
ar
X

iv
:1

70
1.

05
37

8v
1

 [
cs

.D
S]

 1
9

Ja
n

20
17

1

Efficient Implementation Of Newton-Raphson
Methods For Sequential Data Prediction

Burak C. Civek and Suleyman S. Kozat, Senior Member, IEEE

Abstract—We investigate the problem of sequential linear data prediction for real life big data applications. The second order
algorithms, i.e., Newton-Raphson Methods, asymptotically achieve the performance of the ”best” possible linear data predictor much
faster compared to the first order algorithms, e.g., Online Gradient Descent. However, implementation of these methods is not usually
feasible in big data applications because of the extremely high computational needs. Regular implementation of the Newton-Raphson
Methods requires a computational complexity in the order of O(M2) for an M dimensional feature vector, while the first order
algorithms need only O(M). To this end, in order to eliminate this gap, we introduce a highly efficient implementation reducing the
computational complexity of the Newton-Raphson Methods from quadratic to linear scale. The presented algorithm provides the
well-known merits of the second order methods while offering the computational complexity of O(M). We utilize the shifted nature of
the consecutive feature vectors and do not rely on any statistical assumptions. Therefore, both regular and fast implementations
achieve the same performance in the sense of mean square error. We demonstrate the computational efficiency of our algorithm on
real life sequential big datasets. We also illustrate that the presented algorithm is numerically stable.

Index Terms—Newton-Raphson, highly efficient, big data, sequential data prediction.

✦

1 INTRODUCTION

T ECHNOLOGICAL developments in recent years have
substantially increased the amount of data gathered

from real life systems [1], [2], [3], [4]. There exists a signifi-
cant data flow through the recently arising applications such
as large-scale sensor networks, information sensing mobile
devices and web based social networks [5], [6], [7]. The size
as well as the dimensionality of this data strain the limits
of current architectures. Since processing and storing such
massive amount of data result in an excessive computa-
tional cost, efficient machine learning and data processing
algorithms are needed [1], [8].

In this paper, we investigate the widely studied sequen-
tial prediction problem for high dimensional data streams.
Efficient prediction algorithms specific to big data sequences
have great importance for several real life applications such
as high frequency trading [9], forecasting [10], trend analysis
[11], financial market [12] and locational tracking [13]. Un-
fortunately, conventional methods in machine learning and
data processing literatures are inadequate to efficiently and
effectively process high dimensional data sequences [14],
[15], [16]. Even though today’s computers have powerful
processing units, traditional algorithms create a bottleneck
even for that processing power when the data is acquired at
high speeds and too large in size [14], [15].

In order to mitigate the problem of excessive computa-
tional cost, we introduce sequential, i.e., online, processing,
where the data is neither stored nor reused, and avoid
”batch” processing. [16], [17]. One family of the well known

• Burak C. Civek and S. S. Kozat are with the Department of Electrical
and Electronics Engineering, Bilkent University, Ankara 06800, Turkey
(e-mail: {burak,kozat}@ee.bilkent.edu.tr).

This work is supported in part by Turkish Academy of Sciences Outstanding
Researcher Programme, TUBITAK Contract No. 113E517.

online learning algorithms in the data processing literature
is the family of first order methods, e.g., Online Gradient
Descent [18], [19]. These methods only use the gradient
information to minimize the overall prediction cost. They
achieve logarithmic regret bounds that are theoretically
guaranteed to hold under certain assumptions [18]. Gradi-
ent based methods are computationally more efficient com-
pared to other families of online learning algorithms, i.e.,
for a sequence of M -dimensional feature vectors {xt}t≥0,
where xt ∈ RM , the computational complexity is only in
the order of O(M). However, their convergence rates re-
main significantly slow when achieving an optimal solution,
since no statistics other than the gradient is used [3], [16],
[19]. Even though gradient based methods suffer from this
convergence issue, they are extensively used in big data
applications due to such low computational demand [20].

