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Abstract—We study sequential compound decision problems in
the context of sequential prediction of real valued sequences. In par-
ticular, we consider finite state (FS) predictors that are constructed
based on a hierarchical structure, such as the order preserving pat-
terns of the sequence history. We define hierarchical equivalence
classes by tying certain models at a hierarchy level in a recursive
manner in order to mitigate undertraining problems. These equiv-
alence classes defined on a hierarchical structure are then used to
construct a super exponential number of sequential FS predictors
based on their combinations and permutations. We then introduce
truly sequential algorithms with computational complexity only
linear in the pattern length that 1) asymptotically achieve the per-
formance of the best FS predictor or the best linear combination
of all the FS predictors in an individual sequence manner without
any stochastic assumptions over any data length n under a wide
range of loss functions; 2) achieve the mean square error of the
best linear combination of all FS filters or predictors in the steady-
state for certain nonstationary models. We illustrate the superior
convergence and tracking capabilities of our algorithm with re-
spect to several state-of-the-art methods in the literature through
simulations over synthetic and real benchmark data.

Index Terms—Sequential prediction, online learning, finite state
machine, hierarchical modeling, big data.

I. INTRODUCTION

A. Preliminaries

W E investigate sequential compound decision problems
that arise in several different signal processing [1]–[5],

information theory [6], [7] and machine learning applications
[8]–[11]. In particular, we sequentially observe a real valued
sequence x1 , x2 , . . . and produce a decision (or an action) d̂t

at each time t as our output based on the past x1 , x2 , . . . , xt .
We then suffer a loss based on this output when the true dt

is revealed and our goal is to minimize the (weighted) ac-
cumulated or expected loss as much as possible while using
a limited amount of information from the past. As an exam-
ple, in the well-known sequential prediction problem under the
square error loss, the output d̂t at time t corresponds to an es-
timate of the next data point xt+1 , where the algorithm suffers
the loss (xt+1 − d̂t)2 after xt+1 , i.e., dt = xt+1 , is revealed.
The algorithm can then adjust itself in order to reduce the future
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losses. This generic setup models a wide range problems in var-
ious different applications ranging from adaptive filtering [12],
channel equalization [13], repeated game playing [9] to online
compression by sequential probability assignment [14], [15].

In this paper, we investigate an important version of sequen-
tial compound decision problems, where we consider finite state
(FS) machines. State (or side information) dependent data pro-
cessing in the context of filtering or prediction is extensively
studied both in signal processing [16]–[19] and information
theory [7], [14], [15], [20] literatures since this structure natu-
rally arises in different real life applications and is suitable for
big data applications due to its compact representation [21].

As an example application, we specifically study predict-
ing the trend of an observed sequence, i.e., whether xt+1 will
be greater/smaller than xt at each time t, e.g., whether an in-
crease dt = 1 or a decrease dt = −1 happens in the future. Since
we are interested in the relative value of the next sample, we
use the relative ordering patterns of the sequence history to de-
fine states. In particular, at each time t, we use the last l samples
of the underlying sequence, i.e., (xt−l+1 , . . . , xt), to construct
relative ordering patterns and define states using them. How-
ever, we emphasize that our results and derivations are generic
and independent of the particular application or the desired se-
quence dt , i.e., our results apply to many state definitions under
a wide range of loss functions (both statistical and determinis-
tic) as clarified later in the paper. In this sense, we cover both
sequential prediction [4] and adaptive filtering problems [12]
as demonstrated in our simulations. For this particular example
application, we set the relative ordering patterns as our states
since an uphill trend in product usage or a downhill trend in a
stock price is expected to continue in the future [22]. As a real
life application, we demonstrate that we can accurately predict
the relative electric consumption of actual customers in Turkey
using their past consumption patterns in Section IV.

In state dependent compound decision problems that we study
in this paper, there is one issue that naturally arises, which is the
selection of the state space. In our example application of trend
prediction problem, this corresponds to selecting the length of
the relative ordering patterns, i.e., choosing the value of l (se-
quence history length). We may choose a large l, and thus,
select a large number of states for accurate and fine modeling.
However, selecting too many states may result in undertraining
due to the sparsity of data, since some states may not occur
frequently enough for sufficient training. We point out that for
the trend prediction scenario, i.e., when the states are defined
to be the relative ordering patterns, a sequence history of length
l, i.e., (xt−l+1 , . . . , xl), can have l! ≈ (l/e)l different ordering
patterns [23]. Hence, even for a moderate l value that defines
meaningful patterns in real life applications [23]–[25], say for
l = 10, the number of patterns grows as 10! ≈ (10/e)10 =
4.54 × 105 . Therefore, training a sequential FS machine us-
ing this many patterns directly as states is impractical since we
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require a substantial amount of past observations (which may
not be available in most real life applications even for station-
ary data). Therefore, we may choose a fewer number of states
that still covers the whole observation space. As an example,
in learning with decision trees, pruning [26] is a widely used
technique for overcoming undertraining problems by decreasing
the number of states to be trained. However, note that, selecting
states too coarsely may not be sufficient for accurate representa-
tion of the data. Fixed selection of states is also a problem when
the “correct” number of states changes over time, e.g., when the
data is nonstationary, as in most real life applications [27].

Therefore, we use hierarchical structures, which are a pow-
erful tool for state selections. Instead of simply choosing a suit-
able set of sufficiently informative states and training them, we
can model the data via equivalence classes and train all the
states (both fine and coarse) simultaneously using hierarchical
structures. Hierarchical structures are encountered in every con-
textual signal processing application when the observation data
can be clustered in a certain way. The clustering is done via
common features, which are repeatedly occurring. Since certain
features can be tied together, these qualities can be classified via
a hierarchical structure. Therefore, hierarchical structures can
accurately model wide range of diverse state information and
are suitable for many applications.

For example, in sequential source coding problem studied in
[15], Willems proposes two nearly optimal source code meth-
ods. For the first method, the state of the FS machines are given
by the number of changes encountered so far and the time index
of the last change, while for the second method only the time
index of the last change is used. The states of these two can be
combined in a hierarchical manner such the finest states con-
stitute both of these parameters as in their first method and the
coarsest states are given by only the last change time index as in
the second method. Sequential coding for a binary tree source
has been studied in [14], where context tree weighting is used for
sequential probability assignment. The states of the FS predic-
tors correspond to the past symbols. Each observable sequence
constitutes a state and these states are connected in a hierarchi-
cal manner as in our hierarchical structure. With each observed
symbol, we move to the lower levels in the hierarchy. In [28],
Feder et al. provides universal codes for hierarchical structure of
classes. In [29], Gyorgy et al. uses a hierarchical implementation
of switching strategies to compete against the class of switching
experts. Different experts with different switching times consti-
tute a hierarchical structure if they made some of their switches
at the same time. In [30], Helmbold and Schapire propose an
algorithm that predicts nearly as well as the best pruning of
an unpruned decision tree, where the states correspond to the
nodes of that tree. In [31], Takimoto et al. improves upon the re-
sults of [30] and provides dynamical programming schemes for
prediction as well as the best pruning of the decision tree. De-
cision trees constitute a hierarchical structure since the mother
nodes are created from hierarchical combination of child nodes.
In the linear and nonlinear prediction problem studied in [16],
[17], rate optimal prediction algorithms using context trees are
provided, where the states correspond to the partitions of the
observation space for linear predictors, which creates piecewise
linear models. The partitions are combined in a hierarchical
manner in the context tree to create different partitionings of the
observation space. For channel equalization problem in [13],

Fig. 1. All equivalence classes for the FS diagram with l = 3 and h = 2.

context trees are used for the classification of side information,
where the states correspond to the partitioned regions of the
variance vector of the input signal. The hierarchical combina-
tion of partitioned regions creates different partitionings of the
feature space.

Note that, all these applications either directly uses hierar-
chical structures or can be straightforwardly converted into our
framework, they are merely specialized examples of the general
class of hierarchical approaches that we propose. Any context
tree structure used in the state dependent data processing prob-
lems falls into our model. We generalize all the applications
of the hierarchical structures in our comprehensive algorithm.
Instead of deciding on a particular structure beforehand, we
propose an algorithm that works with any kind of hierarchical
structure. Our general model covers all tree structures (uniform
and nonuniform) and all of the splitting model classes consid-
ered in [32]. The hierarchical structure used in our algorithm
can be any kind of oriented directed graph [33] satisfying two
properties:

� the connections have to be from the classes in the lower
levels of the hierarchy to the classes in the higher levels,

� the connections to a node in the hierarchical graph needs
to correspond to disjoint regions in the state space whose
union gives the state space region of the connected node.

