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Abstract We introduce a new combination approach for the
mixture of adaptive filters based on the set-membership fil-
tering (SMF) framework. We perform SMF to combine the
outputs of several parallel running adaptive algorithms and
propose unconstrained, affinely constrained and convexly
constrained combination weight configurations. Here, we
achieve better trade-off in terms of the transient and steady-
state convergence performance while providing significant
computational reduction. Hence, through the introduced
approaches, we can greatly enhance the convergence perfor-
mance of the constituent filters with a slight increase in the
computational load. In this sense, our approaches are suitable
for big data applications where the data should be processed
in streams with highly efficient algorithms. In the numeri-
cal examples, we demonstrate the superior performance of
the proposed approaches over the state of the art using the
well-known datasets in the machine learning literature.
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1 Introduction

For certain adaptive filtering scenarios, we can select an
appropriate adaptation algorithm with its parameters, e.g.,
the length of the filter or the learning rate, based on the
a priori knowledge about the structure and statistics of the
data model [1,2]. However, the performance of the algo-
rithm might degrade severely due to the improper design
in the lack of a priori information. As an example, con-
ventional adaptive filtering algorithms, e.g., the least mean
square (LMS) algorithm, in general demonstrate degraded
performance in the impulsive noise environment, while the
algorithms robust against impulsive interferences, e.g., the
sign algorithm (SA), achieve inferior performance over the
conventional algorithms in the impulse-free noise environ-
ments [3].

Recently, the mixture approaches have been proposed to
combine various adaptive filters with different configurations
to achieve better performance than any of the individual algo-
rithm [1,4–11]. Particularly, through the mixture approach
we can achieve enhanced performance in a wider range
of adaptive filtering applications. The mixture model out-
puts a weighted linear combination of the output of various
adaptive filtering algorithms such that the final output sig-
nal estimates better the desired signal. As those weights
could be fixedwith hindsight about the temporal data, we can
also adapt those combination weights sequentially based on
the observed data. However, we emphasize that the mixture
approaches multiplicatively increase the combination load
due to the need to run several adaptive algorithms in paral-
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lel. Hence, these approaches cannot be used for applications
involving big data due to their impractical computational
need. To this end, in this paper, we introduce a mixture
approach using the SMF in order to reduce computational
load and achieve improved performance. In the conventional
least squares algorithms, e.g., the LMS algorithm (or the
stochastic gradient descent algorithm), we minimize a cost
function of the error term defined as the difference between
the desired and the estimated signals. On the contrary, the set-
membership filtering approach seeks to find any parameter
yielding smaller error terms than a predefined bound. SMF
approach achieves relatively fast convergence performance
in addition to the reduced computational load since we do
not update the parameter unless we obtain larger error than
the bound [12–14].

The organization of the paper as follows. In Sect. 2, first
we present the main framework for mixture combination of
adaptive filters. We describe the structure of set-membership
filters and explain its algorithm in Sect. 3. In Sect. 4,
we present unconstrained, affine and convex constrained
combination methods for the set-membership filters. We
demonstrate the performance of the presented method in
Sect. 5 and later we conclude the paper with final remarks in
Sect. 6.

2 Problem description

Considering an online setting where only the current feature
vector1 x(t) at time t ≥ 1 is available for corresponding
data d(t). Our aim is to sequentially estimate d(t) such that
d̂(t) = f (x(t)), and for the estimation, in this work we use
linear mixture of parallel adaptive filters.

In this structure, our system consists of two parts. In the
first part, we have m adaptive filter algorithm running in par-
allel to estimate desired signal d(t) as in Fig. 1. Each filter
with their parameter vector wi (t), i = 1, . . . ,m and input
vector x(t) produce an estimate d̂i (t) = xT (t)wi (t), and in
next step we update their parameter vector according to esti-
mation error ei (t) � d(t) − d̂i (t)

In second part of the system, we have the mixture stage.
At this point, we obtain the final estimate of the system by
linearly combining the estimates of parallel adaptive filters
as d̂(t) = wT (t)y(t) where y(t) = col{d̂1(t), . . . , d̂m(t)}
and w(t) = col{w(1)(t), . . . , w(m)(t)} is mixture weights

1 Through this paper, bold lower case letters denote column vectors
and bold upper case letter denote matrices. For a vector a (or matrix
A), aT (or AT ) is its ordinary transpose. The operator col{·} produces a
column vector or a matrix in which the arguments of col{·} are stacked
one under the other. For a given vectorw,w(i) denotes the i th individual
entry of w. Similarly for a given matrixG,G(i) is the i th row ofG. For
a vector argument, diag{·} creates a diagonal matrix whose diagonal
entries are elements of the associated vector.