Different from the gradient based algorithms, the well
known second order Newton-Raphson methods, e.g, Online
Newton Step, use the second order statistics, i.e., Hes-
sian of the cost function [18]. Hence, they asymptotically
achieve the performance of the ”best” possible predictor
much faster [17]. Existence of logarithmic regret bounds is
theoretically guaranteed for this family of algorithms as well
[18]. Additionally, the second order methods are robust and
prone to highly varying data statistics, compared to the first
order methods, since they keep track of the second order
information [17], [21]. Therefore, in the sense of convergence
rate and steady state error performances, Newton-Raphson
methods considerably outperform the first order methods
[16], [17], [19]. However, the second order methods offer
a quadratic computational complexity, i.e., O(M2), while
the gradient based algorithms provide a linear relation, i.e.,
O(M). As a consequence, it is not usually feasible for real-
life big data applications to utilize the merits of the second
order algorithms [20].

http://arxiv.org/abs/1701.05378v1

Submitted to IEEE Transactions on Knowledge and Data Engineering

In this paper, we study sequential data prediction,
where the consecutive feature vectors are the shifted ver-
sions of each other, i.e., for a feature vector of xt =
[xt, xt−1, ..., xt−M]T , the upcoming vector is in the form of
xt+1 = [xt+1, xt, ..., xt−M+1]

T . To this end, we introduce
second order methods for this important problem with com-
putational complexity only linear in the data dimension, i.e.,
O(M). We achieve such an enormous reduction in computa-
tional complexity since there are only two entries changing
from xt to xt+1, where we avoid unnecessary calculations
in each update. We do not use any statistical assumption
on the data sequence other than the shifted nature of the
feature vectors. Therefore, we present an approach that is
highly appealing for big data applications since it provides
the merits of the Newton-Raphson methods with a much
lower computational cost.

Overall, in this paper, we introduce an online sequen-
tial data prediction algorithm that i) processes only the
currently available data without any storage, ii) efficiently
implements the Newton-Raphson methods, i.e., the second
order methods iii) outperforms the gradient based methods
in terms of performance, iv) has O(M) computational com-
plexity same as the first order methods and v) requires no
statistical assumptions on the data sequence. We illustrate
the outstanding gains of our algorithm in terms of com-
putational efficiency by using two sequential real life big
datasets and compare the resulting error performances with
the regular Newton-Raphson methods.

2 PROBLEM DESCRIPTION

In this paper, all vectors are real valued and column-vectors.
We use lower case (upper case) boldface letters to represent
vectors (matrices). The ordinary transpose is denoted as xT

for the vector x. The identity matrix is represented by IM ,
where the subscript is used to indicate that the dimension is
M ×M . We denote the M -dimensional zero vector as 0M .

We study sequential data prediction, where we sequen-
tially observe a real valued data sequence {xt}t≥0, xt ∈ R.
At each time t, after observing {xt, xt−1, ..., xt−M+1}, we
generate an estimate of the desired data, x̂t+1 ∈ R, using a
linear model as

x̂t+1 = wT
t xt + ct, (1)

where xt ∈ RM represents the feature vector of previous
M samples, i.e., xt = [xt, xt−1, ..., xt−M+1]

T . Here, wt ∈
R

M and ct ∈ R are the corresponding weight vector and
the offset variable respectively at time t. With an abuse of
notation, we combine the weight vector wt with the offset
variable ct, and denote it by wt = [wt; ct], yielding x̂t+1 =
wT

t xt, where xt = [xt; 1]. As the performance criterion, we
use the widely studied instantaneous absolute loss as our
cost function, i.e., ℓt(wt) = ‖et‖, where the prediction error
at each time instant is given by et = xt+1 − x̂t+1.

We adaptively learn the weight vector coefficients to
asymptotically achieve the best possible fixed weight vector
ŵn, which minimizes the total prediction error after n

iteration, i.e.,

ŵn = argmin
w∈RM

n
∑

t=0

‖xt+1 −wTxt‖,

for any n. The definition of ŵn is given for the absolute loss
case. To this end, we use the second order Online Newton
Step (ONS) algorithm to train the weight vectors. The ONS
algorithm significantly outperforms the first order Online
Gradient Descent (OGD) algorithm in terms of convergence
rate and steady state error performance since it keeps track
of the second order statistics of the data sequence [16], [18],
[19]. The weight vector at each time is updated as

wt = wt−1 −
1

µ
A−1

t ∇t, (2)

where µ ∈ R is the step size and ∇t ∈ RM corresponds to
the gradient of the cost function ℓt(wt) at time t w.r.t. wt,
i.e., ∇t , ∇ℓt(wt). Here, the M × M dimensional matrix
At is given by