In the trend prediction problem, we create the hierarchical
structure by defining “super set” equivalence classes in rel-
ative ordering patterns. Defining super sets is a widely used
approach in speech recognition applications when there are not
enough data to adequately train all the phoneme states [34].
Even though, a sequence of length l can have l! different order-
ing patterns, most of these share similar characteristics that can
be exploited to group (or tie) them together to form intermediate
states each representing a collection of the original patterns as
shown in Fig. 1. For the scenario in Fig. 1, we consider the
location of the largest element as the main characteristics in
order to group the patterns in a recursive hierarchical manner.
With such a hierarchical equivalence class definition, we can
construct a huge number of different sequential FS predictors
corresponding to different permutations and combinations of
these equivalence classes, e.g., the sequential FS predictor us-
ing all the order preserving patterns directly as states and the
sequential FS predictor using none of the patterns as states. Note
that one of the FS predictors defined by the hierarchical structure
is optimal for the underlying task at hand. The optimal predic-
tor may change in time for nonstationary data, as is generally
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Fig. 2. FS Diagram for l = 3 and h = 2, where all allowable transitions are
drawn.

the case in real life applications, but the hierarchical structure
can react quickly to these changes, since the coarser states are
trained faster. One may think of training the coarser states as
tracking the general behavior of the data and training the finer
states as more accurate modeling of the data.

B. Relevant Work

State dependent prediction under a particular hierarchical
model, i.e., using context trees, is extensively investigated in the
computational learning theory [30], [31], [35] and in the signal
processing literature [16], [17]. However, these methods mainly
and merely use the weighting ideas [14], [15] from universal
source coding or derandomization methods [36] in order to ef-
ficiently construct either the Aggregated Algorithm (AA) [37]
(or its variants) or the universal mixture weights [38]. Hence,
the resulting specific mixture algorithm can only achieve the
accumulated loss performance of the best algorithm in the mix-
ture for this specific tree structure. Note that the accumulated
loss as a performance measure may not be useful or relevant in
most adaptive signal processing applications where the tracking
and the transient performances are more critical [12]. To resolve
this issue, switching competition frameworks are incorporated
into the AA weighting and its variants [4], [29], [39]. However,
the assumptions required by these algorithms (such as the de-
sired data to be bounded) do not hold for most real life adaptive
signal processing applications such as Gaussian data [27]. Fur-
thermore, most of these algorithms require a priori information
on the underlying data sequence to be optimized in an individ-
ual sequence manner, such as the data length or the number of
switches [39].

On the other hand, there exist universal binary prediction al-
gorithms [21] that achieve the performance of any finite state
predictor in the long run. In this sense, the choice of the states,
such as defining “patterns” as the states or other equivalence
classes as the states, or selection of the transition functions
between the states are not relevant in the long run since the al-
gorithms of [21] achieve the performance of any state dependent
predictor. However, note that, the results in [21] are asymptotic,
i.e., the data length goes to infinity, and states of the finite state
machines or transitions between them are fixed. We emphasize

that the state definition, i.e., the equivalence class defined by a
state, or the relevance of a state information can change in time
since statistics of the data may change in time. Hence a suc-
cessful prediction algorithm for finite data lengths should also
learn or update the best state assignment, i.e., what we define
as a state or side information from the data, and quickly adapt
to changes in the data statistics. In this sense, although such
results apply in the long run, they are not applicable over finite
length data sequences, which is the main contribution of this
paper since the best choice of the underlying FS predictor can
change in time.

C. Contributions

For the first time in the literature, we have introduced a truly
sequential comprehensive algorithm to solve the online com-
pound decision problem given a generic hierarchical model. We
emphasize that our approach is universal and generic such that
our algorithm can be applied to a wide range of hierarchical
equivalence class definitions. Although the problem of sequen-
tial prediction in order preserving patterns is considered in the
paper, our results and derivations are independent of the par-
ticular application and apply to many state definitions under
a wide range of loss functions (both statistical and determinis-
tic), e.g., general convex loss functions with Lipschitz gradients.
We cover both sequential prediction [4] and adaptive filtering
problems [12] as demonstrated in our simulations.

We propose a self working, computationally efficient algo-
rithm that works with any kind of hierarchical structure. Our
algorithm is universal over all possible hierarchical structures,
such that it is not dependent on the specific hierarchical model.
We introduce a truly sequential algorithm with computational
complexity only linear in the hierarchy depth h (e.g., we can
set h = l − 1 for the trend prediction scenario, cf. Fig. 1) for
a generic hierarchical structure that i) asymptotically achieves
the performance of the best FS predictor among the doubly
exponential number of possible FS predictors in an individ-
ual sequence manner without any stochastic assumptions over
any n under a wide range of loss functions; ii) asymptotically
achieves the performance of the best “linear combination” of all
FS predictors defined on the hierarchy in an individual sequence
manner over any n under a wide range of loss functions; iii)
achieve the MSE of the best linear combination of all FS filters
or predictors in the steady-state [27] for certain nonstationary
models [12], [40]. We emphasize that our algorithms are truly
sequential such that they do not need any a priori information
on the underlying data sequence such as the sequence length,
bounds on the sequence values or the statistical distribution of
the data. In this sense, the introduced algorithm is suitable for
big data and real life applications under both stationary and
nonstationary settings. We also show that the weights of our al-
gorithm converge to the minimum MSE (MMSE) optimal linear
combination weights.

We emphasize that we propose a general operational algo-
rithm and not a weighting model. Our algorithm is applicable
for use with numerous weightings in literature [9], [37], [38],
[41]. Our algorithm can also use other potential functions in
a straightforward manner. Probability assignment ideas in uni-
versal coding [21], [28] can be directly implemented. To this
end, the universal weighting methods used in sequential coding
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literature can be converted to prediction algorithms through the
methods used in this paper. There are only two requirements for
the weighting scheme to be used:

� the weight updates for the FS predictors needs to be mul-
tiplicative for our telescoping rule to work,

� the weight update of the connected states in the hierarchy
needs to be same if the observed sample falls within their
respective state space regions.

D. Organization of the Paper

In Section II, we describe the use of the hierarchical struc-
tures for FS prediction and provide the problem framework. In
Section III-A, we introduce a sequential FS predictor that solves
the underlying problem using a brute force approach with a
computational complexity doubly exponential in the hierarchy
depth. We then show in Section III-B that this algorithm can be
efficiently implemented with a computational complexity linear
in the hierarchy depth, hence resulting in a tremendous reduc-
tion in the computational cost. In Sections III-C and III-D, we
extend our discussions for different linear combination weights
and cost functions, respectively. We then demonstrate the per-
formance of our algorithm through simulations in Section IV
and finalize our paper with concluding remarks in Section V.

II. FINITE STATE PREDICTION VIA HIERARCHICAL STRUCTURES

We consider the generic prediction framework under an arbi-
trary convex loss function with Lipschitz gradient [42], where
we sequentially observe a real valued sequence x1 , x2 , . . . and
produce an output d̂t based on x1 , . . . , xt at each time t. Then,
the true output dt is revealed yielding the loss �(dt , d̂t), e.g.,
�(dt , d̂t) = (dt − d̂t)2 . Over any data length n, the performance
of the predictor is evaluated by its time accumulated loss,
i.e.,

∑n
t=1 �(dt , d̂t), or by its accumulated expected loss, i.e.,

∑n
t=1 E[�(dt , d̂t)]. Nevertheless, we emphasize that our meth-

ods can incorporate different loss functions such as the accumu-
lated weighted loss, i.e.,

∑n
t=1 λn−t �(dt , d̂t), where 0 < λ ≤ 1

represents the forgetting factor.
In order to produce the output d̂t , we use an FS predictor. In its

most general form, an FS predictor has a sequential prediction
function

d̂t = ft(st), (1)

where st ∈ S is the current state taking values from a finite setS,
e.g., the set of relative ordering patterns. Upon the observation
of the new data xt+1 , the states are traversed according to the
next state function

st+1 = g(st , xt+1). (2)

One can use different variations for (1) and (2), e.g., include
different samples of the observed sequence in the function def-
initions or use time varying functions, e.g., d̂t = f(st , st−1) or
st+1 = gt(st , xt , xt−1 , xt−2). However, either these variations
can be covered by our basic setup by defining a super set of
states or our results can be straightforwardly extended to these
configurations [34].

In this framework, we consider a finite set of states S that
is selected according to the underlying prediction task. As an

example, for prediction problem, one can choose the past values
of a sequence as the set of states, i.e., at each time t, we can
use the last l samples of the sequence history xt−l+1 , . . . , xt

to define equivalence classes or states. Similarly, for portfolio
selection problem, the set of states can be chosen according to
the ratio of the closing prices of stocks to the opening prices
[43]. In our example, we consider the relative ordering patterns
of the sequence history as our states.