Fig. 1 Mixture combination of parallel filters

vector. Linear combination parameters of this stage are
updated adaptively according to the final estimation error
e(t) � d(t) − d̂(t).

Usage of conventional least squares algorithms such as
least mean square algorithm in these mixture combination
systems results in an update of parameter vectors at each step.
This notion is not advantageous formost big data applications
due to high computational load that this feature will create.
Therefore, as a solution, we employ set-membership filters
and their mixture combination for this structure.

In subsequent sections, we first introduce the structure of
the set-membership filters (SMF), then we introduce meth-
ods for linear mixture combination of these set-membership
filters.

3 Structure of set-membership filters

For the general linear-in-parameter filters whose input is x ∈
Rn , the desired output is real scalar d and the output of the
filter is d̂ = xTw where w ∈ Rn is the parameter vector for
the filter, and the filter error is defined as e(w) = d − d̂. In
the general setting, filter estimates the parameter vector to
minimize the cost which is a function of the filter error [2].
However, in the set-membership filtering scheme, we update
the parameter vector to satisfy a predefined upper bound γ

on the filter error for all data pairs (d, x) in a model space S
such that

|e(w)|2 ≤ γ, ∀(d, x) ∈ S. (1)

Therefore, any parameter vector satisfying (1) is an accept-
able solution and the set of these solutions forms the
feasibility set which is defined as

Γ �
⋂

(d,x)∈S
{w ∈ Rn : |d − xTw|2 ≤ γ 2}. (2)
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If the model space S is known priorly, then it is possible to
estimate the feasibility set or a parameter vector in it. How-
ever, there is no closed-form solution for an arbitrary S and
in practice the model space is not known completely or it is
time-varying [12]. Therefore, we estimate the feasibility set
or one of its members using set-membership adaptive recur-
sive techniques (SMART).

Considering a practical case, where only measured data
pair (dt , xt ) ∈ S is available, the constraint setHt containing
all parameter vectors satisfying (1) is defined as

H(t) � {w ∈ Rn : |d(t) − wT x(t)| ≤ γ }. (3)

Here, the constraint set is a region enclosed by the paral-
lel hyperplanes defined with |d(t) − x(t)Tw| = γ and an
estimate for the feasibility set at time t is membership set
φt �

⋂t
τ=1H(τ ). We approximate the membership set for

tractable and computable results by projecting current para-
meter vector w(t) onto constraint set H(t + 1) if it is not
contained in it and assure an error upper bound of γ [12].
We express the problem defined above as

w(t + 1) = arg min
w∈H(t+1)

‖w − w(t)‖2. (4)

We solved the optimization problem with constraint in (4)
with the method of Lagrange multipliers. The Lagrangian to
the optimization problem in (4) is

L(w, τ ) = ‖w − w(t)‖2 + τ(|e(t)| − γ ). (5)

Solution to the Lagrangian in (5) is

w(t + 1) = w(t) + μ(t)
x(t)e(t)
xT (t)x(t)

(6)

where

μ(t) =
{
1 − γ

|e(t)| if |e(t)| > γ,

0 otherwise.

The resulting algorithm in (6) is named as set-membership
normalized least mean square algorithm (SM-NLMS) and
achieves better convergence speed and steady-state MSE
with reduced computational load thanNLMS algorithm [12].
In next section, we use this SMF structure in constituent and
combination filters of mixture combination approach to cre-
ate computationally efficient and fast converging estimation
system.

4 Proposed combination methods

We deploy SMF scheme for the mixture combination of con-
stituent set-membership filters with different error bounds
running in parallel to estimate the desired signal d(t). We

emphasize that using SMF scheme provides lower compu-
tational complexity which offers a comparable performance
suitable for big data applications than standard LMS algo-
rithms. Also we get benefits of fast converging and lower
steady-state MSE performance obtained by using different
bounds on constituent filters on our estimation. Also

We use a systemwherem SMF filter running in parallel as
in Fig. 1, each one updates its parameter vector wi (t) ∈ Rn

and produces estimate d̂i (t) = xT (t)wi (t) with respect to
its bound γi . In the combination stage of m constituent fil-
ters, we combine each filter output linearly through time
variant weight vector w(t)(i) ∈ Rm which is trained with
combinator SMF filter with bound γ̄ . We denote input to
the combination stage as y(t) � col{d̂1(t), . . . , d̂m(t)}, and
the parameter vector of the combination stage is w(t) �
col{w(1)(t), . . . , wm(t)}. The output of the combination
stage is d̂(t) = yT (t)w(t), and the final estimation error
is e(t) � dt − d̂(t).