At =
t

∑

i=0

∇i∇T
i + αIM , (3)

where α > 0 is chosen to guarantee that At is positive
definite, i.e., At > 0, and hence, invertible. Selection of
the parameters µ and α is crucial for good performance
[18]. Note that for the first order OGD algorithm, we have
At = IM for all t, i.e., we do not use the second order
statistics but only the gradient information.

Definition of At in (3) has a recursive structure, i.e., At =
At−1 +∇t∇T

t , with an initial value of A−1 = αIM . Hence,
we get a straight update from A−1

t−1 to A−1
t using the matrix

inversion lemma [22]

A−1
t = A−1

t−1 −
A−1

t−1∇t∇T
t A

−1
t−1

1 +∇T
t A

−1
t−1∇t

. (4)

Multiplying both sides of (4) with ∇t and inserting in (2)
yields

wt = wt−1 −
1

µ

[

A−1
t−1∇t

1 +∇T
t A

−1
t−1∇t

]

. (5)

Although the second order update algorithms provide
faster convergence rates and better steady state perfor-
mances, computational complexity issue prohibits their us-
age in most real life applications [19], [22]. Since each update
in (4) requires the multiplication of an M ×M dimensional
matrix with an M dimensional vector for xt ∈ R

M , the
computational complexity is in the order of O(M2), while
the first order algorithms just need O(M) multiplication and
addition. As an example, in protein structure prediction, we
have M = 1000 deeming the second order methods 1000
times slower than the first order OGD algorithm [23].

In the next section, we introduce a sequential prediction
algorithm, which achieves the performance of the Newton-
Raphson methods, while offering O(M) computational
complexity same as the first order methods.

3 EFFICIENT IMPLEMENTATION FOR COMPLEXITY

REDUCTION

In this section, we construct an efficient implementation that
is based on the low rank property of the update matrices.
Instead of directly implementing the second order methods
as in (4) and (5), we use unitary and hyperbolic transforma-
tions to update the weight vector wt and the inverse of the
Hessian-related matrix A−1

t .

2

Submitted to IEEE Transactions on Knowledge and Data Engineering

We work on time series data sequences, which directly
implies that the feature vectors xt and xt+1 are highly
related. More precisely, we have the following relation be-
tween these two consecutive vectors as

[xt+1,x
T
t] = [xT

t+1, xt−M+1]. (6)

This relation shows that consecutive data vectors carry quite
the same information, which is the basis of our algorithm.
We use the instantaneous absolute loss, which is defined as

ℓt(wt) = ‖xt+1 −wT
t xt‖. (7)

Although the absolute loss is widely used in the data pre-
diction applications, it is not differentiable when et = 0.
However, we resolve this issue by setting a threshold ǫ

close to zero and not updating the weight vector when the
absolute error is below this threshold, ‖et‖ < ǫ. From (4)
and (5), the absolute loss results in the following update
rules for wt and A−1

t ,

wt = wt−1 ±
1

µ

[

A−1
t−1xt

1 + xT
t A

−1
t−1xt

]

, (8)

A−1
t = A−1

t−1 −
A−1

t−1xtx
T
t A

−1
t−1

1 + xT
t A

−1
t−1xt

, (9)

since ∇t = ±xt depending on the sign of the error.
It is clear that the complexity of the second order al-

gorithms essentially results from the matrix-vector mul-
tiplication, A−1

t−1xt as in (8). Rather than getting matrix

A−1
t−1 from A−1

t−2 and then calculating the multiplication

A−1
t−1xt individually at each iteration, we develop a direct

and compact update rule, which calculates A−1
t−1xt from

A−1

t−2xt−1 without any explicit knowledge of the M × M

dimensional matrix A−1
t−1.