Example 1: Consider the setting where at each time t, we
use the last 3 samples of the sequence history xt−2 , xt−1 , xt

to define equivalence classes or states. In this setting,
we can have 3! = 6 different possible patterns, i.e., S =
{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}, where
“3” represents the location of the largest value and “1” rep-
resents the location of the smallest value, e.g., the sequence
(xt−2 , xt−1 , xt) = (5, 10,−1) corresponds to the pattern or or-
dering (2, 3, 1). At time instant t, naturally, the current state st

can correspond to only one of these states in S, i.e., the state
set is complete. S forms the highest level of hierarchy in our
notation and framework and each element of S denotes a dif-
ferent node in this level. Note that, the nodes that are higher
in the hierarchy are positioned in the lower levels of the graph
in our notation, e.g., the node at the top of the hierarchy is in
level-0. After assigning the states at the highest level, we tie
certain states into certain equivalence classes and create lower
levels in the hierarchical graph. As an example, for the order
preserving patterns, we have the aforementioned states at the
highest level (see Fig. 2). Assume that our aim is to create a
hierarchical structure of depth h = l − 1 according to the place
of the greatest element in each equivalence class. Hence, we tie
the 6 states at level-2 according to the place of their greatest
element, e.g., we tie the states (1, 2, 3) and (2, 1, 3) into (·, ·, 3).
Thus, we obtain the equivalence classes (·, ·, 3), (·, 3, ·), and
(3, ·, ·) at level-1. Continuing this procedure, we obtain (·, ·, ·)
at level-0.

In the generic scenario, let ci,j represent the jth equivalence
class at the ith hierarchy level and let Hi represent the set of
equivalence classes at hierarchy level i, where 0 ≤ i ≤ h. We
start constructing our equivalence classes by setting Hh = S
and tie certain equivalence classes according to a tying function

φ(i+1→i)(ci+1,j ) = ci,k , (3)

for some ci+1,j ∈ Hi+1 and ci,k ∈ Hi , where 0 ≤ i ≤ h − 1.
With an abuse of notation, we use φ(ci,j+1) as our tying function
in the rest of the paper.

Having obtained a hierarchical structure using a tying func-
tion φ(·), we assign an FS predictor to each of the equiva-
lence classes (we emphasize that each of the original states at
the highest level also corresponds to an equivalence class). In
Example 1, for ease of exposition, let us assume that our aim is
to determine the relative gain/loss of the upcoming value of the
sequence compared to its current value, i.e.,

dt =
{

1, if xt+1 ≥ xt

−1, otherwise . (4)

Then, we can use a sequential binary prediction algorithm in
each equivalence class on the hierarchical model. For this, we
can assign a universal binary predictor (such as [44]) to each
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Fig. 3. 3 possible FS predictors for the equivalence classes in Fig. 1 with
h = 3.

equivalence class ci,j as follows

d̂
{ci , j }
t =

∑t−1
τ =1 I

{ci , j }
τ dτ

max
(
1,

∑t−1
τ =1 I

{ci , j }
τ

) (5)

to predict dt , where d̂
{ci , j }
t is the prediction of the equiva-

lence class ci,j at time t and I
{ci , j }
τ is the indicator function

representing whether the length-h sequence corresponds to the
equivalence class ci,j , i.e.,

I
{ci , j }
τ �

{
1, if sτ ∈ ci,j

0, otherwise . (6)

Having fixed the state definitions and the sequential predictors
at each equivalence class, we then consider all different FS
predictors defined on the hierarchical model. An example FS
predictor considers all nodes at the hth hierarchy level (highest
level) such that its output is set as d̂t = d̂

{ch , j }
t , when st ∈ ch,j ,

where ch,j ∈ Hh . This FS predictor is constructed only from
the finest states and requires most samples to train. Similarly,
one can construct an FS predictor by considering the single
equivalence class at the lowest level, i.e., c0,1 , and directly set

d̂t = d̂
{c0 , 1 }
t for all st . In Fig. 3, we illustrate 3 possible FS

predictors for Example 1 of order preserving patterns where
l = 3 and h = 2.

We emphasize that FS predictors that are formed using equiv-
alence classes at higher hierarchy levels include more states. For
instance, in Fig. 3, the second FS predictor is formed using the
equivalence classes at level-1 and includes 3 states, whereas
the third FS predictor includes some equivalence classes from
level-2, thus includes 5 states. Clearly, FS predictors containing
more states require longer data sequences in order to sufficiently
train each sequential equivalence class (or state) predictor d̂

{ci , j }
t

they use. In this sense, a hierarchical structure introduces dif-
ferent coarse and fine FS predictors. Hence, at the beginning
of the learning process, one can use coarser FS predictors that
can be quickly trained and then gradually switch to the finer FS

predictors, e.g., the complete model defined on the highest level
of hierarchical graph. However, a careless switching between
coarser and finer FS predictors can significantly deteriorate the
performance of the system and the optimal selection of such
a switching is highly data dependent [4]. Furthermore, the ef-
fectiveness of FS predictors may change over time, especially
when the underlying data is highly nonstationary. Then, finest
model defined on the highest level of hierarchical graph may
never have enough data to adequately train its equivalence class
predictors even if it observes a data sequence of infinite length.
To this end, in the following section, we introduce a sequential
algorithm that elegantly and effectively performs such decisions
by intrinsically implementing and combining a huge number of
FS predictors.

III. PREDICTION OVER HIERARCHICAL STRUCTURES

For a hierarchical structure with depth h, we can have at
least 22h

different FS predictors provided that each equivalence
class at any level is formed by tying at least two equivalence
classes in the above level [45]. As an example, for the order
preserving patterns, we have Kh ≈ 2(h/e)h

different FS predic-
tors since Kh = (Kh−1)h+1 + 1 as can be seen in Fig. 1. In
the generic scenario, over K > 22h

different FS predictors, i.e.,
d̂
{k}
t , k = 1, . . . , K (where we drop the subscript h for notational

simplicity), one of them is optimal for the current observations.
However, as we observe new samples of the data, the optimal FS
predictor can change over time. For example, when there is not
enough data, the coarsest FS predictor only having the equiva-
lence class at the lowest hierarchy level, i.e., c0,1 , is expected to
learn much faster than the finest FS predictor having the equiv-
alence classes at the highest hierarchy level, i.e., ∀ch,j ∈ Hh .
However, one expects the finest model to perform better as the
observed data length increases considering its higher modeling
power for stationary data. On the other hand, when the data
is nonstationary, making an efficient switching from coarser
to finer FS predictors may not be possible. Therefore, in this
paper, instead of committing to one of these FS predictors or
switching between them, we use a mixture-of-experts approach
to adaptively combine the outputs of all these FS predictors,
d̂
{k}
t , k = 1, . . . ,K.
In a general weight update framework for mixture weights,

the update rule corresponds to balancing the desire to utilize
new information and the desire to retain the past information.
An update rule minimizes an objective function to find the new
weight such that

wt = arg min
w

[
D(wt−1 ,w) + μ�(dt−1 ,w

T d̂t−1)
]
, (7)

where �(·, ·) is a convex loss function with Lipschitz gradient
and D(·, ·) is a general distance measure between the weight
vectors [8]. As an example, if the distance measure is selected
to be Kullbeck-Leibler divergence [46], than the weight updates
correspond to the Exponentiated Gradient (EG) algorithm [8],
such that

wt [k] =
wt−1 [k] exp

(
−μεt−1 d̂t−1 [k]

)

∑K
r=1 wt−1 [r] exp

(
−μεt−1 d̂t−1 [r]

) , (8)



VANLI et al.: SEQUENTIAL PREDICTION OVER HIERARCHICAL STRUCTURES 6289

where wt [k] and d̂t−1 [k] corresponds to the kth element of the
weight vector wt and the predictor output vector d̂t respectively,
and εt is the gradient of the loss function �(·, ·) with respect to
the final prediction d̂t , which is equal to wT

t d̂t . Instead of a
linear update using the gradient as in Gradient Descent, the
update is done in the exponent [8]. The denominator normalizes
the updated weights to make their sum 1, and thus creates a
probability simplex.

We use EG algorithm [8] in combining the predictions of our
FS predictors, since EG produces sublinear regret for generic
loss functions and the weight updates are multiplicative. Since
the additive updates are done in the exponent, an hierarchical
structure is straightforward to implement. Although there exists
various alternatives of the EG algorithm in the signal process-
ing and machine learning literatures [8], [9], the main advantage
of the EG algorithm is its superior tracking performance com-
pared to its well-known alternatives, e.g., the least mean squares
(LMS) [47]. Therefore, our algorithm can track abrupt changes
or nonstationary data better than its alternatives. Furthermore,
our algorithm achieves the optimal linear combination of doubly
exponential number of FS predictors, whereas the conventional
methods can only track the best expert and achieves its perfor-
mance in an asymptotic manner.