In the following subsections, we seek and train parameter
vectors for the combination stage weights satisfying upper
bound γ̄ within different parameter spaces.

4.1 Unconstrained linear mixture parameters

The first parameter space is for the unconstrained linear mix-
ture weights and defined as W1 � {w ∈ Rm} which is the
Euclidean space. Therefore,within theSMFscheme, for find-
ing and update of the weights we have

w(t + 1) = arg min
w∈H1(t)

||w − w(t)||2 (7)

where H1(t) � {w ∈ W1 : |d(t) − wT y(t)| ≤ γ̄ is the
constraint set for the update and the solution for the (7) as
we did in (4) yields

w(t + 1) = w(t) + μ(t)
y(t)e(t)
yT (t)y(t)

(8)

where

μ(t) =
{
1 − γ̄

|e(t)| if |e(t)| > γ̄ ,

0 otherwise.

Algorithm for the unconstrained mixture method is given in
Algorithm 1.

4.2 Affine mixture parameters

Parameter space for the affine mixture weights is defined
as W2 � {w ∈ Rm : 1Tw = 1} where 1 ∈ Rm denotes
a vector of ones such that sum of weights to be one, i.e.,∑m

i=1 w(i) = 1. Therefore, the constraint set in this case is

H2(t) � {w ∈ W2 : |d(t) − wT y(t)| ≤ γ̄ }.
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Algorithm 1 The Set-Membership Unconstrained Mixture
Algorithm
1: Choose γ̄

2: w(0) ← I ni tiali ze
3: α ← Constant
4: for i = 1 to m do
5: wi (0) ← I ni tiali ze
6: Choose γi
7: end for
8: for all t ≥ 0 do
9: for i = 1 to m do
10: d̂i (t) = xT (t)wi (t)
11: ei (t) = d(t) − d̂i (t)
12: if |ei (t)| > γi then
13: μi (t) = 1 − γi

|ei (t)|
14: wi (t + 1) = wi (t) + μi (t)

x(t)ei (t)
α+xT (t)x(t)

15: end if
16: end for
17: y(t) = [d̂1(t) . . . d̂m(t)]T
18: d̂(t) = yT (t)w(t)
19: e(t) = d(t) − d̂(t)
20: if |e(t)| > γ̄ then
21: μ(t) = 1 − γ̄

|e(t)|
22: w(t + 1) = w(t) + μ(t) y(t)e(t)

α+yT (t)y(t)
23: end if
24: end for

We remove the affine constraint with the following parame-
trization. Define parameter vector z(t) ∈ Rn−1 where

z(i)(t) � w(i)(t), ∀i ∈ {1, 2, . . . ,m − 1}

and

w(m)(t) = 1 −
m−1∑

i=1

z(i)(t) (9)

Therefore, the final estimation error is expressed with the use
of unconstrained parameter vector as

e(t) = d(t) −

⎡

⎢⎢⎢⎣

z(1)(t)
...

z(m−1)(t)
1 − 1T z(t)

⎤

⎥⎥⎥⎦

T

︸ ︷︷ ︸
w(t)

⎡

⎢⎢⎢⎣

d̂1(t)
...

d̂m−1(t)
d̂m(t)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
y(t)

,

= d(t) −
⎡

⎢⎣
d̂1(t)

...

d̂m−1(t)

⎤

⎥⎦

T

z(t) − (1 − 1T z(t))d̂m(t),

= d(t) − d̂m(t)︸ ︷︷ ︸
a(t)

−
⎡

⎢⎣
d̂1(t) − d̂m(t)

...

d̂m−1(t) − d̂m(t)

⎤

⎥⎦

T

︸ ︷︷ ︸
c(t)

z(t). (10)

Here in (9), we present z(t) as the unconstrained parameter
vector, a(t) as the desired signal and c(t) as the input to the
unconstrained optimization problem which is given as

z(t + 1) = arg min
z∈H̃2(t)

‖z − z(t)‖2, (11)

where the constraint set is defined as H̃2(t) � {z ∈ Rm−1 :
|a(t) − zT c(t)| ≤ γ }. Since now the optimization problem
is same as in unconstrained case, as in (7) the solution yields

z(t + 1) = z(t) + μ(t)
c(t)e(t)
c(t)T c(t)

(12)

where

μ(t) =
{
1 − γ

|e(t)| if |e(t)| > γ,

0 otherwise.

