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We construct team-optimal estimation algorithms over distributed networks for state estimation in the 
finite-horizon mean-square error (MSE) sense. Here, we have a distributed collection of agents with 
processing and cooperation capabilities. These agents observe noisy samples of a desired state through 
a linear model and seek to learn this state by interacting with each other. Although this problem has 
attracted significant attention and been studied extensively in fields including machine learning and 
signal processing, all the well-known strategies do not achieve team-optimal learning performance in 
the finite-horizon MSE sense. To this end, we formulate the finite-horizon distributed minimum MSE 
(MMSE) when there is no restriction on the size of the disclosed information, i.e., oracle performance, 
over an arbitrary network topology. Subsequently, we show that exchange of local estimates is sufficient 
to achieve the oracle performance only over certain network topologies. By inspecting these network 
structures, we propose recursive algorithms achieving the oracle performance through the disclosure of 
local estimates. For practical implementations we also provide approaches to reduce the complexity of 
the algorithms through the time-windowing of the observations. Finally, in the numerical examples, we 
demonstrate the superior performance of the introduced algorithms in the finite-horizon MSE sense due 
to optimal estimation.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Over a distributed network of agents with measurement, pro-
cessing and communication capabilities, we can have enhanced 
processing performance, e.g., fast response time, relative to the 
centralized networks by distributing the processing power over the 
networks [1–4]. Mainly, distributed agents observe the true state 
of the system through noisy measurements from different view-
points, process the observation data in order to estimate the state, 
and communicate with each other to alleviate the estimation pro-
cess in a fully distributed manner. Notably, the agents can respond 
to streaming data in an online manner by disclosing information 
among each other at certain instances. This framework is con-
veniently used to model highly complex structures from defense 
applications to social and economical networks [5–8]. As an exam-
ple, say that we have radar systems distributed over an area and 
seeking to locate hostile missiles, i.e., the location of the missile 
is the underlying state of the system. In that respect, distributed 
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processing approach has vital importance in terms of detecting 
the missiles and reacting as fast as possible. In particular, even 
if the viewpoints of a few radar systems are blocked due to envi-
ronmental obstacles, through the communication among the radar 
systems, each system should still be able to locate the missiles. Ad-
ditionally, since each radar system not only collects measurements 
but also process them to locate the missiles, the overall system can 
respond to the missiles faster than a centralized approach in which 
measurements of all the radar systems are collected at a central-
ized unit and processed together.

Although there is an extensive literature on this topic, e.g., [2,
6–11] and references therein, we still have significant and yet un-
explored problems for disclosure and utilization of information 
among agents. Prior work has focused on the computationally sim-
ple algorithms that aim to minimize certain cost functions through 
the exchange of local estimates, e.g., diffusion or consensus based 
estimation algorithms [2,9,3,12–14], due to processing power re-
lated practical concerns. However, there is a trade-off in terms of 
computational complexity and estimation performance.

Formulating the optimal distributed estimation algorithms with 
respect to certain performance criteria is a significant and unex-
plored challenge. To this end, we consider here the distributed 
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estimation problem as a team problem for distributed agents in 
which agents take actions, e.g., which information to disclose and 
how to construct the local estimate. This differs from the existing 
approaches in which agents exchange their local estimates. Fur-
thermore, we address the optimality of exchanging local estimates 
with respect to the team problem over arbitrary network struc-
tures.

We examine the optimal usage of the exchanged information 
based on its content rather than a blind approach in which ex-
changed information is handled irrespective of the content as in 
the diffusion or consensus based approaches. In such approaches, 
the agents utilize the exchanged information generally through 
certain static combination rules, e.g., the uniform rule [15], the 
Laplacian rule [16] or the Metropolis rule [17]. However, if the sta-
tistical profile of the measurement data varies over the network, 
i.e., each agent observes diverse signal-to-noise ratios, by ignor-
ing the variation in noise, these rules yield severe degradation in 
the estimation performance [2]. In such cases the agents can per-
form better even without cooperation [2]. Therefore, the optimal 
usage of the exchanged information plays an essential role in per-
formance improvement in the team problem.

Consider distributed networks of agents that observe noisy 
samples of an underlying state (possibly multi-dimensional) over 
a finite horizon. The agents can exchange information with only 
certain other agents at each time instant. In particular, agents co-
operate with each other as a team according to a certain team 
cost depending on the agents’ actions. To this end, each agent 
constructs a local estimate of the underlying state and constructs 
messages to disclose to the neighboring agents at each time in-
stant. We particularly consider a quadratic cost function and that 
the underlying state and measurement noises are jointly Gaussian.

We note that restrictions on the sent messages, e.g., on the 
size of the disclosed information, have significant impact on the 
optimal team actions. We introduce the concept of the oracle per-
formance, in which there is no restriction on the disclosed infor-
mation. In that case, a time-stamped information disclosure can 
be team-optimal and we introduce the optimal distributed online 
learning (ODOL) algorithm using the time-stamped information 
disclosure. Through a counter example, we show that the oracle 
performance cannot be achieved through the exchange of local es-
timates in general. Then, we analytically show that over certain 
networks, e.g., tree networks, agents can achieve the oracle per-
formance through the exchange of local estimates. We propose 
the optimal and efficient distributed online learning (OEDOL) al-
gorithm, which is practical for real life applications and achieves 
the oracle performance over tree networks through the exchange 
of local estimates. Finally, we introduce the time windowing of 
the measurements in the team cost and propose a recursive al-
gorithm, sub-optimal distributed online learning (SDOL) algorithm, 
combining the received messages linearly through time-invariant 
combination weights.

We can list our main contributions as follows: 1) We intro-
duce a team-problem to minimize finite horizon mean square 
error cost function in a distributed manner. 2) We derive the 
ODOL algorithm achieving the oracle performance over arbitrary 
networks through time-stamped information exchange. 3) We ad-
dress whether agents can achieve the oracle performance through 
the disclosure of local estimates. 4) We propose a recursive al-
gorithm, the OEDOL algorithm, achieving the oracle performance 
over certain network topologies with tremendously reduced com-
munication load. 5) We also formulate sub-optimal versions of the 
algorithms with reduced complexity. 6) We provide numerical ex-
amples demonstrating the significant gains due to the introduced 
algorithms.

The remainder of the paper is organized as follows. We intro-
duce the team problem for distributed-MMSE estimation in Sec-
Fig. 1. The neighborhoods of ith agent over the distributed network.

tion 2. We study the tree networks, exploit the network topology 
to formulate the OEDOL algorithm that reduces the communica-
tion load and introduce cell structures, which is relatively more 
connected than tree networks, in Section 3. We propose the sub-
optimal versions of the ODOL algorithm for practical implementa-
tions in Section 4. In Section 5, we provide numerical examples 
demonstrating significant gains due to the introduced algorithms. 
We conclude the paper in Section 6 with several remarks.

Notation: We work with real data for notational simplicity. 
N(0, .) denotes the multivariate Gaussian distribution with zero 
mean and designated covariance. For a vector a (or matrix A), 
a′ (or A′) is its ordinary transpose. We denote the vector whose 
terms are all 1s (or all 0s) by 1 (and 0). We denote random 
variables by bold lower case letters, e.g., x. The operator col{·} pro-
duces a column vector or a matrix in which the arguments of col{·}
are stacked one under the other. For a matrix A, diag{A} operator 
constructs a diagonal matrix with the diagonal entries of A. For 
a given set N , diag{N } creates a diagonal matrix whose diagonal 
block entries are elements of the set. The operator ⊗ denotes the 
Kronecker product.

2. Team problem for distributed-MMSE estimation

Consider a distributed network of m agents with processing and 
communication capabilities. In Fig. 1, we illustrate this network 
through an undirected graph, where the vertices and the edges 
correspond to the agents and the communication links across the 
network, respectively. For each agent i, we denote the set of agents 
whose information could be received at least after k hops, i.e., 
k-hop neighbors, by N (k)

i , and π(k)
i :=

∣∣∣N (k)
i

∣∣∣ is the cardinality of 

N (k)
i (see Fig. 1b)1. We assume that N (0)

i = {i} and N (k)
i = ∅ for 

k < 0. Note that the sequence of the sets {N (0)
i , N (1)

i , . . .} is a non-

decreasing sequence such that N (k)
i ⊆N (l)

i if k < l.