A. Sequential Combination of FS Predictors

Suppose we construct all possible FS predictors d̂
{k}
t , k =

1, . . . ,K and run them in parallel to predict dt . When used with
the EG algorithm to combine the outputs of all FS predictors to
produce the final output

d̂t �
K∑

k=1

w
{k}
t d̂

{k}
t , (9)

the mixture algorithm has the performance
n∑

t=1

�(dt , d̂t) ≤ min
||w||=1

n∑

t=1

�(dt ,w
T d̂t) + O

(√
n log K

)
,

(10)
where the combination weights are recursively calculated as

w
{k}
t =

w
{k}
t−1 exp

(
−μεt−1 d̂

{k}
t−1

)

∑K
r=1 w

{r}
t−1 exp

(
−μεt−1 d̂

{r}
t−1

) , (11)

for k = 1, . . . , K, with εt � �′(dt, d̂t) representing the first
derivative of �(dt, d̂t) with respect to d̂t and μ > 0 representing
a positive constant controlling the learning rate. The mixture
algorithm achieves the performance in (10) for any n without
any knowledge on the optimal d̂

{k}
t , the future values of the se-

quences, and the data length n, where d̂t � [d̂{1}t , . . . , d̂
{K }
t ]T

and �(·, ·) is a convex loss function with Lipschitz gradient. We
emphasize that there exist various different extensions of the
update in (11). Yet, our derivations straightforwardly generalize
to these updates [8] as shown in Section III-C.

Although one can use various cost functions �(·, ·) in (11), a
widely used one is �(dt, d̂t) = (dt − d̂t)2 in many signal pro-
cessing applications when no statistical information about the
data is available [47]. On the other hand, in various stochastic

settings, steady-state MSE can be more meaningful in terms of
analyzing the convergence performance of the algorithm.

Theorem 1: If the random variables
∥
∥d̄t

∥
∥2

J̄
T
t ΣJ̄ t

and ε2
t are

asymptotically uncorrelated, the weighted mixture algorithm in
(9) achieves the following the steady-state MSE performance
for sufficiently small learning rate

MSE =
2σ2

n

2 − μTr
{
ΛJ̄

T
} , (12)

where σ2
n is the variance of the weighted excess error at steady-

state, Λ is a diagonal matrix containing the eigenvalues of the
autocorrelation matrix of the FS predictor outputs, and J̄ is re-
lated to the eigen decomposition of this autocorrelation matrix
and the Jacobian matrix of the logarithm of the unnormalized
combination weights, Σ is the covariance of the noise, εt repre-
sents the first derivative of �(dt , d̂t) with respect to d̂t , and d̄t is
a parameter linear in the estimation vector d̂t .

Proof: The proof is given in Appendix A. �
The MSE performance in (12) illustrates that we can decrease

the steady-state MSE by decreasing the learning rate of the algo-
rithm and achieve the performance of the MMSE optimal batch
predictor, i.e., the best convex combination of the FS predic-
tors chosen with the full knowledge of the observation sequence
{xt}n

t=1 . Thus, the Excess Mean Square Error (EMSE), i.e.,
the difference between our algorithm’s MSE and the MMSE of
the optimal batch predictor can be arbitrarily set according to
the performance requirements of the application by tuning the
learning rate of the algorithm.

Although (9) is guaranteed to achieve the performance of
the optimal combination over doubly exponential number of
experts (i.e., FS predictors), it is not possible to practically im-
plement such an algorithm even for a moderate hierarchy depth.
As an example, for the order preserving patterns example, even
for a small history length such as l = 4 and a small hierarchy
depth such as h = 3, we have K = 6562 different FS predictors.
However, in practical applications such a huge number of FS
predictors cannot be implemented and run in parallel to com-
bine their outputs. Hence, in this form, the algorithm (9) cannot
be directly implemented since we need to run K different FS
predictors in parallel and monitor their performances to con-
struct (9). To solve this problem, we next introduce a method
that implements (9) with complexity only linear in the hierarchy
depth h.

B. Efficient Sequential Combination of FS Predictors

We first observe that although there are K different FS pre-
dictors, the states used by each of the FS predictors are unions
of a relatively small number of equivalence classes, i.e., nodes.
Consider the order pattern classes in Example 1 and Fig. 1
where the ordering patterns for a length 3 observation, i.e.,
the last 3 samples, are illustrated. In this example, the obser-
vation (xt−2 , xt−1 , xt) = (1, 5,−1) corresponds to the equiva-
lence classes of the node c2,4 and its super nodes, i.e., c1,2 and
c0,1 , which corresponds to the orderings (2, 3, 1), (., 3, .), (., ., .)
respectively, where the ordering is made in an ascending manner.
The predictors illustrated on Fig. 3 uses only certain nodes, i.e.,
classes, corresponding to a disjoint partition of the observation
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space. We use d̂
{k}
t to refer to the prediction of the kth FS predic-

tor at time t and d̂
{ci , j }
t to refer to the prediction at time t of the

equivalence class corresponding to the node ci,j in the hierar-

chical graph. As an example, d̂{1}t , given in Fig. 3, uses only the

equivalence class predictors d̂
{c1 , 1 }
t , d̂

{c2 , 3 }
t , d̂

{c2 , 4 }
t and d̂

{c1 , 3 }
t ,

which corresponds to the orderings (., ., 3), (1, 3, 2), (2, 3, 1)
and (3, ., .) respectively. The FS predictor d̂

{1}
t only considers

the location of the biggest sample value except the case when
that location is the middle. Therefore, the FS predictor uses
a mixture of level-1 and level-2 equivalence classes. If this FS
predictor observes the sequence (xt−2 , xt−1 , xt) = (1, 5,−1) at
time t, which indicates the ordering (2, 3, 1), then d̂

{1}
t uses the

state predictor d̂
{c2 , 4 }
t to give its final output as d̂

{1}
t = d̂

{c2 , 4 }
t .

Each FS predictor is constructed from the nodes of hierarchi-
cal graph such that the regions corresponding to these nodes are
disjoint regions whose union gives the whole observation space,
i.e., the region of the node c0,1 . During the construction of the
hierarchical model, each node at the highest level in the hierar-
chical graph is connected to a single equivalence class at each
of the lower levels. Each FS predictor is constructed through
combination of disjoint nodes in the hierarchical graph. Con-
sider Ex. 1 and Fig. 1, and suppose that at time t, we observed
the pattern (xt−2 , xt−1 , xt) = (1, 5,−1), which is included in
the equivalence classes c2,4 = (2, 3, 1) at the highest level, i.e.,
level-2. This equivalence class is connected to the equivalence
classes c1,2 = (·, 3, ·) at level-1 and c0,1 = (·, ·, ·) at level-0.
Thus, the nodes c2,4 , c1,2 , c0,1 are all correspond to the region
of the observation space including the sample pattern (2, 3, 1).
Hence, each FS predictor only includes one of these three nodes,
i.e., states, in its prediction. In other words, an FS predictor can-
not have more than one of these equivalence classes since these
equivalence classes overlap with each other. Since there are
h + 1 levels in the hierarchical graph such that there is a hier-
archical relationship between h + 1 nodes (states) from the top
level to the bottom level, each observation falls within the region
of h + 1 nodes that exist in different levels of the hierarchical
graph. Hence, an FS predictor can only use one of these nodes
in its prediction since these nodes are super sets of one another.

Remark 1: Each FS predictors uses the output of only one
of the h + 1 different equivalence class predictors based on the
current state.

Thus, although the summation (9) is over K terms, there
are actually h + 1 unique equivalence class predictors (each
comes from a different hierarchy level) to be combined.
However, we emphasize that although we use only h + 1
different equivalence class predictors, the sequential algorithm
in (9) requires all K weights in (11). Since all FS predictors
have different states, their weights w

{k}
t are different. In the

following, we will show that both the summation in (9) and
weight calculations in (11) can be efficiently implemented
yielding the algorithm in Algorithm 1, which illustrates a
method to calculate (9) and (11) in O(h) computation.

To illustrate this, we first introduce a technique to recursively
calculate the total sum in the denominator of (11). Based on this
recursion, we next introduce methods to calculate the numerator
of (11) and to perform a sequential update of the combined loss.
This sequential formulation is then proven to be able to produce
the exact same output as in (9), however with a significantly

reduced computational cost, i.e., only linear in the hierarchy
depth h.