The input vector c(t) to the re-parameterized uncon-
strainedversionof theoptimizationproblemcanbe expressed
in terms of initial input vector y(t) as

c(t) =

⎡

⎢⎢⎢⎣

1 0 · · · 0 −1
0 1 · · · 0 −1
...

. . .
...

0 0 · · · 1 −1

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
G̃

y(t)

Therefore, we can express each element of unconstrained
parameter vector as

z(i)(t + 1) = z(i)(t) + μ(t)
G̃(i)y(t)e(t)

y(t)T G̃T G̃y(t)
(13)

which leads to

1−
m−1∑

i=1

z(i)(t+1) = 1−
m−1∑

i=1

z(i)(t)−μ(t)

∑m−1
i=1 G̃(i)y(t)e(t)

y(t)T G̃T G̃y(t)

(14)

and inserting (9) leads to

w(m)(t + 1) = w(m)(t) + μ(t)

⎡

⎢⎢⎢⎣

−1
...

−1
m − 1

⎤

⎥⎥⎥⎦

T

︸ ︷︷ ︸
g

y(t)e(t)

y(t)T G̃T G̃y(t)
.

(15)

Thus, by (13) and (15), we have

w(t + 1) = w(t) + μ(t)

[
G̃
gT

]

︸ ︷︷ ︸
G

y(t)e(t)

y(t)T G̃T G̃y(t)
. (16)
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Note that G̃T G̃ = G, therefore Eq. (15) yields to parameter
vector update of

w(t + 1) = w(t) + μ(t)
Gy(t)e(t)
y(t)TGy(t)

(17)

where

G �
[
Im−1 −1
−1T m − 1

]

and

μ(t) =
{
1 − γ

|e(t)| if |e(t)| > γ,

0 otherwise.

and −1 ∈ Rm−1 is a vector where all its elements are minus
one. Note that, algorithm for affine combination is easily
obtained by introducing matrix

G =
[
Im−1 −1
−1T m − 1

]

and replacing the line 22 in Algorithm 1 with the update line

w(t + 1) = w(t) + μ(t) Gy(t)e(t)
α+y(t)T Gy(t)

.

4.3 Convex mixture parameters

Lastly, the parameter space for the convex mixture weights
is defined as W3 = {w ∈ Rm : 1Tw = 1 ∧ w(i) ≥ 0,∀i ∈
{1, . . . ,m}} In order to get unconstrained optimization prob-
lem as we did above, we re-parameterize vector w(t) with
the parameter vector z(t) ∈ Rm as in [1]

w(i)(t) = e−z(i)(t)

∑m
k=1 e

−z(k)(t)
. (18)

Note that SM-NLMS algorithm also could be constructed
through gradient descent method with stochastic cost func-
tion defined as

F(e(t)) �
{( |e(t)|−γ

‖y(t)‖
)2 |e(t)| > γ

0 otherwise.

Therefore, for the unconstrained parameter vector update,
stochastic gradient algorithm is given by

z(t + 1) = z(t) − 1

2
∇zF(e(t)) (19)

which by chain rule yields to

z(t + 1) = z(t) − 1

2
[∇zw(t)]T∇wF(e(t)). (20)

Note that ∇zw(t) = w(t)w(t)T − diag{w(t)} [1] and by this
we obtain

z(t + 1) = z(t) + μ(t)[w(t)w(t)T − diag{w(t)}] y(t)e(t)
y(t)T y(t)

(21)

where

μ(t) =
{
1 − γ

|e(t)| if |e(t)| > γ,

0 otherwise.

and

w(t) = e−z(t)

‖e−z(t)‖1 .

Finally, we easily obtain the algorithm for the convexmixture
method by defining unconstrained parameter vector as in (18)
and by replacing line 22 in Algorithm 1 with the update line
in (20).

With the algorithmsdefined above, in next sectionwe eval-
uate the MSE performance of the algorithms within different
schemes.

