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Abstract— We investigate online probability density estimation
(or learning) of nonstationary (and memoryless) sources using exponential
family of distributions. To this end, we introduce a truly sequential
algorithm that achieves Hannan-consistent log-loss regret performance
against true probability distribution without requiring any information
about the observation sequence (e.g., the time horizon T and the
drift of the underlying distribution C) to optimize its parameters.
Our results are guaranteed to hold in an individual sequence manner.
Our log-loss performance with respect to the true probability density
has regret bounds of O((CT )1/2), where C is the total change (drift) in
the natural parameters of the underlying distribution. To achieve this,
we design a variety of probability density estimators with exponentially
quantized learning rates and merge them with a mixture-of-experts
notion. Hence, we achieve this square-root regret with computational
complexity only logarithmic in the time horizon. Thus, our algorithm can
be efficiently used in big data applications. Apart from the regret bounds,
through synthetic and real-life experiments, we demonstrate substantial
performance gains with respect to the state-of-the-art probability density
estimation algorithms in the literature.

Index Terms— Big data, exponential family, mixture-of-experts,
nonstationary source, online density estimation, online learning.

I. INTRODUCTION

Real-life engineering applications are often probabilistic in nature,
since most practical systems are subject to random components
via input, interference, or noise [1]. In this brief, we investigate
probability density estimation (or learning) of these random compo-
nents, which arise in several different machine learning applications
such as big data [2], pattern recognition [3], novelty detection [4],
data mining [5], anomaly detection [6], and feature selection [7].
In particular, we investigate online probability density estimation [8],
where we sequentially observe the sample vectors {x1, x2, . . .} ∈ R

dx

and learn a probability distribution at each time t based on the past
observations {x1, x2, . . . , xt−1}. We assume that the observations
are generated from a possibly nonstationary memoryless (piecewise
independent identically distributed) source (discrete or continuous),
since, in most engineering applications, statistics of a data stream
may change over time (especially in big data) [9].

We approach this problem from a competitive algorithm perspec-
tive where the competing strategy is the true probability density
function. At each time t , we observe a sample feature vector xt
distributed according to some unknown density function ft (xt ), and
based on our past observations {xτ }t−1

1 , we produce an estimate of
this density as f̂t (xt ). As the loss, we use the log-loss function,
i.e., − log( f̂t (xt )), since it is the most obvious and widely used loss
function for probability distributions [10]. To provide strong results
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in an individual sequence manner [11], we use the notion of “regret”
to define our performance, such that the regret at time t is

rt = − log( f̂t (xt )) + log( ft (xt )) (1)

and the cumulative regret up to time T is

RT =
T∑

t=1

(− log( f̂t (xt )) + log( ft (xt ))). (2)

The instantaneous regret definition in (1) can either be positive or neg-
ative in a specific round just like in any other expert competition
settings [12]. However, the cumulative regret in (2) is bound to be
positive, since the competition (i.e., true distribution) minimizes the
cumulative log-loss.

We seek to achieve the performance of the best nonstationary
distribution from an exponential family. In this sense, we assume
that there exists a density function ft (xt ) that exactly or most closely
represents the true distribution and ft (xt ) belongs to an exponential
family [13] with a possibly changing natural parameter vector
αt ∈ R

d (cumulatively representing the mean, sufficient statistics,
and normalization. ) at each time t . We specifically investigate the
exponential family of distributions, since exponential families cover a
wide range of parametric statistical models [6] and accurately approx-
imates many nonparametric classes of probability densities [14].

We denote the total drift of αt in T rounds by Cα , such that

Cα �
T∑

t=2

‖αt − αt−1‖ (3)

where ‖ · ‖ is the l2-norm. As an example, for stationary
sources, i.e., distributions with unchanging natural parameter, the
drift Cα is 0. Following [6] and [15], one can show that a regret bound
of order O(log(T )) can be achieved for a stationary source with
fixed computational complexity. However, for nonstationary sources,
the logarithmic regret bound is infeasible under low computational
complexity [6]. The results of [16] imply fixed complexity learning
algorithms that achieve a regret bound of O((CαT )1/2) when the
time horizon T and the total drift in parameter vector Cα are known
a priori to optimize their parameters. For unknown time horizon,
one can utilize the doubling trick [11] for the algorithm given in [16],
since a simple modification of the algorithm given in [16] also implies
a regret bound of order O((CmaxT )1/2) if an upper bound on the
total drift is known a priori, such that Cmax ≥ Cα . However, if no
prior knowledge about Cα is given, an algorithm that achieves only
the regret bound O(CαT 1/2) is proposed in [6]. Hence, achieving
O((CαT )1/2) is not possible with the state-of-the-art methods if no
prior information is given about Cα to optimize their parameters.