1) A Recursive Calculation of the Denominator of (11): We
first note that after some algebra, we can write (11) as follows

w
{k}
t =

w
{k}
0 exp

(
−μ

∑t−1
τ =1 ετ d̂

{k}
τ

)

∑K
r=1 w

{r}
0 exp

(
−μ

∑t−1
τ =1 ετ d̂

{r}
τ

) . (13)

Then, by assigning equal prior weight to each FS predictor,
i.e., w

{k}
0 = 1/K for all k = 1, . . . ,K, we obtain

w
{k}
t =

exp
(
−μ

∑t−1
τ =1 ετ d̂

{k}
τ

)

∑K
r=1 exp

(
−μ

∑t−1
τ =1 ετ d̂

{r}
τ

) . (14)

Here, we represent the sum in the denominator of (14) as
follows

Lt �
K∑

k=1

L
{k}
t , (15)

where

L
{k}
t � exp

(

−μ

t−1∑

τ =1

ετ d̂{k}τ

)

(16)

represents the total loss of the kth FS predictor at time t.
We then define a function of loss for each equivalence class
(cf. Fig. 1) as follows

L
{ci , j }
t � exp

(

−μ

t−1∑

τ =1

I
{ci , j }
τ ετ d̂

{ci , j }
τ

)

, (17)

where the indicator function I
{ci , j }
τ is defined as in (6). L

{ci , j }
t

defined in (17) is the cumulative loss acquired from the region
of the observation space corresponding to the node ci,j . Note
that, every node at the same level of the hierarchical graph covers
disjoint regions whose union gives the whole observation space.
The initial value of the exponentiated loss at time t, L

{ci , j }
t , of

the node ci,j , which is the jth node of the ith level in the

hierarchical graph, is 1, i.e., L
{ci , j }
1 = 1 for all ci,j in the graph

by definition.
According to these definitions, we observe that each L

{k}
t can

be written as a product of the errors of its equivalence class
predictors. Then, letting C{k} denote the states (or equivalence
classes) of the kth FS predictor, we have

L
{k}
t =

∏

ci , j ∈C{k }

L
{ci , j }
t . (18)

As an example, for the first FS predictor in Fig. 3, we have
C{1} = {c1,1 , c2,3 , c2,4 , c1,3}. Based on this observation in (18),
we next use a recursive formulation in order to efficiently cal-
culate the sum Lt in (15). To accomplish this, we start from the
highest hierarchy level and go to the lower hierarchy levels by
recursively defining intermediate parameters that are a function
of the total accumulated loss as follows

T
{ci , j }
t � L

{ci , j }
t +

∏

ci + 1 , k ∈C{c i , j }

T
{ci + 1 , k }
t , (19)
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for each equivalence class ci,j , where C{ci , j } represents the set
of equivalence classes at hierarchy level i + 1 that are connected
to ci,j . As an example, for the equivalence class c0,1 , we have

C{c0 , 1 } = {c1,1 , c1,2 , c1,3}. T
{ci , j }
t is the intermediate variable

that gives the effective cumulative loss of each node in the
hierarchical graph. The recursion in (19) is true for all the nodes
except the highest level, i.e., level h, since at the highest level
we have the finest nodes whose intermediate variables are given
by the simple equation

T
{ch , j }
t � L

{ch , j }
t . (20)

Using the recursive equations in (19) and (20), one can find the
initial values T

{ci , j }
1 . As an example, consider the hierarchical

graph given in Fig. 1, the intermediate variables at the top level,
i.e., level-2, are given by T

{c2 , j }
1 = 1, j ∈ {1, 2, 3, 4, 5, 6}. The

initial intermediate variables of the nodes at level-1, are given
by T

{c1 , j }
1 = 2, j ∈ {1, 2, 3} and the initial value at the bot-

tom node is given by T
{c0 , 1 }
1 = 9. Note that, the initial value

of T
{c0 , 1 }
1 gives the total number of FS predictors used in

the Online Hierarchical Predictor. The initial values of T̃
{ci , j }
t

are dependent on the initial prediction conditions which are
whatever is set in the constructed algorithm.

The following lemma illustrates that these intermediate pa-
rameters can be used to recursively calculate the denominator
of (14).

Lemma 1: The recursions in (18) and (19) yield T
{c0 , 1 }
t =

Lt .
Proof: The proof is given in Appendix B. �
We next use Lemma 1 and the recursive relationship in (19)

to efficiently calculate the final output of the algorithm in (9).
2) Construction of the Final Predictor d̂t in (9): Using

Lemma 1 in (14) and putting (14) in (9), we obtain

d̂t =
K∑

k=1

w
{k}
t d̂

{k}
t

=
K∑

k=1

exp
(
−μ

∑t−1
τ =1 ετ d̂

{k}
τ

)

∑K
r=1 exp

(
−μ

∑t−1
τ =1 ετ d̂

{r}
τ

) d̂
{k}
t

=
1
Lt

K∑

k=1

L
{k}
t d̂

{k}
t . (21)

In order to compactly represent the term inside the sum in
(21), we introduce another intermediate parameter as follows

T̃
{ci , j }
t � L

{ci , j }
t d̂

{ci , j }
t + T̃

{ci + 1 , j ′ }
t

∏

ci + 1 , k ∈C{c i , j }

ci + 1 , k 	=ci + 1 , j ′

T
{ci + 1 , k }
t ,

(22)
for all ci,j that contain the current pattern (i.e., ∀ci,j : st ∈
ci,j ), where st ∈ ci+1,j ′ . In the following lemma, we show that
the intermediate parameter in (22) can be used to efficiently
calculate the final output of the algorithm.

Lemma 2: The recursions in (18), (19), and (22) yield

T̃
{c0 , 1 }
t =

K∑

k=1

L
{k}
t d̂

{k}
t , (23)

with overall computational complexity of O(h).
Proof: The proof is given in Appendix C. �
Using Lemma 2, we can construct the final output of our

algorithm d̂t in (9) as follows

d̂t =
T̃

{c0 , 1 }
t

T
{c0 , 1 }
t

. (24)

According to Lemma 2, T̃ {c0 , 1 }
t can be calculated with compu-

tational complexity O(h). Therefore, if we can find a recursive

method to calculate the denominator of (24), i.e., T
{c0 , 1 }
t , us-

ing the past values T
{ci , j }
t−1 , then we can sequentially obtain d̂t

at each time t with a computational complexity O(h). In the
following section, we address this recursion.

3) Sequential Calculation of T
{c0 , 1 }
t+1 Using (19): Suppose

we performed our prediction d̂t , then dt is revealed and we
calculated εt = �′(dt , d̂t). Our task is now to calculate T

{c0 , 1 }
t+1

from T
{c0 , 1 }
t with a computational complexity O(h). Naturally,

a recursive formulation for T
{c0 , 1 }
t+1 also holds as in (19), where

we have the terms T
{ci , j }
t+1 and L

{ci , j }
t+1 instead of the terms T

{ci , j }
t

and L
{ci , j }
t , respectively. However, from time t to t + 1, due to

the indicator function in (17), only the equivalence classes that
contain the state st are effected by this update. Therefore, we
have

L
{ci , j }
t+1 =

{
L
{ci , j }
t exp

(
−μεt d̂

{ci , j }
t

)
, if st ∈ ci,j

L
{ci , j }
t , otherwise

, (25)

and similarly we also have T
{ci , j }
t+1 = T

{ci , j }
t , ∀ci,j : st /∈ ci,j .

Hence, according to (19), we have

T
{ci , j }
t+1 = L

{ci , j }
t exp

(
−μεt d̂

{ci , j }
t

)

+ T
{ci + 1 , j ′ }
t+1

∏

ci + 1 , k ∈C{c i , j }

ci + 1 , k 	=ci + 1 , j ′

T
{ci + 1 , k }
t+1 , (26)

∀ci,j : st ∈ ci,j , where ci+1,j ′ ∈ C{ci , j } : st ∈ ci+1,j ′ .
Lemma 3: The recursions in (25) and (26) can be calculated

in O(h) operations.
Proof: The proof is given in Appendix D. �
This lemma concludes that (24) can be efficiently calculated

without any approximations with a computational complexity of
O(h). Hence, the introduced algorithm achieves the same deter-
ministic and stochastic performance guarantees as the original
algorithm, whose computational complexity is doubly exponen-
tial in h.

4) Summary of the Algorithm: The summary of these steps
for the generic case can be outlined as follows (and the complete
description of the algorithm is given in Algorithm 1). At time t,
we have the variables T

{ci , j }
t , L

{ci , j }
t and the predictions d̂

{ci , j }
t

for each equivalence class in the entire state diagram.
� After we find the current state st , we recursively cal-

culate T̃
{ci , j }
t , ∀ci,j : st ∈ ci,j starting from the hierar-

chy level i = h − 1 to get the numerator of (21). After
this recursion, the output of our algorithm is found as
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Algorithm 1: Online Hierarchical Predictor.

1: % Initialization: L
{ci , j }
0 = 1, calculate T

{ci , j }
0 .