5 Simulations and results

In this section, through series of simulations, we demon-
strate the performance of the proposed SMF filter mixture
algorithms and compare the steady-state and convergence
performances with various methods, i.e., NLMS, variable
step size NLMS and affine projection algorithm, as well as its
superior computational efficiency [2,15].We first considered
the performance for stationary case where statistics of source
data is not changing, and with stationary data, we also ana-
lyzed how predetermined error bounds of SMFs effects the
performance of SMF mixture system. We also investigated
the cases with non-stationary data where sudden changes
happen in source statistics, and the power of the additive
noise is also changing. Then, we demonstrate simulations
with real and synthetic benchmark datasets such as Eleva-
tors and Kinematics data [16]. In the final part, we compare
computational load of the proposed algorithms with respect
to NLMS mixture algorithm and other state-of-the-art algo-
rithms to demonstrate the computational efficiency of our
solutions.

Through this section, we refer set-membership normal-
ized least mean square algorithm as “SM-NLMS” and
unconstrained, affine and convex mixture of these filters as
“SM-UNC,” “SM-AFF” and “SM-CONV,” respectively. We
also introduce variable step size NLMS algorithm as “VSS-
NLMS” and affine projection algorithm as “APA” [2,15].
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5.1 Stationary data

In this part, we study our algorithms in a stationary environ-
mentwhere data source statistics do not change over time.We
create a sequence considering a linear-in-parameter model
dt = wT

o xt + nt where wo ∈ R7 denotes the parameter
of interest, xt ∈ R7 is the input regressor vector and nt is
the additive white Gaussian noise signal with fixed variance
σ 2
n . We use input vectors with eigenvalue spread of 1 and

0 dB SNR signal. Parameter of interest chosen randomly
from normal distribution and normalized to ||wo|| = 1. We
use 10 constituent SM-NLMS filters with different error-
bound set around

√
5σ 2

n . For comparison, we used NLMS
mixture algorithm and a single NLMS algorithm with step
size μNLMS = 0.2, VSS-NLMS algorithm with step size
range (μmax, μmin) = (0.2, 0.02) and APA algorithm of
order 5. In Fig. 2, we demonstrated the time-accumulated
regression errors averaged over 100 independent trials. We
observe that, SMF andNLMSmixture of set-membership fil-
ters outperform other filters (NLMS, VSS-NLMS and APA)
in both convergence rate and residual error sense. Also, note
that SMFmixture algorithms achieve better steady-state error
than the NLMS mixture algorithm.

In addition, error-bound selection is indeed a problem for
set-membership filtering (SMF), especially when the power
of the noise of the environment is unknown. One of our main
motivation for using the mixture approach with SMF is to
resolve this problem by combining different SMFs with a
wide range of representative error bounds. Hence, in the first
stage we use diverse range of error bounds to cover nearly
every important realistic case. However, we emphasize that
the selection of the error bound in the final stage is important.
The error bound of the mixture filter determines the trade-off
between low residual error and low computational complex-
ity. Therefore, it should be selected based on the application
specifications. For instance, if we seek a low residual error
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Fig. 3 Analysis for different error-bound selections. a Evolution of
MSE for different final error-bound selections. b Number of update
required for different final error-bound selections

and computational load is not a concern, then we set a tight
bound and system updates itself until reaching the desired
bound. For another case, if we seek for convergence with a
low computational complexity, thenwe set a loose bound and
system stops updating after converging to the bound. There-
fore, here,we study the selection of thefinal stage error bound
in a stationary environment. We use unconstrained mixture
of constituent filters as a combination filter. For comparison,
we set the error bound of the final stage as

√
5σ 2

n , 10
√
5σ 2

n
and 100

√
5σ 2

n for different cases. We present the evolution
of MSE for different selection of final error bound in Fig. 3
and evolution of the number of updates they require in Fig. 3.