Similar to [22], we first define the normalization term of
the update rule given in (8) as

ηt = 1 + xT
t A

−1
t−1xt. (10)

Then, the difference between the consecutive terms ηt and
ηt−1 is given by

ηt − ηt−1 = xT
t A

−1
t−1xt − xT

t−1A
−1
t−2xt−1. (11)

We define the (M + 1) × 1 dimensional extended vector
x̃t = [xt,x

T
t−1]

T and get the following two equalities using
the relation given in (6),

ηt = 1 + x̃T
t

[

A−1
t−1 0M

0
T
M 0

]

x̃t, (12)

ηt−1 = 1+ x̃T
t

[

0 0
T
M

0M A−1
t−2

]

x̃t. (13)

Therefore, (11) becomes

ηt − ηt−1 = x̃T
t ∆t−1x̃t, (14)

where the update term ∆t−1 is defined as

∆t−1 ,

[

A−1
t−1 0M

0
T
M 0

]

−
[

0 0
T
M

0M A−1
t−2

]

. (15)

This equation implies that we do not need the exact values
of A−1

t−1 and A−1
t−2 individually and it is sufficient to know

the value of the defined difference ∆t−1 for the calculation

of ηt. Moreover, we observe that the update term can be
expressed in terms of rank 2 matrices, which is the key point
for the reduction of complexity.

Initially, we assume that xt = 0 for t < 0, which directly
implies A−1

−1 = A−1
−2 = 1

α
IM using (3). Therefore, ∆−1 is

found as

∆−1 =
1

α
diag{1, 0, . . . , 0,−1}. (16)

At this point, we define the (M +1)× 2 dimensional matrix
Λ−1 and the 2× 2 dimensional matrix Π−1 as

Λ−1 =

√

1

α

[

1 0 . . . 0 0
0 0 . . . 0 1

]T

,Π−1 =

[

1 0
0 −1

]

, (17)

to achieve the equality given by

∆−1 = Λ−1Π−1Λ
T
−1. (18)

We show, at the end of the discussion, that once the rank
2 property is achieved, it holds for all t ≥ 0. By using the
reformulation of the difference term, we restate the ηt term
given in (14) as

ηt = ηt−1 + x̃T
t Λt−1Πt−1Λ

T
t−1x̃t. (19)

For the further discussion, we prefer matrix notation and
represent (19) as

[√
ηt 0

T
2

]

[√
ηt

02

]

=
[√

ηt−1 x̃T
t Λt−1

]

Θt−1

[√
ηt−1

ΛT
t−1x̃t

]

,

(20)
where Θt−1 is defined as

Θt−1 ,

[

1 0
T
2

02 Πt−1

]

. (21)

We first employ a unitary Givens transformation HG,t

in order to zero out the second element of the vector
[
√
ηt−1, x̃

T
t Λt−1] and then use a Θt−1-unitary Hyperbolic

rotation HHB , i.e., HHB,tΘt−1H
T
HB,t = Θt−1, to eliminate

the last term [24]. Consequently, we achieve the following
update rule

[√
ηt 0

T
2

]

=
[√

ηt−1 x̃T
t Λt−1

]

Ht, (22)

where Ht represents the overall transformation process. Ex-
istence of these transformation matrices is guaranteed [22].
This update gives the next normalization term ηt, however,
for the (t + 1)th update, we also need the updated value
of Λt−1, i.e., Λt, explicitly. Moreover, even calculating the
Λt term is not sufficient, since we also need the individual
value of the vector A−1

t−1xt to update the weight vector
coefficients.

We achieve the following equalities based on the same
argument that we used to get (12) and (13)

[

A−1
t−1xt

0

]

=

[

A−1
t−1 0M

0
T
M 0

]

x̃t, (23)

[

0
A−1

t−2xt−1

]

=

[

0 0
T
M

0M A−1
t−2

]

x̃t. (24)

Here, by subtracting these two equations, we get
[

A−1
t−1xt

0

]

=

[

0
A−1

t−2xt−1

]

+∆t−1x̃t. (25)

3

Submitted to IEEE Transactions on Knowledge and Data Engineering

We emphasize that the same transformation Ht, which
we used to get

√
ηt, also transforms Λt−1 to Λt and

A−1
t−2xt−1 to A−1

t−1xt, if we extend the transformed vector
as follows

√
ηt−1 x̃T

t Λt−1

1
√
ηt−1

[

0
A−1

t−2xt−1

]

Λt−1

Ht =

[√
ηt 0

T
2

q Q

]

, (26)

where we show that q = 1√
ηt
[xT

t A
−1
t−1, 0]

T and Q = Λt.

