and
an effective tool. Note that the “slow” change in the source sta-
tistics refers to the “slow” rate of drift in the model parameters
learned for the discrete signal obtained after the sampling of
the underlying non-stationary continuous signal.
Consider a data stream from a non-stationary stochastic

process such that its statistical properties change slowly in
time; and we sequentially detect the anomalous windows of
length in in real time. Our approach is to sequentially
learn the time-varying model parameters in a wider and sliding
window with and using the es-
timation equations in (12) and the corresponding update rules
in (13), which provides the real-time adaptation to non-station-
arity. Meanwhile, we apply our test at every time for windows
of length , with and , using
the HNP decision rule in (9) and the corresponding updates in
(14). The complete algorithmic description is provided in Algo-
rithm 1. Since our method requires only basic function evalu-
ations and a few simple operations such as additions and sub-
tractions, our method can be applied to stationary or non-sta-
tionary data streams with performance guarantees, i.e., NP op-
timality, at negligible computational costs without parameter
tuning and without a re-training phase and even sequentially in
a truly online manner. On the other hand, the method MCNP
or the well-known other methods in the literature such as the
nearest neighbor graph based detections continuously require a
re-training phase, which makes them non-applicable (if one de-
sires to maintain the crucial NP optimality) when the source is
non-stationary.

Our purpose in parameter estimation in non-stationary envi-
ronments is to capture, i.e., learn, an average behaviour of the
time varying characteristics in the signal due to the non-station-
arity, where the precise inference at each time is not reasonable,
if not impossible. In order for the parameter estimation under
non-stationarity to be reasonable, the variation in the model pa-
rameters, i.e., change in the source statistics, should be “slow”
so that a meaningful average behaviour can be extracted and a
test for an anomaly against the extracted average behaviour can
be performed. Otherwise, if the non-stationarity in the signal
is chaotic, then no such average behavior can be extracted
and the problem itself becomes technically trivial; although
the detection becomes more difficult. if the non-stationarity is
chaotic, then one can observe every sequence with no surprize;
and hence, one can readily use a nominal model (without a need
for parameter estimation or learning) with parameters such that
all possible sequences are of the same probability.

V. EXPERIMENTS

In our first set of experiments, we concentrate on the achiev-
ability of the specified false alarm rate. Note that the MCNP test
method can achieve this rate arbitrarily accurately with exten-
sive simulations. However, the proposed test HNP is designed
to match the desired rate without such simulations. To this end,
we devise experiments with the number of states
and the sequence length for varying desired
false alarm rates . For
a given , and as well as a set of randomly chosen model
parameters, i.e., , we generate 5000 length-
(normal) sequences directly from the Markov model and count
the number of anomaly decisions (by HNP) that yields a false
alarm rate.We report the achieved average false alarm rates over
100 randomly initialized model parameters in Table I.
We observe that the proposed method HNP approximates the

desired false alarm rate more accurately for longer sequences
since the Gaussianity assumption for the estimation error of
the multinomial parameters also improves with the sequence
length. Similarly, since the inter-state dependencies decrease as
the number of states increases, we obtain a better achiev-
ability for relatively larger ’s. Finally, the proposed method
HNP achieves the desired false alarm rate in most of the cases
with 1% error with the sequences of length or longer.
We next compare the MCNP test method with the HNP

test method in terms of the Receiver Operating Characteristics
(ROC). In these comparisons, we concentrate on two types
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Fig. 3. The HNP test method significantly outperforms the MCNP test method
when the anomalies are in terms of the abrupt model changes (cf. or

). On the other hand, when the anomalies are uniformly distributed, both
methods perform comparably (cf. ).

of anomalies that are both due to a sudden change in the
source statistics. In the case of the first type of anomalies, the
anomalous sequences are still assumed to be drawn from a
Markov model, however, whose parameters and the nominal
model parameters are different. On the contrary, in the second
type, anomalies do not necessarily follow a specific Markov
model, where the anomalies are assumed to be uniformly and
equally likely distributed in the observation domain. In this
case, our purpose is to demonstrate the NP optimality since
the described MCNP test is theoretically known to be optimal
when the anomalies are uniformly distributed. To this end, we
generate 5000 anomalous sequences of length , each of
which is generated with respect to a randomly chosen different
set of model parameters, whereas another set of 5000 normal
sequences is generated with respect to a same and
fixed nominal set of model parameters. In Fig. 3, we report
the average ROC rates over 100 trials for varying number of
states and desired rates . Secondly, we follow the
same procedure, however; generate the anomalous sequences
“truly uniformly” for the case . We observe that if the
anomalies emerge as a change in the model parameters, then the
proposed method HNP detects such anomalies at significantly
higher rates compared to the method MCNP. Remarkably, NP
optimality is observable only when the anomalies are truly
uniformly distributed, cf. in Fig. 3.
We emphasize that the MCNP test method heavily relies on