5.2 Non-stationary data

In this part, we study the proposed algorithms with non-
stationary datawhere the statistics of source data have sudden
changes, i.e., concept drift, and have additive noise with a
time-varying power. For this purpose, we create a sequence
with the model dt = wT

t xt + nt where wt ∈ R7 repre-
sents the time-dependent parameter of interest and nt is white
Gaussian noise with time-varying variance σ 2

n . We generated
the parameter of interest w0 as a normalized vector from
normal distribution. We changed that parameter of interest
to −w0 at the middle of the sequence to create the non-
stationary environment. At that time we also changed the
power of the additive noise signal to create the time-varying
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noise statistics. We created 8000 instances using this model
configuration and set eigenvalue spread of the input vectors
as 1. At the beginning, we set the SNR of signal as 0 dB,
and at iteration 4000, we changed it to −10 dB. We use
same filter configurations as the stationary case. We present
accumulated error results averaged over 100 independent
trials in Fig. 4. Here, we observe that mixture algorithms
perform both in convergence rate and residual error sense
better than other filters even for the non-stationary data with
time-varying noise. Note that due to different error-bound
coverage of the constituent filters of the mixture algorithms,
we observe a robust performance under non-stationary data
and time-varying noise circumstances which resulted in bet-
ter performance than single use of filters.

5.3 Benchmark real data

Here, we apply our algorithms to the regression of the bench-
mark real-life problems [16]. In real-life dataset experiments,
we use 10 constituent SMF filters, and since this time we do
not know the power of the additive noise, we set the error
bounds of the SMF filters in a wide range spread around
0.15 and again we choose the error bound for the combi-
nator SMF filter as 0.15. For NLMS algorithms, we choose
step size μNLMS = 0.2. For VSS-NLMS algorithm, we set
the step size range as (μmax, μmin) = (0.2, 0.02) and for
APA algorithm we choose its order different for each dataset
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Fig. 5 Time-accumulated error performance of proposed algorithms
compared with NLMS algorithms over Pumadyn and Elevator datasets.
a Pumadyn dataset results. b Elevator dataset results

according to their regressor dimension. We make 100 trials
over a dataset by shuffling the data at each trial. For the first
experiment, we use Pumadyn data with regressor dimension
n = 32 which is a dataset obtained from a realistic simula-
tions of the dynamics ofUnimation Puma 560 robot arm [16].
We set the order of APA algorithm as 10 for this case. We
present the accumulated error results averaged over 100 trials
in Fig. 5. Note that in Fig. 5, mixture approaches show supe-
rior performance over other filters. Although APA algorithm
shows a close performance to mixture filters, we emphasize
that APAalgorithm is computationally inefficient for big data
applications compared to proposed methods since it requires
memory for holding old data at its order and require more
multiplication and addition operations at each update. We
present detailed results for that in the computational load
analysis part.

Besides Pumadyn experiment, we use Elevator data with
regressor dimension 18 which is a dataset obtained from the
task of controlling F16 aircraft and the desired data is related
to an action taken on the elevators of the aircraft [16]. We set
the order of APA algorithm as 8 for this case. We presented
the results for this dataset in Fig. 5, and we should emphasize
that similar behavior in results is observed.
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Fig. 6 Number of updates that each algorithm requires over 8000
instance stationary data

5.4 Computational load

One of the critical aspects of the proposed algorithms is
the reduced computational load regarding lessened update
of weights compared to the standard NLMS algorithm and
mixture methods. To present that, we calculated the total
number of addition and multiplication operation that each
algorithm made during the simulation. In Fig. 6, we demon-
strate results for addition and multiplication operation that
each algorithm made in 100 independent experiment over
stationary data and show that proposed algorithms are com-
putationally more efficient than other algorithms. Although
the computational cost among the proposed algorithms do
not differ much, we emphasize that the unconstrained mix-
ture is the most computationally efficient one. We note that
SMF mixture algorithms provide computational efficiency
up to order of magnitude of 3.

6 Conclusion

In this paper, we introduce a novel mixture of expert algo-
rithm in order to reduce the computational demand of the
mixture approaches. Since the ordinary mixture approaches
are required to run several adaptive filters in parallel, they
are impractical in applications involving big data due to
complexity issues. To this end, by using the SMF, we sig-
nificantly reduce the computational complexity of these
approaches while providing superior performance. We pro-
vide unconstrained, affine and convexmixtureweight config-
urations using set-membership filtering framework. Through
numerical experiments in stationary and non-stationary envi-
ronments and through regression of a benchmark real-life
problem, we investigate the steady-state mean square error
and convergence rate performance of these algorithms com-
pared with other algorithms and mixture methods. In these
experiments, we demonstrate that proposed algorithms reach
faster convergence rate and lower steady-state error. Finally,

we show that our set-membership filtering-based approaches
requires less addition and multiplication operations hence
less computational load than the compared algorithms.
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