1 For notational simplicity, we define Ni := N (1)
i and πi := π

(1)
i .
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Here, at certain time instants, the agents observe a noisy ver-
sion of a time-invariant and unknown state vector x ∈ R

p which 
is a realization of a Gaussian random variable x with mean x̄ and 
auto-covariance matrix �x . In particular, at time instant t , each 
agent i observes a noisy version of the state as follows:

yi,t = Hi x + ni,t, t = 1, . . . , T ,

where Hi ∈ R
q×p is a matrix commonly known by all agents, and 

ni,t ∈ R
q is a realization of a zero-mean white Gaussian vector 

process {ni,t} with auto-covariance �ni . Correspondingly, the ob-
servation yi,t ∈ R

q is a realization of the random process {yi,t}, 
where yi,t = Hix + ni,t almost everywhere (a.e.). The noise ni,t is 
also independent of the state x and the other noise parameters 
n j,τ , j �= i and τ ≤ t . We assume that the statistical profiles of the 
noise processes are common knowledge of the agents since they 
can readily be estimated from the data [18].

The agents have communication capabilities and at certain time 
instants, i.e., after each measurement, they can exchange informa-
tion with the neighboring agents as seen in Fig. 1a. Let zi, j,t ∈ R

r

denote the information disclosed by i to j at time t , and r ≥ 0 is 
the size of the disclosed information. We assume that there exists 
a perfect channel between the agents such that the disclosed in-
formation can be transmitted with infinite precision. Therefore, we 
denote the information available to agent-i at time t by

δi,t =
{

yi,t, yi,τ , z j,i,τ , for j ∈ Ni, τ = 1, . . . , t − 1
}

and let σi,t denote the sigma-algebra generated by the information 
set δi,t . Furthermore, we define the set of all σi,t -measurable func-
tions from Rqt × R

rπi(t−1) to Rr by �i,t . Importantly, here, which 
information to disclose is not determined a priori in the prob-
lem formulation. Let γi, j,t be the decision strategy for zi, j,t , then 
agent-i chooses γi, j,t , j ∈Ni , from the set �i,t , i.e., γi, j,t ∈ �i,t and 
γi, j,t(δi,t) = zi, j,t , based on his/her objective.

In addition to the disclosed information zi, j,t , j ∈ Ni , agent-i
takes action ui,t ∈ R

q , where the corresponding decision strat-
egy ηi,t is chosen from the set 
i,t , which is the set of all 
σi,t -measurable functions from Rqt ×R

rπi(t−1) to Rp , i.e., ηi,t ∈ 
i,t
and ηi,t(δi,t) = ui,t . Here, we consider that the agents have a com-
mon cost function:

T∑
t=1

m∑
j=1

‖x − u j,t‖2,

where all actions ui,t , i = 1, . . . , m and t = 1, . . . , T are costly, 
and agent-i should take actions ui,t and zi, j,t , j = 1, . . . , πi and 
t = 1, . . . , T , accordingly. Therefore, this corresponds to a team-
problem, in which agent-i faces the following minimization prob-
lem:

min
γi, j,t∈�i,t ,ηi,t∈
i,t ,

j∈Ni ,t=1,...,T

T∑
t=1

m∑
j=1

E‖x − η j,t(δ j,t)‖2. (1)

We point out that both �i,t and 
i,t are infinite dimensional, i.e., 
(1) is a functional optimization problem and the optimal strategies 
can be a nonlinear function of the available information. Further-
more, the agents should also construct the disclosed information 
accordingly since other agents’ decisions u j,t directly depend on 
the disclosed information.

2.1. A lower bound

In order to compute the team optimal strategies, we first con-
struct a lower bound on the performance of the agents by remov-
ing the limitation on the size of the disclosed information, i.e., 
r → ∞. In that case, the following proposition provides an opti-
mal information disclosure strategy.
Fig. 2. Time stamped information disclosure over a network of 6 agents at time 
instant t = 4.

Proposition 2.1. When r ≥ mq, a time stamped information disclosure 
strategy, in which agents transmit the most current version of the avail-
able information (e.g., see Fig. 2), can lead to the team-optimal solution.

Proof. Through the time stamped information disclosure, each 
agent can obtain the measurements of the other agents separately 
in a connected network. However, the measurements of the non-
neighboring agents could only be received after certain hops due 
to the partially connected structure, i.e., certain agents are not 
directly connected. As an example, the disclosed information of 
j ∈N (2)

i reaches to i by passing through two communication links 
as seen in Fig. 1b. In particular, this case assumes that each agent 
has access to full information from the other agents, albeit with 
certain hops, and corresponds to the direct aggregation of all mea-
surements across the network at each agent.

Correspondingly, at time t , all the information aggregated at ith 
agent is given by

δo
i,t :=

{{
yi,τ
}τ≤t

,
{

y j,τ
}τ≤t−1

j∈N (1)
i

, . . . ,
{

y j,τ
}τ≤t−κi

j∈N (κi )
i

}
, (2)

where the information from the furthest agent is received at least 
after κi hops. Therefore, a time-stamped information disclosure 
strategy can lead to the team-optimal solution. �

Let σ o
i,t denote the sigma-algebra generated by the information 

set δo
i,t and 
o

i,t be the set of all σ o
i,t -measurable functions from 

R
qt ×R

qπi(t−1) × . . .×R
qπ

κi
i |t−κi |+ (where |t −κi |+ = 0 if t −κi < 0) 

to Rp . Then, agent-i faces the following minimization problem:

min
ηi,t∈
o

i,t ,

t=1,...,T

T∑
t=1

m∑
j=1

E‖x − η j,t(δ
o
j,t)‖2, (3)

which is equivalent to

T∑
t=1

min
ηi,t∈
o

i,t

E‖x − ηi,t(δ
o
i,t)‖2 (4)

since γi, j,t , j ∈Ni , is set to the time-stamped strategy and ηi,t has 
impact only on the term E‖x − ηi,t(δ

o
i,t)‖2. Let δo

i,t be defined by

δo
i,t :=

{{
yi,τ

}τ≤t
,
{

y j,τ

}τ≤t−1

j∈N (1) , . . . ,
{

y j,τ

}τ≤t−κi

j∈N (κi )

}

i i
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Then, team optimal strategy in the lower bound, i.e., oracle strat-
egy, ηo

i,t and the corresponding action uo
i,t are given by

ηo
i,t(δ

o
i,t) = uo

i,t = E[x|δo
i,t = δo

i,t] (5)

and we define uo
i,t := E[x|δo

i,t].