We denote (26) as BHt = B̃, where B represents the input
matrix and B̃ states the output matrix of the transformation.
Then, the following equality is achieved

B̃Θt−1B̃
T
= BΘt−1B

T (27)

since Ht is Θt−1 unitary, i.e., BHtΘt−1H
T
t B

T =
BΘt−1B

T . Equating the elements of matrices in both sides
of (27) yields

q
√
ηt =

[

0
A−1

t−2xt−1

]

+∆t−1x̃t,

qqT +QΠt−1Q
T =

1

ηt−1

[

0
A−1

t−2xt−1

] [

0
A−1

t−2xt−1

]T

+∆t−1.

(28)

We know from (25) that the left hand side of the first term
in (28) equals to [xT

t A
−1
t−1, 0]

T and q is given by

q =
1√
ηt

[

A−1
t−1xt

0

]

. (29)

Hence, we identify the value of Q matrix using the second
term in (28) as

QΠt−1Q
T =

0 0
T
M

0M

A−1
t−2xt−1x

T
t−1A

−1
t−2

ηt−1

+

([

A−1
t−1 0M

0
T
M 0

]

−
[

0 0M

0
T
M A−1

t−2

])

− qqT ,

(30)

where we expand the ∆t−1 term using its definition given in
(15). We know that the term 1

ηt−1

A−1
t−2xt−1x

T
t−1A

−1
t−2 equals

to the difference A−1
t−2 −A−1

t−1 using the update relation (9).
Therefore, substituting this equality and inserting the value
of q yields

QΠt−1Q
T =

([

0 0M

0
T
M A−1

t−2

]

−
[

0 0M

0
T
M A−1

t−1

])

+

([

A−1
t−1 0M

0
T
M 0

]

−
[

0 0M

0
T
M A−1

t−2

])

−
([

A−1
t−1 0M

0
T
M 0

]

−
[

A−1
t 0M

0
T
M 0

])

=

[

A−1
t 0M

0
T
M 0

]

−
[

0 0M

0
T
M A−1

t−1

]

= ∆t

= ΛtΠtΛ
T
t .

(31)

This equality implies that Π is time invariant, i.e., Πt−1 = Πt

and Q is given as
Q = Λt. (32)

Algorithm 1: Fast Online Newton Step

Data: {xt}t≥0 sequence
1 Choose α > 0, window size M and the step size µ ;

2 Λ−1 =

√

1

α

[

1 0 . . . 0 0
0 0 . . . 0 1

]T

;

3 Π =

[

1 0
0 −1

]

,Θ =

[

1 0
T
2

02 Π

]

;

4 x0 = 0M , w0 = 0M , η−1 = 1, ρ−1 = 0M ;
5 while t ≥ 0 do

6 x̃t = [xt,x
T
t]

T ;
7 x̂t+1 = wT

t xt;
8 et = xt+1 − x̂t+1;

9 B =

√
ηt−1 x̃T

t Λt−1
[

0
ρt−1

]

Λt−1

;

10 Determine a Givens rotation HG,t for B;

11 B́ = BHG,t;

12 Determine a Hyperbolic rotation HHB,t for B́;

13

√
ηt 0

T
2

[

ρt

0

]

Λt

 = B́HHB,t;

14 if ‖et‖ > ǫ then

15 wt+1 = wt + sgn(et)
1

µ

[

ρt

√
ηt

ηt

]

;

16 else
17 wt+1 = wt;
18 end

19 xt = [xt, xt−1, . . . , xt−M+1]
T ;

20 end

Hence, we show that when the low rank property of the
difference term ∆t is achieved for t = i−1, it is preserved for
the iteration t = i, for i ≥ 0. Therefore, the transformation
in (26) gives all the necessary information and provides
a complete update rule. As a result, the weight vector is
updated as

wt =

wt−1 + sgn(et)
1

µ

[

A−1
t−1xt

ηt

]

, if ‖et‖ > ǫ

wt−1, otherwise

, (33)

where the individual value of A−1
t−1xt is found by multi-

plying (29) by
√
ηt, which is the left upper most entry of

the transformed matrix B̃, and taking the first M elements.
The complete algorithm is provided in Algorithm 1 with all
initializations and required updates.