2: for t = 1 to T do
3: % Find the current state st by st = g(st−1 , xt).
4: % Find the set of equivalence classes Et that contain

the current state st , i.e., Et = {ci,j : st ∈ ci,j}.
5: % Prediction
6: for all ci,j ∈ Et (from i = h − 1 to 0) do
7: if i = h − 1 then
8: T̃

{ci , j }
t = L

{ci , j }
t d̂

{ci , j }
t

9: else
10: P

{ci , j }
t =

(
T

{ci , j }
t − L

{ci , j }
t

) /
T

{ci + 1 , j ′ }
t

11: T̃
{ci , j }
t = L

{ci , j }
t d̂

{ci , j }
t + T̃

(ci + 1 , j ′ )
t P

{ci , j }
t

12: end if
13: end for
14: d̂t = T̃

{c0 , 1 }
t

/
T

{c0 , 1 }
t

15: εt = �′(dt, d̂t)
16: % Update
17: for all ci,j ∈ Et (from i = h − 1 to 0) do

18: % Update d̂
{ci , j }
t as desired such as in (5).

19: L
{ci , j }
t+1 = L

{ci , j }
t exp

(
−μεt d̂

{ci , j }
t

)

20: if i = h − 1 then
21: T

{ci , j }
t+1 = L

{ci , j }
t+1

22: else
23: T

{ci , j }
t+1 = L

{ci , j }
t+1 + T

{ci + 1 , j ′ }
t+1 P

{ci , j }
t

24: end if
25: end for
26: end for

d̂t = T̃
{c0 , 1 }
t / T

{c0 , 1 }
t , which, in total, can be found in O(h)

calculations (as T
{c0 , 1 }
t is calculated at the previous step).

� After the true output dt is revealed, the variables L
{ci , j }
t+1

and T
{ci , j }
t+1 should be updated. For the equivalence classes

that contain the current pattern (in total, h + 1 of them),
the updates of L

{ci , j }
t+1 and T

{ci , j }
t+1 are done using the recur-

sions in (25) and (26), where we emphasize that for the
equivalence classes that do not include the current state,
no update is necessary.

� Lastly, for the equivalence classes that contain the cur-
rent state, the equivalence class predictions d̂

{ci , j }
t+1 can be

updated using any desired method, such as the one in (5).
In the following two subsections, we extend our discussions

for different linear combination weights and different cost func-
tions, respectively.

C. Positive and Negative Weights

In many mixture-of-experts frameworks, the weighting pa-
rameters are usually restricted to be positive and sum up to 1 as
in the case for the EG algorithm (cf. (14)). In order to overcome
this limitation, we can use the EG algorithm with positive and
negative weights [8]. To this end, we consider the output of each
FS predictor, say d̂

{k}
t , and instead of directly scaling this value

with a weighting parameter, we consider βd̂
{k}
t and −βd̂

{k}
t as

the outputs of two different experts. We then scale these values
by the weighting parameters w

{k}
t,+ and w

{k}
t,− , respectively.

Hence, we obtain the output of the final predictor as follows

d̂t =
K∑

k=1

(
w

{k}
t,+ − w

{k}
t,−

)
d̂
{k}
t , (27)

where the combination weights are recursively calculated as
follows

w
{k}
t+1,±

= β
w

{k}
t,± exp

(
∓μβεt d̂

{k}
t

)

∑K
r=1 w

{r}
t,+ exp

(
−μβεt d̂

{r}
t

)
+ w

{r}
t,− exp

(
μβεt d̂

{r}
t

) .

(28)

In this manner, while we have w
{k}
t,+ , w

{k}
t,− > 0,

∑K
k=1 w

{k}
t,+ =

β, and
∑K

k=1 w
{k}
t,− = β, the resulting combination weights

in (27), i.e., w
{k}
t,+ − w

{k}
t,− can take any value satisfying

∑K
k=1

∣
∣
∣w

{k}
t,+ − w

{k}
t,−

∣
∣
∣ ≤ β.

Following similar lines to Section III-B, we define

Lt � Lt,+ + Lt,−, (29)

where

Lt,± � exp

(

∓μβ

t∑

z=1

εt d̂
{k}
t

)

. (30)

After defining the equivalence class losses and recursion pa-
rameters as in Section III-B, we obtain independent recursions
over parameters L

{ci , j }
t,± and T

{ci , j }
t,± , where L

{ci , j }
t,± represents the

loss of the equivalence class ci,j for the positive and negative
weights, respectively, which is defined similar to (17) and the pa-
rameters T

{ci , j }
t,± can be calculated with independent recursions

as follows

T
{ci , j }
t,± = L

{ci , j }
t,± +

∏

ci + 1 , k ∈C{c i , j }

T
{ci + 1 , k }
t,± . (31)

Using these definitions, one can obtain the final algorithm
after following similar lines to Section III-B.

D. Implementation of the Algorithm With Forgetting Factor

In this section, we consider the weighted loss as our cost
function, i.e.,

n∑

t=1

λn−t �(dt , d̂t), (32)

where 0 < λ < 1 represents the forgetting factor. We emphasize
that the objective function in (32) is used in various different
applications, especially when the aim is to track a drifting param-
eter [47]. However, directly using (32) as our objective function
may significantly deteriorate the performance of the algorithm
since d̂t is generated according to the current state st and even
for a moderate h, the time difference between two consecutive
appearances of the same state may take significantly long time,
e.g., for the order preserving patterns scenario this recurrence
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time is ∼(h/e)h . Therefore, instead of using (32) in its current
form, we use different forgetting factors for each equivalence
class as follows

∑

tτ ∈T
{c i , j }

n

λ|T {c i , j }
n |−τ �(dt , d̂t), (33)

where T {ci , j }
t represents the time instances (up to t) at which

the current state is included in the equivalence class ci,j , i.e.,

T {ci , j }
t � {1 ≤ tτ ≤ t : st ∈ ci,j}, and tτ ∈ T {ci , j }

t represents

the τ th smallest value in the set T {ci , j }
t . By this formulation

we can overcome the aforementioned recurrence time issue and
also assign different forgetting factors for each equivalence class
ci,j , i.e., using λci , j

instead of λ.
Owing to the comprehensive structure of the introduced algo-

rithm such recursive cost functions can be directly incorporated
in our framework. To this end, we can define our new total loss
function as follows

Lt =
K∑

k=1

L
{k}
t , (34)

where

L
{k}
t = exp

(

−μ
t−1∑

τ =1

λt−τ−1 ετ d̂{k}τ

)

(35)

represents the total weighted loss of the kth FS predictor at time
t. Following similar lines to Section III-B, we define T

{ci , j }
t

similar to (19). Then, the recursion of the parameter L
{ci , j }
t is

updated as follows

L
{ci , j }
t+1 = exp

(
λ ln L

{ci , j }
t

)
exp

(
−μεt d̂

{ci , j }
t

)
, (36)

∀ci,j : st ∈ ci,j , whereas the parameter T
{ci , j }
t is updated as in

(26). Note that for the equivalence classes that do not contain
the current state, no update is necessary. Following similar steps
to Section III-B, one can construct the desired algorithm after
some algebra.

IV. SIMULATIONS

In this section, we illustrate the performance of our algorithm
in various scenarios. Throughout this section, we set μ = 1 for
a fair performance comparison between our algorithm and its
competitors. The code used in the experiments and all of the
data are accessible from http://www.ee.bilkent.edu.tr/∼vanli.

A. Real Life Energy Profile Forecasting

In this experiment, we consider prediction of the energy
consumption in Turkish energy markets using real data.1 Par-
ticularly, we forecast the energy consumption of consumers
using their past consumption patterns, where the aim is to pre-
dict the consumption trend such that dt = 1 if xt+1 ≥ xt and
dt = −1, otherwise, i.e., we try to forecast an increasing or de-
creasing trend in the energy consumption patterns using real

1This data set can be achieved from http://www.ee.bilkent.edu.tr/∼vanli

Fig. 4. Normalized time averaged square errors of the proposed algorithms
for the real life electricity consumption data.

data collected in Turkish markets. Note that this scenario per-
fectly matches with the example framework we have illustrated
throughout the paper. In this experiment, we illustrate the per-
formance guarantee in Theorem 1 and the mitigation of under-
training as well as convergence issues by our algorithm. We set
h = 4 for this real life experiment. In Fig. 4, the time averaged
square error performances of the proposed algorithms are com-
pared, where “OHP” represents the online hierarchical predictor
introduced in this paper and “h = i” represents the predictor us-
ing all equivalence classes at the ith hierarchy level as its states
(e.g., see example hierarchy levels in Fig. 1 for h = 2).

Fig. 4 illustrates that the performance of the OHP algorithm
is comparable with the performances of the coarser predictors
(e.g., h = 0 and h = 1) when there is not sufficient amount
of data to train finer energy consumption patterns (equivalence
classes). However, as the data length increases, the performances
of the coarser predictors deteriorate with respect to the predic-
tors having finer equivalence classes (e.g., h = 3 and h = 4).
Nevertheless, the performance of the OHP algorithm is still
better than the finest predictor even after a significantly large
amount of observations.