2.2. ODOL algorithm

Since the state and the observation noise are jointly Gaus-
sian random parameters, we can compute (5) through a Kalman-
like recursion [19]. Therefore, we provide the following ODOL 
algorithm. We introduce a difference set �i,t := δo

i,t\δo
i,t−1 ={

yi,t , 
{

y j,t−1
}

j∈N (1)
i

, . . . , 
{

y j,t−κi

}
j∈N (κi )

i

}
and a vector wi,t =

col{�i,t}. Then, for t ≥ 1 the iterations of the ODOL algorithm are 
given by

uo
i,t = (I − Ki,t H̄ i

)
uo

i,t−1 + Ki,t wi,t,

Ki,t = �̂i,t−1 H̄ ′
i

(
H̄i�̂i,t−1 H̄ ′

i + �̄ni

)−1
,

�̂i,t = (I − Ki,t H̄ i
)
�̂i,t−1,

where2 uo
i,0 = x̄, �̂i,0 = �x , H̄i := (Pi ⊗ Iq

)
H ,

H := col {H1, . . . , Hm} ,

�̄ni := (Pi ⊗ I p
)
�n
(

Pi ⊗ I p
)′ , �n := diag

{
�n1 , . . . ,�nm

}
, and Pi is 

the corresponding permutation matrix.
We point out that this is a lower bound on the original cost 

function (1), i.e.,

T∑
t=1

m∑
i=1

E‖x − uo
i,t‖2 ≤ min

γi, j,t∈�i,t ,ηi,t∈
i,t ,

i=1,...,m;
j∈Ni;t=1,...,T

T∑
t=1

m∑
j=1

E‖x − η j,t(δ j,t)‖2,

(6)

where we substitute team-optimal action (when r → ∞) uo
i,t back 

into (4) and sum over t = 1, . . . , T and i = 1, . . . , m. However, the 
lower bound is not necessarily tight depending on r. By Proposi-
tion 2.1, time-stamped information disclosure strategy, in which 
the size of the disclosed information is q × m, yields the ora-
cle solution. This implies that when r ≥ qm, the lower bound is 
tight. Furthermore, team optimal solutions are linear in the avail-
able information and can be constructed through the recursive 
algorithm ODOL. However, qm is linear in the number of agents, 
m, and in large networks this can cause excessive communication 
load yet communication load is crucial for the applicability of the 
distributed learning algorithms [14,13]. Therefore, in the follow-
ing section, we provide a sufficient condition on the size of the 
disclosed information, which depends on the network structure 
(rather than its size), in order to achieve the lower bound (6).

3. Distributed-MMSE estimation with disclosure of local estimate

In the conventional distributed estimation algorithms, e.g., con-
sensus and diffusion approaches, agents disclose their local esti-
mates, which have size p (note that this does not depend on the 
network size). The following example addresses whether the dis-
closure of local estimates can achieve the lower bound (6) or not.

2 If the inverse fails to exist, a pseudo-inverse can replace the inverse [19].
Fig. 3. A cycle network of 4 agents.

3.1. A counter example

Consider a cycle network of 4 agents as seen in Fig. 3, where 
p = q = 1, Hi = 1, �ni = σ 2

n , for i = 1, . . . , 4, and �x = σ 2
x . We aim 

to show that agent-1’s oracle action at time t = 3, i.e., uo
1,3, cannot 

be constructed through the exchange of local estimates.
At time t = 2, agent-2 and agent-3 have the following oracle 

actions:

uo
2,2 = E[x|y2,2 = y2,2, y2,1 = y2,1, y1,1 = y1,1, y4,1 = y4,1]

= σ 2
x

4(σ 2
x + σ 2

n )
(y2,2 + y2,1 + y1,1 + y4,1), (7)

uo
3,2 = E[x|y3,2 = y3,2, y3,1 = y3,1, y1,1 = y1,1, y4,1 = y4,1]

= σ 2
x

4(σ 2
x + σ 2

n )
(y3,2 + y3,1 + y1,1 + y4,1). (8)

Note that since there are two hops between agents 2 and 3, at 
t = 2, agents do not have access to each other’s any measurement 
yet. At time t = 3, agent-1’s oracle action is given by

uo
1,3 = E[x|y1,3 = y1,3, y1,2 = y1,2, y1,1 = y1,1,

y2,2 = y2,2, y2,1 = y2,1,

y3,2 = y3,2, y3,1 = y3,1,

y4,1 = y4,1],

= σ 2
x

8(σ 2
x + σ 2

n )
(y1,3 + y1,2 + y1,1 + y2,2 + y2,1 + y3,2

+ y3,1 + y4,1).

Assume that uo
1,3 can be obtained through the exchange of local 

estimates:

û1,3 := E[x|y1,3 = y1,3, y1,2 = y1,2, y1,1 = y1,1,

uo
2,2 = uo

2,2, uo
2,1 = uo

2,1,

uo
3,2 = uo

3,2, uo
3,1 = uo

3,1]. (9)

Since all parameters are jointly Gaussian, the local estimates are 
also jointly Gaussian, û1,3, is linear in uo

2,2 and uo
3,2. Furthermore, 

the measurements y2,2, y3,2, and y4,1 are only included in uo
2,2

and uo
3,2. Therefore, we obtain

û1,3 = · · · + αuo
2,2 + βuo

3,2

= · · · + α
σ 2

x

4(σ 2
x + σ 2

n )
(y2,2 + y4,1 + · · · )

+ β
σ 2

x

4(σ 2
x + σ 2

n )
(y3,2 + y4,1 + · · · ),

where · · · refers to the other terms. However, the equality of û1,3
and uo

1,3 implies α = β = 1/2 due to the combination weights of 
y2,2 and y3,2, respectively, and α + β = 1/2 due to the combina-
tion weight of y4,1, which leads to a contradiction. Hence, which 
information to disclose over arbitrary networks for team-optimal 
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Fig. 4. An example tree network. Notice the eliminated links from Fig. 1 to avoid 
multi-path information diffusion.

solutions should be considered elaborately. In the following, we 
analytically show that lower bound could be achieved through the 
disclosure of local estimates over “tree networks”.

3.2. Tree networks

A network has a “tree structure” if its corresponding graph 
is a tree, i.e., connected and undirected without any cycles [20]. 
As an example, the conventional star or line networks have 
tree structures. We remark that for an arbitrary network topol-
ogy we can also construct the spanning tree of the network 
and eliminate the cycles. In the literature, there exists numerous 
distributed algorithms for minimum spanning tree construction 
[21–25].

Importantly, the following theorem shows that over tree net-
works we can achieve the performance of the oracle algorithm 
through the disclosure of the local estimates only.

Theorem 3.1. Consider the team-problem over a tree network, in which 
r = p. Then, exchange of local estimates can lead to the team-optimal 
solution, i.e., agents can achieve the oracle performance.

Proof. Initially, agent-i has access to yi,1 only and the oracle ac-
tion is uo

i,1 = E[x|yi,1 = yi,1]. At time t = 2, the oracle action is 
given by

uo
i,2 = E

[
x|{yi,τ = yi,τ

}
τ=1,2 ,

{
y j,1 = y j,1

}
j∈Ni

]
, (10)

which can be written as

uo
i,2 = E

[
x|{yi,τ = yi,τ

}
τ=1,2 ,

{
E[x|y j,1 = y j,1]

}
j∈Ni

]
= E

[
x|{yi,τ = yi,τ

}
τ=1,2 ,

{
uo

j,1 = uo
j,1

}
j∈Ni

]
. (11)

This implies that for t = 1 and t = 2, the oracle performance can 
be achieved through the disclosure of local estimate. Therefore, we 
can consider the oracle action (10) even though agents disclose 
their local estimate instead of time-stamped information disclo-
sure.

As seen in Fig. 4, over a tree network, for k ∈ {1, . . . , κi} we 
have

N (k)
i =

⋃
j∈Ni

(
N (k)

i ∩N (k−1)
j

)
. (12)

Note that the sets in (12) are disjoint as(
N (k)

i ∩N (k−1)
j1

)
∩
(
N (k)

i ∩N (k−1)
j2

)
= ∅ (13)

for all j1, j2 ∈ Ni and j1 �= j2. Notably, over a tree network, by 
(13), we can partition the collection set of the measurements re-
ceived after at least k-hops as follows
{
y j,τ

}
j∈N (k)

i
=
{{

y j,τ
}

j∈N (k)
i ∩N (k−1)

j1

,

. . . ,
{

y j,τ
}

j∈N (k)
i ∩N (k−1)

jπi

}
. (14)

In the time-stamped information disclosure, at time t = 3, 
agent-i has access to δo

i,3, defined in (2). We denote the set of new 
measurements received by i over j at time t = 2 by

�o
j,i,2 :=

{ =y j,2︷ ︸︸ ︷{
yk,2
}

k∈N (1)
i ∩N (0)

j
,
{

yk,1
}

k∈N (2)
i ∩N (1)

j

}
,

which can also be written as

�o
j,i,2 = δo

j,2 \
{=δo

j,1︷︸︸︷
y j,1 , yi,1︸︷︷︸

=�o
i, j,1=δo

i,1

}
, (15)

where we exclude the information sent by i to j at time t = 1, 
i.e., yi,1. Then, we can write the accessed information as the union 
of new measurement yi,3, new measurements received over the 
neighboring agents and the accessed information at time t = 2 as 
follows:

δo
i,3 =

{
yi,3,�

o
j1,i,2, . . . ,�

o
jπi ,i,2

, δo
i,2

}
. (16)

Note that the sets on the right hand side of (16) are disjoint due 
to tree structure. Furthermore, by (15) and (16), the sigma-algebra 
generated by δo

i,3 is equivalent to the sigma-algebra generated by 

the set 
{
{yi,τ }τ≤3, {δo

j,τ }τ≤2
j∈Ni

}
. Since uo

j,t = E[x|δo
j,t = δo

j,t], we ob-

tain

uo
i,3 = E

[
x|{yi,τ = yi,τ

}τ≤3
,
{

uo
j,τ = uo

j,τ

}τ≤2

j∈Ni

]
. (17)

By (15), we have

�o
j,i,t = δo

j,t \
{
δo

j,t−1 ∪ �o
i, j,t−1

}
, (18)

which implies that for t ≥ 2, �o
j,i,t is constructible from δo

i,τ
and δo

j,τ for τ ≤ t . Hence, by induction, we conclude that the 
lower bound can be achieved through the exchange of local es-
timates. �
Remark 3.1. When the expectation of the state is conditioned on 
infinite number of observations over even a constructed spanning 
tree, only a finite number of the observations is missing compared 
to the case over a fully connected network. Hence, even if we con-
struct the spanning tree of that network, we would still achieve 
the lower bound over a fully connected (or centralized) network 
asymptotically. As an illustrative example, in Fig. 10, we observe 
that the MMSE performance over the fully connected, star and line 
networks are asymptotically the same. Similarly, in [26–28], the 
authors show that the performance of the diffusion based algo-
rithms could approach the performance of a fully connected net-
work under certain regularity conditions.

In the sequel, we propose the OEDOL algorithm that achieves 
the lower bound over tree networks iteratively.

3.3. OEDOL algorithm

By Theorem 3.1, over a tree network, oracle action can be con-
structed by
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uo
i,t = E

[
x|{yi,τ = yi,τ

}τ≤t
,
{

uo
j,τ = uo

j,τ

}τ≤t−1

j∈Ni

]
(19)

through the disclosure of oracle actions, i.e., local estimates. We 
remark that uo

i,t is linear in the previous actions uo
i,τ , τ ≤ t − 1. 

In order to extract new information, i.e., innovation part, we need 
to eliminate the previously received information at each instant 
on the neighboring agents. This brings in additional computational 
complexity. On the contrary, agents can just send the new infor-
mation compared to the previously sent information, e.g., si,t . Note 
that here agents disclose the same information to the neighbor-
ing agents. Since we are conditioning on the linear combinations 
of the conditioned variables without effecting their spanned space, 
i.e., si,t is computable from uo

i,τ for τ ≤ t and vice versa, agents 
can still achieve the oracle performance by reduced computational 
load, yet.

At time t , agent-i receives local measurement yi,t and sent in-
formation from the neighboring agents,

ri,t := col{s j1,t−1, . . . , s jπi ,t−1}.
We aim to determine the content of the received information ri,t
to extract the innovation within them and utilize this innovation 
in the update of the oracle action.

Initially, at time t = 1, agent-i has only access to the local mea-
surement yi,1. Then, the oracle action is given by

uo
i,1 = (I − �x H ′

i(Hi�x H ′
i + �ni )

−1 Hi)x̄

+ �x H ′
i(Hi�x H ′

i + �ni )
−1 yi,1.

Let uo
i,0 = x̄ and �̂i,0 = �x , and set Bi,1 = �̂i,0 H ′

i(Hi�̂i,0 H ′
i +�ni )

−1

and Ai,1 = I − Bi,1 Hi . Then, we obtain

uo
i,1 = Ai,1uo

i,0 + Bi,1 yi,1,

�̂i,1 = Ai,1�̂i,0.

Next, instead of sending uo
i,1, agent-i sends to the neighboring 

agents, j ∈Ni ,

si,1 = uo
i,1 − Ai,1uo

i,0

= Bi,1 yi,1.

Correspondingly, at time t = 2, agent-i receives yi,2 and ri,2. Let 
ri,2 be the corresponding random vector. Then, conditioning the 
state and the received information on the previously available in-
formation yi,1 = yi,1, we have[ x

yi,2
ri,2

] ∣∣∣yi,1 = yi,1

∼ N

⎛
⎝
⎡
⎣ uo

i,1

Hi u
o
i,1

H̄i,1uo
i,1

⎤
⎦ ,

⎡
⎣ �̂i,1 �̂i,1 H ′

i �̂i,1 H̄ ′
i,1

Hi�̂i,1 Hi�̂i,1 H ′
i+�ni Hi�̂i,1 H̄ ′

i,1

H̄i,1�̂i,1 H̄i,1�̂i,1 H ′
i H̄ i,1�̂i,1 H̄ ′

i,1+ Ḡ i,1

⎤
⎦
⎞
⎠ ,

where H̄i,1 := col
{

B j1,1 H j1 , . . . , B jπi ,1
H jπi

}
and Ḡ i,1 = diag{Gi,1}, 

where Gi,1 := col
{

B j1,1�n j1
B ′

j1,1, . . . , B jπi ,1
�n jπi

B ′
jπi ,1

}
.

Let H̃i,1 := col{Hi, H̄i,1} and G̃ i,1 := diag{�ni , Ḡ i,1} and set[
Bi,2 Ci,2

]= �̂i,1 H̃ ′
i,1

(
H̃i,1�̂i,1 H̃ ′

i,1 + G̃ i,1

)−1
,

Ai,2 = I − Bi,2 Hi − Ci,2 H̄i,1.

Then, we obtain

uo
i,2 = Ai,2uo

i,1 + Bi,2 yi,2 + Ci,2ri,2, (20)

�̂i,2 = Ai,2�̂i,1

and agent-i sends
si,2 = uo
i,2 − Ai,2uo

i,1

= Bi,2 yi,2 +
∑
j∈Ni

C ( j)
i,2 B j,1 y j,1︸ ︷︷ ︸

=s j,1

,

where C ( j)
i,2 denotes the corresponding jth block of Ci,2. Therefore, 

at time t = 3, agent-i receives from j ∈Ni :

s j,2 = B j,2 y j,2 +
∑

k∈N j\i

(C (k)
j,2 B j,1 y j,1) + C (i)

j,2 Bi,1 yi,1. (21)

Since the last term on the right hand side of (21) is known by i, 
we have

E[ri,2|δo
i,2 = δo

i,2] =

=H̄i,2︷ ︸︸ ︷⎡
⎢⎢⎣

B j1,2+∑k∈N j1
\i C (k)

j1,2 Bk,2

...
B jπi ,2+∑k∈N jπi

\i C (k)
jπi ,2 Bk,2

⎤
⎥⎥⎦uo

i,2 + Di,2si,1,

(22)

where Di,2 := col{C (i)
j1,2, . . . , C

(i)
jπi ,2

}, and

Gi,2 =

⎡
⎢⎢⎣

B j1,2�n j1
B ′

j1,2+∑k∈N j1
\i C (k)

j1,2 Bk,1�nk B ′
k,1(C (k)

j1,2)′

...
B jπi ,2�n jπi

B ′
jπi ,2+∑k∈N jπi

\i C (k)
jπi ,2 Bk,1�nk B ′

k,1(C (k)
jπi ,2)′

⎤
⎥⎥⎦ (23)

By (20), (22), and (23), the next oracle action uo
i,3 is given by

uo
i,3 = Ai,3uo

i,2 + Bi,3 yi,3 + Ci,3(ri,3 − Di,2si,1).