The processed matrix B has the dimensions (M + 2) ×
3, which results in the computational complexity of O(M).
Since there is no statistical assumptions, we obtain the same
error rates compared to the regular implementation.

4 SIMULATIONS

In this section, we illustrate the efficiency of our algorithm
on real life sequential big datasets. We implement both
the regular and the fast ONS algorithms on two different
datasets, one of which is the CMU ARCTIC speech dataset
where a professional US English male speaker reads 1132
distinct utterances [25]. The recording is performed at 16

4

Submitted to IEEE Transactions on Knowledge and Data Engineering

KHz and there exist more than 50 million samples. The sec-
ond dataset is a weather forecasting trace provided by Davis
Weather station in Amherst, Massachusetts [26]. We also
implement the first order OGD algorithm on this dataset to
demonstrate the performance comparison with the second
order methods in terms of computational efficiency and
convergence rates. Temperature data was collected every
5 minutes during a period of 7 years from 2006 to 2013.
There exist more than 600 thousand samples. Hence, both
datasets are suitable for simulating big data scenarios. The
data sequences are scaled to the range [−1, 1].

4.1 Computational Complexity Analysis

As the first experiment, we examine the computation time of
both the proposed efficient ONS algorithm and the regular
ONS algorithm. We first work on the two partitions of
CMU ARCTIC speech dataset with lengths n = 5 · 107
and n = 2.5 · 107, and measure the corresponding total
processing time. Sequences of different lengths are chosen
to illustrate the effect of increasing data length. For both
sequences, we choose feature vectors, xt ∈ RM , with sev-
eral dimensions ranging from M = 16 to M = 128. In Fig.
1.a, we demonstrate the computation time comparisons of
the regular and the fast implementations of ONS algorithm.
As expected from our results, complexity of the regularly
implemented ONS algorithm shows a quadratic relation
with the dimension of the feature vectors, M . However,
the proposed efficient implementation provides a linear
relation. A substantial observation from Fig. 1.a is that, with
an increasing dimensionality of the space of feature vectors,
the reduction in the complexity becomes outstanding. We
also observe that the growth in the dataset length causes the
same linear effect on both algorithms, i.e., doubling the total
length n results in the doubled computation time.

We then consider the weather forecasting temperature
dataset, where in this case total length of the data sequence
is not as much as the previous dataset. Therefore, we specif-
ically concentrate on much larger values for the dimension
of the feature vectors. Here, we choose the dimension of the
space of feature vectors ranging from M = 100 to M = 1000
and total length of the data sequence is n = 6 · 105. In Fig.
1.b, we illustrate the relative gain of the introduced fast ONS
algorithm with respect to the regular implementation of
ONS and the OGD algorithm in terms of total computation
time. We observe that the relative computation time gain of
the presented algorithm shows a significant improvement
in comparison with the regular ONS, as the data dimension
increases. However, we also observe that the relative gain
falls into the negative region when compared with the first
order OGD algorithm. This is an expected result, since the
OGD uses only an M dimensional vector in each iteration,
whereas the fast ONS uses an (M + 2) × 3 dimensional
matrix and performs additional transformation operations
to update the weight vectors. Besides, the negative gain
remains constant, since both algorithms eventually have the
complexity in the same order of O(M).

4.2 Numerical Stability Analysis

We theoretically show that the introduced algorithm effi-
ciently implements the ONS algorithm without any sta-
tistical assumptions or any information loss. Hence, both

Fig. 1: (a) Comparison of the computation time. R-ONS:
Regular ONS, F-ONS: Fast ONS (b) Relative gain on the
computation time with respect to the Regular ONS and the
OGD algorithms when the Fast ONS algorithm is used.

the regular and the fast ONS algorithms offer the same
error performances. However, there might occur negligible
numerical differences as a consequence of the finite pre-
cision of real life computing systems. In the second part
of the experiments, we examine the effects of numerical
calculations on the mean square error curves of both the
regular and the fast ONS algorithms. We first consider the
CMU ARCTIC speech dataset with n = 5 ·104 samples since
we observe that the algorithms reach the steady state for this
n. The dimension of the feature vectors is chosen as M = 64,
and the learning rates are determined as 0.003 for both
algorithms. We demonstrate the comparison of mean square
error curves in Fig. 2.a. A direct and significant observation
is that the efficient implementation is numerically stable.
There is no observable difference between the mean square
error curves in terms of both convergence and steady state.