Monte Carlo simulations to achieve the desired false alarm
rate, which is prohibitively complex for real time applications.
On the contrary, the proposed HNP test method is compu-
tationally highly efficient with almost negligible costs since
it does not require such Monte Carlo simulations. This is a
strong attribute of the HNP method, which makes it especially
attractive when one needs to process non-stationary sources.
We next concentrate on the truly sequential implementation
of the proposed HNP method, where we perform experiments
with non-stationary sources. In this part, we generate a se-
quence of length that is specially exposed

Fig. 4. The HNP test method significantly outperforms the MCNP method at
almost negligible computational costs when the signal source is non-stationary.

to drifting source statistics such that each instance is pro-
duced based on the Markov model with the time varying
parameters of with , where

, . Hence,
the non-stationary data in this example is generated by simu-
lating a relatively slow change from the Markov model with
the transition matrix to the one with the transition matrix

. We would like to detect the anomalous subsequences of
of length using a sliding window approach,

where we use wider sliding windows of length for
estimating the active set of source statistics. We explicitly inject
anomalies in by overwriting the first instances starting
from every ’th instance of by the values uniformly drawn
from the support set {1,2}. We also generate a label sequence
, where indicates an anomaly such that the window

includes more than anomalous points; and
otherwise, . We run the proposed sequential HNP on
randomly generated 10 different sequences and report the
average ROC curves in Fig. 4. On the other hand, since the
signal source in this experiment is non-stationary, the threshold
for the MCNP test has to be calculated at every instance via
Monte Carlo simulations, which is clearly practically infeasible.
Instead, for the MCNP test, we estimate the threshold only once
using the complete sequence . We observe that the proposed
HNP test method significantly outperforms the MCNP test at
almost negligible computational costs with non-stationary data.
Next, we present our real data experiments, where we run

our sequential HNP algorithm on the time series consisting of
the power consumption readings of a Dutch research facility
throughout the year 1997 [25]. These readings, i.e., power con-
sumption measurements in 1997, are real and obtained every
15 minutes, which produces a sequence of length

(96 readings per day). In this experiment, we use
intervals in the magnitude (the complete magnitude interval

is [614,2152]) corresponding to low-[614, 1200), mid-[1200,
1600) and high-[1600, 2152] levels of power consumption. All
of the choices of result in a birth-death type
process as desired, however, we use since it is found
to be appropriate by inspection. Since this data set is provided
without a ground-truth for anomalies, we inject anomalies into
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Fig. 5. Real data experiments on the power consumption data set. Our tech-
nique HNP is also robust to the mismatches between the true scale of anomalies
and the guessed scale.

the data set after the quantization in order to compare (using
the ROC curve) the sequential HNP (our method) and the stan-
dard NP test, i.e., MCNP, that is based on extensiveMonte Carlo
simulations. We inject anomalies as follows: During the first
day of each month starting from February, we randomly over-
write the power consumption data (after quantization) such that
a random transition from a state to another possible one (in an
equally likely fashion) is applied at any time during that day.
This generates anomalous time instances in
total. We use (1 month) and
to also evaluate for possible mismatches between the true scale
of anomalies (96 in this case) and the guessed scale ( in this
case). We also use a label sequence corresponding to this se-
quence of power readings such that in this label sequence, any
time is labeled as anomalous if the test window ending at that
time has more than 50% injected anomaly instances; and labeled
as nominal, otherwise. Since it is computationally prohibitive to
repeatedly perform Monte Carlo simulations at every time for
the methodMCNP, we perform those simulations only once (for
the complete stream) to calculate the desired thresholds.
Then, based on this experimental setup, we plot the ROC

curve in Fig. 5 reporting the true detection rates vs false alarm
rates for the methods HNP and MCNP for all cases of (over
10 trials for injected random anomalies). We observe that our
technique significantly outperforms the method MCNP in all
cases due the non-stationarities in the power consumption data
(for instance: months including holidays such as Good Friday or
Christmas Eve consumes less power creating non-stationarity),
to which the method MCNP cannot adapt (due to its computa-
tional costs), whereas our online technique HNP demonstrates
excellent adaptation due to its efficient design with controllable
false alarm rate. Finally, we also observe that our technique is
also robust to the possible mismatches between the true scale of
anomalies and the guessed scale.

VI. CONCLUSION
We introduce an online anomaly detection algorithm for tem-

poral data under practical real life constraints to specifically ad-
dress the contemporary applications requiring sequential data
processing at large scales/high rates. The proposed algorithm is

computationally highly efficient such that data streams at ex-
tremely fast rates can be processed in real time. Our algorithm
also allows real time controllability of the Type-I error, i.e., false
alarm rate, by nearly achieving a user specified false alarm rate
while maximizing the detection power regardless of whether the
source is stationary or non-stationary. Moreover, we do not re-
quire parameter tuning (to match the desired rates) even if the
source statistics change. The proposed algorithm sequentially
learns the possibly varying nominal Markov statistics in a time
series and detects the anomalous, i.e., statistically sufficiently
deviant, subsequences based on a Neyman-Pearson (NP) char-
acterization for anomalies. The presented study is highly novel
since we are the first to provide an online NP solution to the
problem such that the NP optimality, i.e., maximum detection
power at a specified false alarm rate, is nearly achieved in a
truly online manner.
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