Subsequently, agent-i sends si,3 = uo
i,3 − Ai,3uo

i,2 and the received 
information from j ∈Ni yields

s j,3 = B j,3 y j,3 +
∑

k∈N j

C (k)
j,3

⎛
⎝Bk,2 yk,2 +

∑
l∈Nk\ j

C (l)
k,2 Bl,1 yl,1

⎞
⎠

= B j,3 y j,3 +
∑

k∈N j\i

C (k)
j,3

⎛
⎝Bk,2 yk,2 +

∑
l∈Nk\ j

C (l)
k,2 Bl,1 yl,1

⎞
⎠

+ C (i)
j,3

(
si,2 − C ( j)

i,2 s j,1

)
.

Then, H̄i,3 is given by

H̄i,3 =
⎡
⎢⎣

B j1,3 H j1 + C j1,3 H̄ j1,2

...
B jπi ,3 H jπi

+ C jπi ,3 H̄ jπi ,2

⎤
⎥⎦−

⎡
⎢⎢⎣

C (i)
j1,3 H̄(i)

j1,2

...
C (i)

jπi ,3 H̄(i)
jπi ,2

⎤
⎥⎥⎦ . (24)

Correspondingly, we have

Gi,3 =
⎡
⎢⎣

B j1,3�n j1
B ′

j1,3+ C j1,3 Ḡ j1,2C ′
j1,3

...
B jπi ,3�n jπi

B ′
jπi ,3+ C jπi ,3 Ḡ jπi ,2C ′

jπi ,3

⎤
⎥⎦

−

⎡
⎢⎢⎣

C (i)
j1,3G(i)

j1,2(C (i)
j1,3)′

...
C (i)

jπi ,3G(i)
jπi ,2(C (i)

jπi ,3)′

⎤
⎥⎥⎦ . (25)

Therefore, the oracle action can be written as

uo
i,4 = Ai,4uo

i,3 + Bi,4 yi,4 + Ci,4(ri,4 − Di,3si,2 + Ti,3ri,2),

where Ai,4, Bi,4, Ci,4, Di,3 are defined accordingly and
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Ti,3 :=

⎡
⎢⎢⎣

C (i)
j1,3C

( j1)

i,2

. . .

C (i)
jπi ,3C

( jπi )

i,2

⎤
⎥⎥⎦ .

Following identical steps, for t ≥ 1, the OEDOL algorithm is 
given by

uo
i,t = Ai,t uo

i,t−1 + Bi,t yi,t + Ci,t wi,t, (26)

�̂i,t = Ai,t�̂i,t−1, (27)

where wi,t is the innovation term extracted from the received in-
formation, which evolves according to

wi,t = ri,t − Di,t−1si,t−2 + Ti,t−1 wi,t−2. (28)

The weighting matrices Ai,t , Bi,t , Ci,t , Di,t , and Ti,t are defined by[
Bi,t Ci,t

]= �̂i,t−1 H̃ ′
i,t−1×(

H̃i,t−1�̂i,t−1 H̃ ′
i,t−1 + G̃ i,t−1

)−1
, (29)

Ai,t = I − Bi,t Hi − Ci,t H̄ i,t−1, (30)

Di,t = col
{

C (i)
j1,t, . . . , C (i)

jπi ,t

}
(31)

Ti,t =

⎡
⎢⎢⎣

C (i)
j1,t C

( j1)

i,t−1 ··· 0

...
. . .

...

0 ··· C (i)
jπi ,t C

( jπi )

i,t−1

⎤
⎥⎥⎦ , (32)

where H̃i,t = col{Hi, H̄i,t}, G̃ i,t = diag{�ni , Ḡ i,t} and Ḡ i,t =
diag{Gi,t}. By (24) and (25), the intermediate parameters H̄i,t and 
Gi,t evolve according to

H̄i,t =
⎡
⎢⎣

B j1,t H j1 + C j1,t H̄ j1,t−1

...
B jπi ,t H jπi

+ C jπi ,t H̄ jπi ,t−1

⎤
⎥⎦−

⎡
⎢⎢⎣

C (i)
j1,t H̄(i)

j1,t−1

...
C (i)

jπi ,t H̄(i)
jπi ,t−1

⎤
⎥⎥⎦ , (33)

Gi,t =
⎡
⎢⎣

B j1,t�n j1
B ′

j1,t+ C j1,t Ḡ j1,t−1C ′
j1,t

...
B jπi ,t�n jπi

B ′
jπi ,t+ C jπi ,t Ḡ jπi ,t−1C ′

jπi ,t

⎤
⎥⎦

−

⎡
⎢⎢⎣

C (i)
j1,t G(i)

j1,t−1

(
C (i)

j1,t

)′

...

C (i)
jπi ,t G(i)

jπi ,t−1

(
C (i)

jπi ,t

)′

⎤
⎥⎥⎦ (34)

and we initialize the parameters as H̄ j,τ = 0 and G j,τ = 0 for 
τ < 1. Then, agent-i sends

si,t = uo
i,t − Ai,t uo

i,t−1.

The detailed description of the algorithm is provided in Table 1.

3.4. Computational complexity

In (26), the combination matrices Ai,t , Bi,t , Ci,t , Di,t−1, and 
Ti,t−1 are independent of the streaming data although they are 
time-varying. Hence they can be computed before-hand. In that 
case, the computational complexity of the iterations for each agent 
is dominated by the term Ci,t wi,t . Therefore, the average com-
putational complexity is on the order of p2π2, where π2 :=
1/m 

∑m
i=1 π2

i , i.e., O (p2π2). Otherwise, the computational com-
plexity of the algorithm is mainly dominated by the matrix in-
version in (29), note that Ḡ i,t ∈ R

pπi×pπi , unless the network is 
sparsely connected, i.e., πi � m for i = 1, . . . , m. Therefore, over 
Table 1
The description of the OEDOL algorithm.

Algorithm: The OEDOL Algorithm.

Initialization:
For i = 1 to m do

uo
i,0 = x̄, �̂i,0 = �x ,

H̄i,τ = 0, Gi,τ = 0, and wi,τ = 0 for τ < 1
End for
Iterations:
Do for t ≥ 1

For i = 1 to m do
Construction of Weights:
For j = 1 to m do

Calculate H̄ j,t and G j,t by (33) and (34).
Determine combination matrices via (29)–(32).

End for
Construct ri,t through received s j,t−1 for j ∈ Ni

Extraction of Innovation:
wi,t = ri,t − Di,t−1si,t−2 + Ti,t−1 wi,t−2
Update:
uo

i,t = Ai,t uo
i,t−1 + Bi,t yi,t + Ci,t wi,t

�̂i,t = Ai,t�̂i,t−1
Disclose si,t = uo

i,t − Ai,t uo
i,t−1 to the neighbors.

End for

Table 2
A comparison of the computational complexities of the proposed algorithms.

Algorithm Without weights Pre-computed weights

ODOL O
(
(qm)3

)
O
(
(qm)2

)
OEDOL O

(
mp3π3

)
O
(

p2π2
)

a non-sparse network, the average complexity is on the order of 
mp3π3 (π3 is defined accordingly) since each agent i computes 
B j,t and C j,t for j = 1 . . . , m. In particular, the complexity is given 
by O  

(
mp3π3

)
, while it is O  

(
(qm)3

)
for the ODOL algorithm. Note 

that over tree networks, we have m − 1 edges and correspond-
ingly average neighborhood size is small. Hence, disclosure of local 
estimates over tree networks also reduces the computational com-
plexity compared to the time-stamped disclosure strategy in gen-
eral (in addition to the substantial reduction in communication). In 
Table 2, we tabulate the computational complexities of the intro-
duced algorithms.

We point out that diffusion or consensus based algorithms have 
relatively low complexity, i.e., on the order of p2 in the least-
mean-square based algorithms and on the order of p3 in quasi-
Newton based algorithms, since exchanged information is handled 
irrespective of the content. Such algorithms also present appeal-
ing performance for certain applications in addition to the low 
computational complexity. However, they do not achieve the or-
acle performance.