We work on the temperature tracking dataset as well
for the numerical stability analysis. In this case, we include
the OGD algorithm into the comparison and increase the
dimension of feature vectors to M = 400 for all algorithms.
Here, we examine the effect of large dimensionality on the
numerical performance of the proposed algorithm and also
compare the error performances with the first order OGD
algorithm. Similar to the first case, we only represent the
first 500 samples since the second order algorithms reach
the steady state for this point. The learning rates are set
to 0.001 for the regular and the fast ONS and 0.1 for the
OGD algorithm. In Fig. 2.b, we illustrate the corresponding
mean square error curves. Same as the previous analysis,
the fast ONS algorithm shows numerically no difference
compared to the regular ONS algorithm. Hence, even for
such high dimensional feature vectors, the proposed algo-

5

Submitted to IEEE Transactions on Knowledge and Data Engineering

Fig. 2: (a) Data dimension: M = 64 for both algorithms. (b)
Data dimension: M = 400 for all algorithms.

rithm remains numerically stable. Additionally, we illustrate
that the first order OGD algorithm shows less than adequate
performance in terms of convergence rate. Therefore, nega-
tive gain on the computation time observed in the previous
experiment becomes insignificant when we consider the
mean square error analysis in Fig. 2.b.

5 CONCLUSION

In this paper, we investigate online sequential data predic-
tion problem for high dimensional data sequences. Even
though the second order Newton-Raphson methods achieve
superior performance, compared to the gradient based algo-
rithms, the problem of extremely high computational cost
prohibits their usage in real life big data applications. For
an M dimensional feature vector, the computational com-
plexity of these methods increases in the order of O(M2).
To this end, we introduce a highly efficient implementation
that reduces the computational complexity of the Newton-
Raphson methods from O(M2) to O(M). The presented
algorithm does not require any statistical assumption on
the data sequence. We only use the similarity between the
consecutive feature vectors without any information loss.
Hence, our algorithm offers the outstanding performance of
the second order methods with the low computational cost
of the first order methods. We illustrate that the efficient
implementation of Newton-Raphson methods attains sig-
nificant computational gains, as the data dimension grows.
We also show that our algorithm is numerically stable.

REFERENCES

[1] X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data mining with big
data,” IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 1, pp. 97–107, Jan 2014.

[2] C. Xu, Y. Zhang, R. Li, and X. Wu, “On the feasibility of distributed
kernel regression for big data,” IEEE Transactions on Knowledge and
Data Engineering, vol. 28, no. 11, pp. 3041–3052, Nov 2016.

[3] R. D’Ambrosio, W. Belhajali, and M. Barlaud, “Boosting stochastic
newton descent for bigdata large scale classification,” in 2014 IEEE
International Conference on Big Data, Oct 2014, pp. 36–41.

[4] R. Couillet and M. Debbah, “Signal processing in large systems,”
IEEE Signal Processing Magazine, vol. 24, pp. 211–317, 2013.

[5] R. Wolff, K. Bhaduri, and H. Kargupta, “A generic local algorithm
for mining data streams in large distributed systems,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 21, no. 4, pp. 465–
478, April 2009.

[6] T. Wu, S. H. Yu, W. Liao, and C. S. Chang, “Temporal bipartite
projection and link prediction for online social networks,” in 2014
IEEE International Conference on Big Data, Oct 2014, pp. 52–59.

[7] Y. Yilmaz and X. Wang, “Sequential distributed detection in
energy-constrained wireless sensor networks,” IEEE Transactions
on Signal Processing, vol. 17, no. 4, pp. 335–339, 2014.