We emphasize that as the pattern order h increases or when
the underlying data is highly nonstationary, the convergence per-
formance of the OHP algorithm will significantly outperform
the performance of the finer predictors since the finer predic-
tors may not be able to observe enough training sequences to
achieve a satisfactory performance. This result is also apparent
in Fig. 4, where over short data sequences the performance of
the finer predictors is worse compared to the coarser predictors
and the OHP algorithm. Hence, the OHP algorithm outperforms
the constituent FS predictors by exploiting the time-dependent
nature of the best choice among constituent FS predictors that
are defined on the hierarchical structure.

B. Synthetic MSE Analysis

In this section, we illustrate the steady-state MSE perfor-
mance of our algorithm. To this end, we consider the following

http://www.ee.bilkent.edu.tr/vanli
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Fig. 5. The experimental MSE of the proposed algorithm converges to the
theoretical steady-state MSE performance. The results are averaged over 500
independent trials.

prediction model

xt = 0.5xt−1 + 0.5xt−2 + nt, (37)

where nt represents the realization of the i.i.d. additive Gaussian
noise with zero mean and variance σ2

n = 10−3 at time t.
For our state selection, we have considered the observa-

tion space xt−1 × xt−2 , i.e., the past data of the given pre-
diction model. We have used a depth h = 2 partitioning and
this observation space has been partitioned such that partitions
at the highest level, i.e., finest partitions are given by the re-
gions of the space (xt−1 ≥ 0, xt−2 ≥ 0), (xt−1 ≥ 0, xt−2 < 0),
(xt−1 < 0, xt−2 ≥ 0), (xt−1 < 0, xt−2 < 0) respectively. The
unbounded space of xt−1 × xt−2 has been split into these dis-
joint four regions according to the boundaries given and the
finest nodes at the top level are created. Then, at the lower level,
i.e., h = 1, we combine them such that we create the regions
xt−1 ≥ 0 and xt−1 < 0 and match them with the corresponding
nodes. At the bottom level, as usual, the node for the whole
observation space is created.

The four regions corresponding to the finest nodes in our
hierarchical graph are assigned a linear predictor. The combina-
tion of these four nodes at the lower levels are also assigned a
linear predictor. The nodes in the hierarchical graph are trained
only using the past observations corresponding to their partition
space, i.e., the linear predictors of the top level nodes are trained
only with the samples in their respective quadrants, while the
linear predictors of the nodes at level-1 are trained with the sam-
ples corresponding to the left and right half planes. The linear
predictor of the mother node at the bottom is trained by using
all of the past observation samples. Except the bottom node,
each different combination of the nodes at the levels 1 and 2
jointly represent a piecewise linear predictor, while the bottom
node represents a completely linear predictor. These nodes are
then trained and updated using our algorithm, and the combina-
tion gradually converges to the true linear model given in (37).
We emphasize that such piecewise linear prediction scenarios
are extensively studied in the literature, cf. [16], [30], [48] (and
references therein).

In Fig. 5, we illustrate the theoretical and experimental MSE
results averaged over 500 independent trials. This figure shows

that the actual MSE behavior of our algorithm can be quite ac-
curately represented by the theoretical steady-state MSE result
in (12).

C. SETAR Time Series Prediction

In this set of experiments, we consider the prediction of the
signals generated from self-exciting threshold autoregressive
(SETAR) models. As the first experiment, we consider the fol-
lowing SETAR model

xt =
{

1.71xt−1 − 0.81xt−2 + 0.356 + εt , if xt−1 > 0
−0.562xt−2 − 3.91 + εt , otherwise ,

(38)
where εt represents the realization of the i.i.d. additive Gaussian
noise with zero mean and unit variance at time t. Note that this
SETAR model is used in various other papers, e.g., [48]. Here,
we normalize the both dimensions of this space between [−1, 1]
to provide a fair comparison between algorithms. Note that, this
normalization effectively reduces the power of εt .

In the hierarchical model, we have partitioned the observation
space into 24 = 16 equal partitions such that the normalized
observation space of xt−1 × xt−2 , which is [−1, 1] × [−1, 1],
i.e., a square of edge length 2, has been partitioned into 16
identical squares of side 0.5. Then these regions have been
assigned to the finest nodes at the top level and are combined
in pairs (corresponding to the adjacent regions) in each level of
the hierarchical graph to create a depth 4 hierarchy similar to a
binary tree.

Throughout this section, “OHP” represents the online hierar-
chical predictor proposed in this paper, “CTW” represents the
context tree weighting algorithm of [16], “VF” represents the
Volterra filter [49], and “FNF” represents the Fourier nonlinear
filter of [50]. We set the depths of the OHP and CTW algorithms
to 4 and the order of the VF and FNF algorithms to 3 for a fair
performance comparison (since the computational complexities
of the OHP and CTW algorithms scale linearly with their depth,
whereas the computational complexities of the VF and FNF
algorithms scale exponentially with their order). To train the
linear predictors at each node of the OHP and CTW algorithms
and to update the VF and FNF algorithms, we use the recursive
least squares (RLS) method [47].

In Fig. 6, we present the cumulative square errors of the
OHP, CTW, VF, and FNF algorithms. This figure indicates that
our algorithm has a significantly faster convergence rate espe-
cially with respect to other tree based learning methods such
as the CTW algorithm. That is because, our algorithm achieves
the optimal combination of the different FS predictors, whereas
the CTW algorithm uses ad-hoc weights to achieve univer-
sal performance guarantees. Furthermore, the OHP algorithm
achieves a significantly lower square error performance with
respect to its competitors.

To illustrate the convergence rate of our algorithm, we gener-
ate a time series of length 5000 using the SETAR model in (38)
and then switch to the following SETAR model

xt =
{
−1.71xt−1 + 0.81xt−2 − 0.356 + εt , if xt−1 ≤ 0
0.562xt−2 + 3.91 + εt , otherwise ,

(39)
and generate an additional time series of length 5000. The
dataset has again been normalized to [−1, 1]. However, since
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Fig. 6. Normalized time averaged square errors of the proposed algorithms
for the SETAR model in (38).

Fig. 7. Normalized time averaged square errors of the proposed algorithms
for the SETAR models in (38) and (39). Here, the first 5000 samples of the data
are generated using (38), whereas the last 5000 are generated using (39).

we created the dataset from two different SETAR models, the
normalization factor is different from previous case, hence the
power of εt is different. For the hierarchical model, we have
partitioned the space similarly to the stationary SETAR model
and created the hierarchical graph accordingly.

In Fig. 7, we present the cumulative square errors of the pro-
posed algorithms. This figure illustrates that the convergence
rate of our algorithm is exceptionally better than ones of the
competitor algorithms. Particularly, our algorithm presents a
faster convergence compared to the similar tree based methods
such as the CTW algorithm. That is because, our algorithm is
based on the EG method, which dynamically updates the com-
bination weights (owing to the exponentiated steps), whereas
the CTW algorithm cannot perform such quick adaptations due

to its universality over the entire data history. In this sense, our
algorithm is highly efficient for applications involving nonsta-
tionary data.

V. CONCLUSION

In this paper, we introduce a sequential FS prediction algo-
rithm for real valued sequences, where we construct hierarchical
structures to define states. Instead of directly using the equiva-
lence classes at the highest level of hierarchy, which can result
in a prohibitively large number of states even for moderate hi-
erarchy depths, we define hierarchical equivalence classes by
recursively tying certain states to avoid undertraining problems.
With this hierarchical equivalence class definitions, we con-
struct a doubly exponential number (in the hierarchy depth) of
FS predictors. By using the EG algorithm, we show that we can
sequentially achieve the performance of the optimal combina-
tion of all FS predictors that can be defined on this hierarchical
structure with a computational complexity only linear in the
length of the hierarchy depth. Our results are generic such that
they can be directly used with numerous weighting methods for
a wide range of hierarchical equivalence class definitions, and
hold for a wide range of loss functions.