In the following, we analyze whether the agents can still 
achieve the oracle performance through the exchange of local esti-
mates over the networks not in tree structure.

3.5. Tree networks involving cell structures

While constructing the spanning tree, we cancel certain com-
munication links in order to avoid multi-path information propa-
gation. However, we also observe that in a fully connected network 
agents can achieve the oracle performance through the disclo-
sure of local observations. In particular, since all of the agents are 
connected, each agent can receive the observations across the net-
work directly. Correspondingly, in a fully connected network, we 
can achieve identical performance with the ODOL algorithm only 
through the disclosure of the local estimates as stated in the fol-
lowing corollary formally.
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Fig. 5. An example tree network involving cell structures.

Corollary 3.1. Consider the team-problem over a fully connected net-
work, in which r = p. Then, exchange of local estimates can lead to the 
team-optimal solution, i.e., agents can achieve the oracle performance.

Proof. Over a fully connected network, κi = 1 and the oracle ac-
tion is given by

uo
i,t = E

[
x|{yi,τ = yi,τ }τ≤t, {y j,τ = y j,τ }τ≤t−1

j∈Ni

]
(35)

and we can also obtain (35) by (11) since we have

�o
j,i,t = δo

j,t \ {δo
i,t \ {yi,t}},

which implies that �o
j,i,t is constructible from δo

i,τ and δo
j,τ for 

τ ≤ t . The proof is concluded. �
We point out that the team-optimal strategies can fail if a 

link or node failure occurs. However, once a link failure is de-
tected, team-optimal strategies can be recomputed by eliminating 
the failed link in the new network configuration. Hence, through 
such strategies, we can increase the robustness of the team against 
link and node failures.

We define a “cell structure” as a sub-network in which all 
agents are connected to each other. Intuitively, considering a cell 
structure as a “single” agent, the cell (i.e., all the agents in the cell) 
can be involved in the tree such that the agents can still achieve 
the oracle performance through the disclosure of local estimates 
(although there may be loops in the cell). We list the features of 
the cell structures, e.g., seen in Fig. 5, as follows:

• Agents out of a cell can connect to at most one of the agents 
within that cell.

• A cell structure consists of at least 2 agents.
• An agent can belong to more than one cell.
• Two different agents cannot belong to more than one cell at 

the same time.
• All of the agents belong to at least a cell in a connected net-

work.
• Each agent has also the knowledge of the cells of the other 

agents.
• Each agent labels its cells from its own and its first order 

neighbor’s point of view. As an example, for agent-i, Ci,i1 de-
notes the cell involving both i and i1. Note that if the same 
cell also includes i2, Ci,i1 = Ci,i2 .

The following theorem shows that agents can achieve the oracle 
performance over tree networks involving cell structures through 
the disclosure of the local estimates.
Theorem 3.2. Consider the team problem over tree networks involving 
cell structures. Then, exchange of local estimates can lead to the team-
optimal solution, i.e., agents can achieve the oracle performance.

Proof. Initially, we have �o
j,i,1 = δ j,1 = {y j,1} and the oracle 

action is also given by (11) over this network topology. Note 
that the information received by j at t = 2 is given by δo

j,2 ={
y j,2, 

{=�o
k, j,0︷︸︸︷

yk,1

}
k∈N j

, δo
j,1

}
, which yields

�o
j,i,2 = δo

j,2 \
⎧⎨
⎩δo

j,1 ∪
⋃

k∈Ci, j

{
yk,1
}⎫⎬⎭ ,

= δo
j,2 \

⎧⎨
⎩δo

j,1 ∪
⋃

k∈Ci, j

�o
k, j,1

⎫⎬
⎭

and �o
j, j,t =∅ by definition. Due to the cell structure, we have⋃

k∈C j,i

�o
k, j,1 = �o

i, j,1 ∪
⋃

k∈Ci, j\ j

�o
k,i,1,

= δo
i,1 ∪

⋃
k∈Ci, j\ j

δo
k,1.

Correspondingly, for t > 0 we have

�o
j,i,t = δo

j,t \
⎧⎨
⎩δo

j,t−1 ∪ �o
i, j,t−1 ∪

⋃
k∈Ci, j\ j

�o
k,i,t−1

⎫⎬
⎭ (36)

and �o
j,i,t is constructible by the sets δo

i,τ and δo
j,τ for j ∈ Ni and 

τ ≤ t . Note that over tree networks, Ci, j \ j = ∅ for i = 1, . . . , m, 
j ∈ Ni , and (36) leads to (18). Hence, for t > 0 we obtain (19) and 
the proof is concluded. �

Note that the network can have loops within the cell structures 
and agents can still achieve the oracle performance through the 
diffusion of the local estimates. This increases the robustness of the 
team strategies against the link failures. In the sequel, we provide 
the sub-optimal extensions of the algorithms for practical applica-
tions.

4. Sub-optimal approaches

Minimization of the cost function (4) optimally requires rel-
atively excessive computations. We aim to mitigate the problem 
sub-optimally yet in a computationally efficient approach while 
achieving comparable performance with the optimal case. As an 
example, we can approximate the cost measure (4) through To ≥
max{κi}i=1,...,m size time-windowing as follows

T∑
t=1

min
ηi,t∈
s

i,t

E‖x − ηi,t(δ
s
i,t)‖2, (37)

where agent-i has the information set

δs
i,t :=

{ {
yi,τ
}t−To<τ≤t

,
{

y j,τ
}t−To<τ≤t−1

j∈N (1)
i

, . . . ,

{
y j,τ

}t−To<τ≤t−κi

j∈N (κi )
i

}
, (38)

if t ≥ To and other cases are defined accordingly, σ s
i,t is the 

sigma-algebra generated by δs , and 
o denotes the set of all 
i,t i,t
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Fig. 6. Information aggregation illustration. Small squares represent the information 
across the agents in the corresponding neighborhood and time.

σ s
i,t -measurable functions from Rqκ ×R

qπi(κ−1) × . . . ×R
qπ

κi
i (κ−κi)

to Rp . Then, team-optimal action is given by

us
i,t = E[x|δs

i,t = δs
i,t],

where δs
i,t is the set of corresponding random parameters.

In Fig. 6, we illustrate the time-windowing approach for time 
stamped information disclosure. We define a memory element 
mt denoting the expectation of the state conditioned on all 
measurement at time t , i.e., mt := E[x|{yi,t = yi,t}m

i=1]. We con-
sider that x̄ = 0. Then, we can write mt = M yt , where M :=
�x H ′ (H�x H ′ + �n

)−1 and yt := col{y1,t, . . . , ym,t}.
Let ue

i,t−1 represent the extracted information from the estimate 
us

i,t−1 via the memory element mt−To , i.e.,

ue
i,t−1 := E

[
x
∣∣ {yi,τ = yi,τ }t−To+1<τ≤t−1, . . . ,

{y j,τ = y j,τ }t−To+1<τ≤t−κi−1

j∈N (κi )
i

]

if t ≥ To and other cases are defined accordingly. Then, we can 

write ue
i,t−1 = Ni ye

i,t−1, where Ni = �x Ĥ ′
i

(
Ĥi�x Ĥ ′

i + �̂ni

)−1
and 

ye
i,t−1 is the vector collecting the measurements within that win-

dow (see Fig. 6). Additionally, we define

Ĥi := col
{

Hi, Hi, H (1)
i , Hi, H (1)

i , H (2)
i , . . . , Hi, H (1)

i , . . . , H (κi)

i

}
and H (k)

i := col
{

H j
}

j∈N (k)
i

. Correspondingly, we have

�̂ni := diag
{
�ni ,�ni ,�

(1)
ni

,�ni ,�
(1)
ni

,�
(2)
n,i , . . . ,

�ni ,�
(1)
ni

, . . . ,�
(κi)
ni

}
and �(k)

ni
:= diag

{
�n j

}
j∈N (k)

i
. Therefore, for t ≥ To , we have

us
i,t−1 = E[x|ue

i,t−1 = ue
i,t−1,mt−To = mt−To ].