[8] T. Moon and T. Weissman, “Universal FIR MMSE filtering,” IEEE
Transactions on Signal Processing, vol. 57, no. 3, pp. 1068–1083, 2009.

[9] R. Savani, “High-frequency trading: The faster, the better?” IEEE
Intelligent Systems, vol. 27, no. 4, pp. 70–73, July 2012.

[10] P. Ghosh and V. L. R. Chinthalapati, “Financial time series forecast-
ing using agent based models in equity and fx markets,” in 2014
6th Computer Science and Electronic Engineering Conference (CEEC),
Sept 2014, pp. 97–102.

[11] L. Deng, “Long-term trend in non-stationary time series with
nonlinear analysis techniques,” in 2013 6th International Congress
on Image and Signal Processing (CISP), vol. 2, Dec 2013, pp. 1160–
1163.

[12] W. Cao, L. Cao, and Y. Song, “Coupled market behavior based
financial crisis detection,” in The 2013 International Joint Conference
on Neural Networks (IJCNN), Aug 2013, pp. 1–8.

[13] Y. Ding, H. Tan, W. Luo, and L. M. Ni, “Exploring the use of
diverse replicas for big location tracking data,” in 2014 IEEE 34th
International Conference on Distributed Computing Systems (ICDCS),
June 2014, pp. 83–92.

[14] L. Bottou and Y. Le Cun, “On-line learning for very
large data sets,” Applied Stochastic Models in Business and
Industry, vol. 21, no. 2, pp. 137–151, 2005. [Online]. Available:
http://dx.doi.org/10.1002/asmb.538

[15] L. Bottou and O. Bousquet, “The tradeoffs of large
scale learning,” in Advances in Neural Information
Processing Systems, 2008, pp. 161–168. [Online]. Available:
http://leon.bottou.org/publications/pdf/nips-2007.pdf

[16] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge: Cambridge University Press, 2006.

[17] A. C. Singer, S. S. Kozat, and M. Feder, “Universal linear least
squares prediction: upper and lower bounds,” IEEE Transactions
on Information Theory, vol. 48, no. 8, pp. 2354–2362, Aug 2002.

[18] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms
for online convex optimization,” Machine Learning, vol. 69, no. 2-3,
pp. 169–192, 2007.

[19] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization,
ser. Athena scientific series in optimization and neural
computation. Belmont (Mass.): Athena Scientific, 1997. [Online].
Available: http://opac.inria.fr/record=b1094316

[20] E. K. P. Chong and S. H. Zak, An introduction to optimization,
ser. Wiley-Interscience series in discrete mathematics and
optimization. New York: Wiley, 2008. [Online]. Available:
http://opac.inria.fr/record=b1128546

[21] S. S. Kozat, A. T. Erdogan, A. C. Singer, and A. H. Sayed, “Steady-
state mse performance analysis of mixture approaches to adaptive
filtering,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp.
4050–4063, Aug 2010.

[22] A. H. Sayed, Fundamentals of Adaptive Filtering. NJ: John Wiley &
Sons, 2003.

[23] J. Cheng, A. N. Tegge, and P. Baldi, “Machine learning methods
for protein structure prediction,” IEEE Reviews in Biomedical Engi-
neering, vol. 1, pp. 41–49, 2008.

[24] A. H. Sayed, Adaptive Filters. NJ: John Wiley & Sons, 2008.
[25] J. Kominek and A. W. Black, “Cmu arctic databases.” [Online].

Available: http://www.festvox.org/cmu arctic/index.html
[26] M. Liberatore, “Umass trace repository.” [Online]. Available:

http://traces.cs.umass.edu/index.php/Sensors/Sensors

6

http://dx.doi.org/10.1002/asmb.538
http://leon.bottou.org/publications/pdf/nips-2007.pdf
http://opac.inria.fr/record=b1094316
http://opac.inria.fr/record=b1128546
http://www.festvox.org/cmu_arctic/index.html
http://traces.cs.umass.edu/index.php/Sensors/Sensors

	1 Introduction
	2 Problem Description
	3 Efficient Implementation for Complexity Reduction
	4 Simulations
	4.1 Computational Complexity Analysis
	4.2 Numerical Stability Analysis

	5 Conclusion
	References