APPENDIX A
PROOF OF THEOREM 1

The weighted mixture algorithm in (9) has the weight update
rule given by

w
{k}
t =

w
{k}
0 exp

(
−μ

∑t−1
τ =1 ετ d̂

{k}
τ

)

∑K
r=1 w

{r}
0 exp

(
−μ

∑t−1
τ =1 ετ d̂

{r}
τ

) . (40)

Considering the weights at t = 0 are all unit weights, we
define an intermediate variable z

{k}
t such that the weights are

given by

w
{k}
t =

e−z
{k }
t

∑K
r=1 e−z

{r }
t

,

where z
{k}
t is defined as z

{k}
t = −μ

∑t−1
τ =1 ετ d̂

{k}
τ for the

kth FS predictor. We also define correspondingly a func-
tion wt = f(zt), where wt � [w{1}

t , · · · , w
{K }
t ]T and zt �

[z{1}t , · · · , z
{K }
t ]T . The function f(zt) is the nonlinear trans-

formation from the intermediate variables of the FS predictors
to their EG weights. Then, the definition of zt yields

zt = zt−1 − μd̂t−1εt−1 . (41)

We then apply the Euler discretization technique [51] to (41)
and obtain

wt = wt−1 + μJ (f(zt−1)) d̂t−1εt−1 , (42)

where J (f(zt−1)) is the Jacobian matrix of f(zt−1) with re-
spect to zt−1 . In particular, J (f(zt)) is given by

J (f(zt)) =
1

(∑K
r=1 e−z

{r }
t

)2

{(
K∑

r=1

e−z
{r }
t

)

Dt − Zt

}

,

(43)
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where

Dt �

⎡

⎢
⎢
⎣

e−z
{1 }
t

. . .

e−z
{K }
t

⎤

⎥
⎥
⎦ (44)

and

Zt �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
e−z

{1 }
t

)2
e−z

{1 }
t e−z

{2 }
t · · · e−z

{1 }
t e−z

{K }
t

e−z
{2 }
t e−z

{1 }
t

(
e−z

{2 }
t

)2
· · · e−z

{2 }
t e−z

{K }
t

...
...

. . .
...

e−z
{K }
t e−z

{1 }
t e−z

{K }
t e−z

{2 }
t · · ·

(
e−z

{K }
t

)2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Letting

wo = arg min
w∈ΔK

∞∑

t=1

�
(
dt, d̂

T

t w
)

, (45)

where

ΔK �
{

w ∈ RK |w(i) ≥ 0∀i ∈ {1, · · · ,K}, ‖w‖1 = 1
}

denotes K-dimensional unit simplex, we define a deviation pa-
rameter w̃t = wo − wt . Then, (42) yields

w̃t = w̃t−1 − μJ (f(zt−1)) d̂t−1εt−1 . (46)

Here, note that the outputs of the predictors are correlated.
Hence, let the autocorrelation matrix of the outputs of the FS
predictors at the steady-state be defined as

R � lim
t→∞

E
[
d̂t d̂

T

t

]
, (47)

where d̂t � [d̂{1}t , · · · , d̂
{K }
t ]T . We can decompose R through

the eigen decomposition as follows R = TΛT T . Multiplying
both sides of (46) by T T , we obtain

w̄t = w̄t−1 − μT T J (f(zt−1)) T d̄t−1εt−1 , (48)

where w̄t � T T wt and d̄t � T T d̂t . For notational simplicity,
we denote J̄ t−1 � T T J (f(zt−1)) T . Then, the weighted en-
ergy recursion of (42) is given by

E‖w̄t‖2
Σ = E‖w̄t−1‖2

Σ − 2μE
[
w̄T

t−1ΣJ̄ t−1 d̄t−1 d̄
T
t−1w̄t−1

]

+ μ2E
[
ε2
t−1 d̄

T
t−1 J̄

T
t−1ΣJ̄ t−1 d̄t−1

]
, (49)

where Σ is a positive semi-definite weight matrix.
We assume that the random variables

∥
∥d̄t

∥
∥2

J̄
T
t ΣJ̄ t

and ε2
t are

asymptotically uncorrelated. Hence, at steady-state, we have

lim
t→∞

E‖w̄t‖2
ΣJ̄Λ = lim

t→∞

μ

2
E

[
ε2
t

]
Tr

{
ΛJ̄

T ΣJ̄
}

, (50)

where we approximate the Jacobian matrix as follows

J̄ � T T J(f(zo))T , (51)

and define

zo � f(w0)−1 . (52)

We note that εt = w̄T
t d̄t + nt , where

nt =
K∑

k=1

w{k}
o e

{k}
t , (53)

and e
{k}
t = dt − d̂

{k}
t . This yields that

lim
t→∞

E
[
ε2
t

]
= lim

t→∞
E‖w̄t‖2

Λ + E
[
n2

t

]
. (54)

Letting Σ = J̄
−1

and

σ2
n = lim

t→∞
E[n2

t ], (55)

we obtain the steady-state excess MSE ζ � limt→∞ E‖w̄t‖2
Λ

as

ζ =
μσ2

nTr
{
ΛJ̄

T
}

2 − μTr
{
ΛJ̄

T
} , (56)

and the steady-state MSE is given by

MSE =
2σ2

n

2 − μTr
{
ΛJ̄

T
} . (57)

APPENDIX B
PROOF OF LEMMA 1

In order to prove T
{c0 , 1 }
t = Lt , we use mathematical induc-

tion. First, for h = 1, we have a single state and the equa-
tion T

{c0 , 1 }
t = Lt is trivially satisfied for this case. Assuming

that T
{c0 , 1 }
t = Lt holds for some h ≥ 1, let us consider the term

T
{c0 , 1 }
t for h + 1.
For ease of exposition let us drop the time index t from the

subscript, and use T
{ci , j }
h to refer to the induction hypothesis

and T
{ci , j }
h+1 to refer to the objective function. Similarly, we let

C{ci , j }
h+1 represent the set of equivalence classes at hierarchy level

i + 1 that are connected to ci,j for the induction case. According
to the definition in (19), we have

T
{c0 , 1 }
h+1 = L

{c0 , 1 }
h+1 +

∏

c1 , j ∈C
{c 0 , 1 }
h + 1

T
{c1 , j }
h+1 (58)

= L
{c0 , 1 }
h+1 +

Jh + 1∏

j=1

Lh,j , (59)

where the last line follows from the induction hypothesis with

Jh+1 �
∣
∣
∣C{c0 , 1 }

h+1

∣
∣
∣ and Lh,j representing the loss of the jth equiv-

alence class in C{c0 , 1 }
h+1 . Note that for hierarchical structure of

depth h + 1, we have Kh+1 = (Kh)Jh + 1 + 1, which can be im-
mediately observed from (59). Inserting the loss definition in
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(15) to (59), we obtain

T
{c0 , 1 }
h+1 = L

{c0 , 1 }
h+1 +

Jh + 1∏

j=1

(
Kh∑

k=1

L
{k}
h,j

)

= L
{c0 , 1 }
h+1 +

(Kh )J h + 1
∑

k=1

L
{k}
h+1 ,

which shows that T
{c0 , 1 }
h+1 = Lh+1 holds, where the last line fol-

lows from (18) and from the following observation: Combining
the states of an arbitrary FS predictor with hierarchy level h
from each Jh+1 paths, we obtain an FS predictor with hierarchy
level h + 1. Hence, the proof is concluded. �

APPENDIX C
PROOF OF LEMMA 2

We first consider the right hand side of the equality in (23)
and observe that it is similar to

L
{c0 , 1 }
t+1 =

K∑

k=1

L
{k}
t exp

(
−μεt d̂

{k}
t

)
, (60)

where only the last exponential term in (60) is replaced by d̂
{k}
t .

Hence, following similar lines to the proof of Lemma 1 (i.e.,
using an induction method), it can be shown that the equality
(23) can be achieved using the recursion in (22).

We then consider the product term in (22) and using (19), we
obtain this product term (i.e., the last term in (22)) as follows

P
{ci , j }
t �

∏

ci + 1 , k ∈C{c i , j }

ci + 1 , k 	=ci + 1 , j ′

T
{ck , l }
t

=
T

{ci , j }
t − L

{ci , j }
t

T
{ci + 1 , j ′ }
t

. (61)

Putting (61) back in (22), we obtain

T̃
{ci , j }
t = L

{ci , j }
t d̂

{ci , j }
t + T̃

{ci ′ , j ′ }
t P

{ci , j }
t . (62)

Hence, T̃
{c0 , 1 }
t can be calculated with computational com-

plexity O(h). �

APPENDIX D
PROOF OF LEMMA 3

Since st is an element of one and only one equivalence class
from each hierarchy level 0 ≤ i ≤ h, computing L

{ci , j }
t+1 from

L
{ci , j }
t using (25) requires only h + 1 updates. Hence, (25) can

be calculated in O(h) computations. We next analyze the num-
ber of computations required to perform (26).

Since the product term in (26) contains the equivalence classes
in C{ci , j } that do not contain st , they are not updated from
time t to t + 1, i.e., T

{ci + 1 , k }
t+1 = T

{ci + 1 , k }
t , ∀ci+1,k ∈ C{ci , j } :

st /∈ ci+1,k . Then, we have P
{ci , j }
t+1 = P

{ci , j }
t according to (61).

Putting (61) back in (26), we obtain

T
{ci , j }
t+1 = L

{ci , j }
t exp

(
−μd̂

{ci , j }
t εt

)
+ T

{ci + 1 , j ′ }
t+1 P

{ci , j }
t+1 , (63)

which, in its current form, can be calculated with a
computational complexity O(h). �
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