Note that E[x|mt−To = mt−To ] = mt−To and �̂ := E[(x − mt−To )(x −
mt−To )

′] = �x H ′(H�H ′ + �n)−1 H� = (I − M H)�. Then, the dis-
tribution of x and ue

i,t−1 conditioned on mt−To = mt−To is given 
by
[ x
ue

i,t−1

]
|mt−To

= mt−To ∼ N

([ mt−To

Ni Ĥimt−To

]
,

[
�̂ �̂ Ĥ ′

i N ′
i

Ni Ĥi�̂ Ni Ĥi�̂ Ĥ ′
i N ′

i+Ni�̂ni N ′
i

])
and we obtain

us
i,t−1 = mt−To + �̂ Ĥ ′

i N
′
i(Ni Ĥi�̂ Ĥ ′

i N
′
i + Ni�̂ni N ′

i)
−1

× (ue
i,t−1 − Ni Himt−To )

= Kimt−To + Liu
e
i,t−1, (39)

where

Li := �̂ Ĥ ′
i N

′
i(Ni Ĥi�̂ Ĥ ′

i N
′
i + Ni�̂ni N ′

i)
−1,

Ki := I − Li Ni Ĥi .

Next, we aim to compute us
i,t through us

i,t−1 and

δs
i,t = {ye

i,t−1, yi,t, ri,t},
where ri,t is a vector consisting of currently received measure-

ments as seen in Fig. 6. Let H̄i := col{Hi, H
(1)
i , . . . , H (κi)

i } and 
�̄i := col{�ni , �

(1)
ni

, . . . , �(κi)
ni

}. Since E[(x − ue
i,t−1)(x − ue

i,t−1)
′] =

�x Ĥ ′
i(Ĥi�x Ĥ ′

i + �̂n)−1 Ĥi�x = (I − Ni Ĥi)�x , we have

us
i,t = ue

i,t−1 + �x,i H̄ ′
i(H̄i�x,i H̄ ′

i + �̄ni )
−1
([

yi,t
ri,t

]
− H̄iu

e
i,t−1

)
,

where �x,i := (I − Ni H̄i)�x . By (39), ue
i,t−1 = L−1

i (us
i,t−1 − Kimt−To ), 

and we define the combination matrices[
Bi Ci

]= �x,i H̄ ′
i

(
H̄i�x,i H̄ ′

i + �̄ni

)−1
, (40)

Ai := (I − [ Bi Ci
]

H̄i
)

L−1
i , (41)

Di := Ai Ki M. (42)

Therefore, for t ≥ To , the sub-optimal distributed online learning 
(SDOL) algorithm is given by

us
i,t = Aiu

s
i,t−1 + Bi yi,t + Ciri,t − Di yt−To . (43)

In the following we provide several remarks about the practical 
implementation of the SDOL algorithm.

Remark 4.1.

• We point out that in the update (43) the matrices Ai , Bi , 
Ci , and Di are independent from the data and they are time 
invariant for t ≥ To . Hence, they can be pre-computed and 
installed onto the agents. Then, the SDOL algorithm basically 
takes the linear average of the previous estimate, the current 
measurement and received data, and measurements at time 
t − To .

• Different from the conventional approaches, the SDOL algo-
rithm requires to memorize previous observations. Note that 
if q < p/m, storing measurements individually rather than a 
linear combination, i.e., mt , might be more efficient in terms 
of memory usage.

• The computational complexity of the SDOL algorithm is 
O (p2 + 2pmq) (or say O (p2) for q � p/m) due to matrix–
vector multiplications in (43), and the algorithm requires dis-
closure of a data vector with (m − 1) × q dimensions.

• Finally, even though agent-i uses update (43) for t < To as-
suming that3 y j,τ = 0 for j = 1, . . . , m and τ < 1, we have

3 The action is no longer team-optimal because of the assumption.
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Table 3
The description of the SDOL-To algorithm.

Algorithm: The SDOL-To algorithm

Initialization:
us

i,0 = 0 for all i
yi,τ = 0 for τ < 1 and all i
Calculate combination matrices via (40)–(42).

Update:
Do for t ≥ 1

For i = 1 to m do
Construct ri,t through received s j,t−1 for j ∈ Ni .
Store ri,t and yi,t in the memory accordingly.
us

i,t = Ai us
i,t−1 + Bi yi,t + Ciri,t − Di yt−To .

Erase yt−To from the memory.
Diffuse si,t to the neighboring agents.

End for

Fig. 7. Different network configurations.

E[(x − us
i,τ )(x − us

i,τ )′]
= �x,i − �x,i H̄ ′

i

(
H̄i�x,i H̄ ′

i + �̄ni

)−1
H̄i�x,i

= Ai Li�x,i (44)

for τ ≥ To since at each iteration, agent-i excludes the impact 
of yt−To on us

i,t . This sharp change results in as a breaking 
point on the learning curve as seen in Fig. 15.

In Table 3, we tabulate a detailed description of the SDOL al-
gorithm. Note that SDOL algorithm is based on the aggregation of 
information. Correspondingly, we can apply the time-windowing 
approach to the disclosure of local estimates and formulate a 
sub-optimal efficient distributed online learning algorithm (SEDOL) 
over tree networks.

In the sequel, we also provide illustrative simulations showing 
the enhanced tracking performance due to the proposed algorithm 
over several distributed network scenarios.

5. Illustrative examples

In this section, we examine the performance of team optimal 
actions under different scenarios through numerical examples. To 
this end, we consider three main network structures, namely fully 
Fig. 8. Standard deviation of measurement noise across the network.

connected, star, and line networks with m = 20 agents, and a ran-
domly generated network seen in Fig. 7. In a fully connected net-
work, each agent has a connection with each other and any new 
measurement can be collected at each other after just one hop. 
This is the best possible connection such that the corresponding 
achievable team cost is the smallest. In a star network, there ex-
ists a pseudo-centralized agent, e.g., agent-1 in Fig. 7b, and all the 
other agents are connected to that agent. Therefore, the furthest 
distance between any two agents is 2, e.g., there exist 2-hops be-
tween agent-2 and agent-3 (agent-2 to agent-1 then agent-1 to 
agent-3) in Fig. 7b. We have generated the network in Fig. 7c ran-
domly such that number of neighbors of agent-i, πi , is chosen 
uniformly between 2 to 10. Therefore, the generated network can 
have loops, i.e., may not be a tree. Furthermore, in a line network, 
the connections between the agents form a line as seen in Fig. 7d. 
Contrary to the fully connected network, a line network has the 
least possible connection such that any two agents are connected 
via a certain number of hops. Note that there exist m − 1 = 19
hops between agent-1 and agent-2 in Fig. 7d.

We analyze the performance of a team of agents over those 
network structures. We set p = 10, q = 1, x̄ = 0, �x = I , and the 
standard deviation of the zero-mean measurement noise is cho-
sen randomly from a folded normal distribution as seen in Fig. 8. 
Furthermore, we choose Hi randomly from normal distribution, 
N(0, I). In order to observe the change of oracle cost (r → ∞) for 
different time horizons, we introduce

J (T ) = min
ηi,t∈
i,t ,

i=1,...,m,t=1,...,T

T∑
t=1

m∑
i=1

E‖x − ηi,t(δ
o
i,t)‖2, (45)

which is a function of the length of time horizon, T . We re-
emphasize that in (45), each action at t = 1, . . . , T has a cumu-
lative impact on the cost. Let ηo

i,t , for i = 1, . . . , m and t = 1, . . . , T , 
be the oracle strategies for J (T ). Then, we introduce a terminal 
cost function defined by

P (T ) =
m∑

i=1

E‖x − ηo
i,T (δo

i,T )‖2, (46)

which is the impact of final action on J (T ).
In Fig. 9, we compare J (T ), for T = 1, . . . , 20, over the fully 

connected, star, arbitrary, and line networks in Fig. 7 by ensemble 
averaging empirical cost of the ODOL algorithm over 100 indepen-
dent trials. Note that if the associated network is a tree network, 
e.g., the star network is a tree, the same cost could be attained 
through the OEDOL algorithm as shown analytically in Section 3. 
We point out that Fig. 9 is not a time evolution of a learning algo-
rithm. In particular, for each time horizon T , we compare the cor-
responding oracle cost over certain networks. As pointed out be-
fore, because of the most possible connection between the agents, 
the fully connected network results in the least oracle cost for 
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Fig. 9. Comparison of oracle cost for different time horizons over certain networks.

Fig. 10. Comparison of terminal cost for different time horizons over certain net-
works.

each time horizon T while the line network possesses the largest 
cost. Additionally, because of the cumulation of the impact of the 
actions at each time, for larger time horizon the corresponding or-
acle cost is also larger, i.e., J (T ) is a non-decreasing function of T
(indeed increasing function since measurement noise is a white 
process). The arbitrary network is relatively more connected. In 
particular, in the arbitrary network, neighborhood size of agents 
is chosen uniformly between 2 and 10 while in the star network, 
neighborhood size of agents except agent-1 is 2. We observe that 
oracle cost over the arbitrary network is smaller than the oracle 
cost over the star network. For T = 1, all network configurations 
lead to the same oracle cost since agents can exchange information 
beginning at time t = 2. Furthermore, in Fig. 9, for time horizon 
T = 2, the oracle cost in the star network is larger than the cost 
in the line network. This is because even though in the star net-
work any two agents are connected through at most 2 hops, over a 
horizon T = 2, the information can only propagate over 1 hop and 
in the line network all the agents except agents 1 and 2 have 2 
neighbors each. For horizon T > 2, the information can now prop-
agate over more than 1 hop and correspondingly, the cost in the 
star network is less than the cost in the line network.
Fig. 11. An arbitrary network and a corresponding spanning tree.

Fig. 12. Standard deviation of noise across the network in Fig. 11.

In addition to the comparison of oracle cost, J (T ), for differ-
ent time horizons over certain networks, in Fig. 10, we compare 
the terminal cost, P (T ), in order to observe the cumulative im-
pact of the actions in the beginning stages of the horizon, e.g., 
t � T . We again ensemble averaged empirical cost of the ODOL al-
gorithm over 100 independent trials. Even though a line and a fully 
connected network are two extreme connections for a network, in 
Fig. 10, the terminal costs, P (T ), are asymptotically, as T → ∞, 
the same. We recall that this is pointed out in Remark 3.1 and 
attributed to the negligible difference between the available infor-
mation at each agent over fully connected and line networks as 
the information sets grow. We also point out that in the zoomed-
out plot, for T = 2, the terminal cost in the star network is larger 
than the terminal cost in the line network while the terminal cost 
in star network becomes substantially smaller for larger T as ex-
plained above for Fig. 9.

Importantly, in Figs. 9 and 10, the oracle and terminal costs 
lead to counter-intuitive results as time horizon grows. In particu-
lar, while the oracle costs over different networks are separated as 
time horizon grows, the terminal costs converge to each other. The 
cumulation of the costs of each action plays a significant role in 
these distinct results. By yielding relatively large cost, the actions 
in the early stages have crucial impact on the team cost. Therefore, 
the sequential algorithms aiming to learn the underlying state in 
time through a trial and error based approach lead to larger team 
cost over horizon since trials at early stages lead to significantly 
large costs. In the following, we analyze such circumstances.

We consider a randomly generated network in Fig. 11a, con-
structed as the network in Fig. 7c. This network is not a tree 
and has loops. We construct a spanning tree of this network, see 
Fig. 11b, based on the paths from the agent having the largest 
neighborhood size, i.e., i = arg max j π j , and then eliminating the 
multi-paths [21]. The statistical profile of the measurement noise 
is plotted in Fig. 12. Here, we consider the diffusion recursive least 
squares (D-RLS) algorithm [29] with Laplacian combination rule 
[30] for the incremental update and relative-variance combination 
rule for the spatial update. In D-RLS, agents use a recursive least 
squares (RLS) update locally, diffuse local estimate to the neighbors 
at each time instant, and combine received estimates and the local 
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Fig. 13. Comparison of team cost of the algorithms for different time horizon.

Fig. 14. Comparison of terminal cost of the algorithms for different time horizon.

one linearly through certain combination weights, e.g., agent-i has 
the weight λi, j for the information received from the neighbor- j:

λi, j =
⎧⎨
⎩

σ−2
n j∑

k∈Ni∪{i} σ−2
nk

if j ∈ Ni ∪ {i}
0 otherwise.

(47)

In Fig. 13, we compare the ensemble average of the empirical 
cost (over 100 independent trials) of the ODOL and D-RLS algo-
rithms over Fig. 11a and the OEDOL algorithm over Fig. 11b for 
different time horizon. Note that in the OEDOL algorithm, agents 
exchange local estimates while in the ODOL algorithm, agents ex-
change information through time-stamped approach. The OEDOL 
algorithm can achieve the oracle performance over a tree net-
work. Therefore, we construct a spanning tree of the arbitrarily 
generated network and the OEDOL algorithm achieves the oracle 
performance of the spanning tree. Since we eliminate certain links 
while constructing the spanning tree, the oracle performance, i.e., 
team-cost, is worse than the oracle performance over the origi-
nal network. However, even though the OEDOL algorithm operates 
over the spanning tree, the algorithm has performed better than 
the D-RLS algorithm operating over the original network. Addition-
Fig. 15. Comparison of terminal cost of the SDOL-50 and SDOL-100 algorithms.

ally, in Fig. 14, we compare the terminal cost of the algorithms for 
larger time horizon, e.g., T = 1, . . . , 4000. We observe that even 
though the OEDOL algorithm operates over the spanning tree, the 
terminal costs of the ODOL and OEDOL algorithms are close to 
each other for large time horizon, e.g., T > 40. We also note that 
as T → ∞, the terminal cost decreases since noise processes are 
white.

Finally, in Fig. 15 we examine the impact of the time-window-
ing depth, e.g., To = 50, 100, on the terminal cost for different time 
horizon over an arbitrarily generated network of 20 agents seen on 
the upper-right of Fig. 15. We note out that for T < To , the ter-
minal cost of the SDOL algorithms differs from the terminal cost 
of the ODOL algorithm, i.e., the oracle performance since in the 
SDOL algorithms, agents uses the update (43) for t < To assuming 
that all measurements y j,τ = 0 for j = 1, . . . , m and τ < 1. As also 
pointed out in Remark 4.1, by excluding the impact of these mea-
surements on the future actions through sliding time-window, the 
terminal cost of the SDOL-To algorithm eventually reaches the ter-
minal cost of the ODOL algorithm at T = To and for larger time 
window, this performance is maintained. Furthermore, depending 
on To , the agents can achieve smaller terminal cost.

6. Conclusion

Distributed algorithms have attracted significant attention due 
to their wide spread applicability to highly complex structures 
from biological systems to social and economical networks. How-
ever, there are still challenges for disclosure and utilization of in-
formation among agents. We have considered this problem as a 
team problem, in which each agent takes actions, e.g., which in-
formation to disclose and how to construct the local estimate. We 
introduced the ODOL algorithm achieving the oracle cost for Gaus-
sian state and noise statistics through a time-stamped approach. 
Importantly, we have shown that the exchange of the local es-
timates is sufficient to achieve the oracle cost only over certain 
network topologies, e.g., over the introduced tree networks involv-
ing cell structures. Furthermore, we have introduced the OEDOL 
algorithm, which achieves the oracle cost through the exchange of 
local estimates over tree networks. Finally, we have introduced a 
time-windowing approach for practical applications due to reduced 
complexity. The sub-optimal approaches possess recursive updates 
with time-invariant combination weights that should be calculated 
only once.
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Some future directions of research on this topic include team 
problems for distributed MMSE estimation of a dynamic state 
and formulation of optimal information exchange in team decision 
problems for linear continuous-time systems [31].
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