To this end, our contributions are as follows.

1) As the first time in literature, we introduce an algorithm
that achieves an O((CαT )1/2) regret bound without requiring
any knowledge about the source (e.g., Cα, T ) to optimize its
parameters.

2) Our results are guaranteed to hold in a strong deterministic
sense for all possible observation sequences.
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3) Our algorithm is truly sequential, such that neither T nor the
total drift Cα is required. We achieve this performance with
a computational complexity only log-linear in the data length
by designing density estimators with exponentially quantized
learning rates and merging them with a mixture-of-experts
notion. Thus, our algorithm is suitable for applications involv-
ing big data.

Through synthetic and real-life experiments, we demonstrate sig-
nificant performance gains with respect to the state-of-the-art methods
in the literature.

In Section II, we first introduce the basic density estimators, which
will be subsequently used to build our universal algorithm. Then,
in Section III, we introduce the universal density estimator that
merges the beliefs of the basic density estimators. In Section IV,
we illustrate significant performance gains over both real and syn-
thetic data, and finish with concluding remarks in Section V.

II. BASIC DENSITY ESTIMATOR

In this section, we first construct basic density estimators that can
only achieve the minimum regret bound with a priori information
on the underlying sequence (e.g., Cα, T ) to optimize its learning
rate. These estimators are subsequently used in Section III to con-
struct the final algorithm that achieves the minimum regret bound
without requiring any information to optimize its parameters. Here,
at each time t , we observe xt ∈ R

dx distributed according to a
memoryless (i.e., independent of the past samples) exponential-family
distribution

ft (xt ) = exp(−〈αt , zt 〉 − A(αt )) (4)

where αt ∈ R
d is the natural parameter of the distribution belonging

to a bounded convex feasible set S, such that

D = max
α∈S

‖α‖. (5)

A(·) is the normalization or log-partition function, that is

A(α) = log

(∫

X
exp(−〈α,T (x)〉)dx

)
(6)

and zt is the d-dimensional sufficient statistic of xt [13], that is

zt = T (xt ). (7)

Instead of directly estimating the density ft (x), we estimate the
natural parameter αt at each time t according to our observations
{xτ }t−1

τ=1. The estimated density is given by

f̂t (xt ) = exp(−〈α̂t , zt 〉 − A(α̂t )). (8)

We use online gradient descent [16] to sequentially produce our
estimation α̂t , where we first start from an initial estimate α̂1, and
update our recent estimation α̂t based on our new observation xt .
To update α̂t , we first observe a sample xt and incur the loss l(α̂t , xt )

according to our estimation α̂t , which is − log( f̂t (xt )) (log-loss).
From (8), the loss is

l(α̂t , xt ) = 〈α̂t , zt 〉 + A(α̂t ). (9)

Then, we calculate the gradient of the loss with respect to α̂t

∇αl(α̂t , xt ) = zt + ∇α A(α̂t )

= zt +
∫
X −T (x) exp(−〈α̂t ,T (x)〉)dx∫

X exp(−〈α̂t ,T (x)〉)dx
= zt − μα̂t

(10)

Algorithm 1 Basic Density Estimator

1: Initialize learning rate η ∈ R
+

2: Select initial parameter α̂1
3: Calculate the mean μα̂1
4: for t = 1 to T do
5: Declare estimation α̂t
6: Observe xt
7: Calculate zt = T (xt )

8: Update parameter: α̃t+1 = α̂t − η(zt − μα̂t
)

9: Project onto convex set: α̂t+1 = PS(α̃t+1)

10: Calculate the mean μα̂t+1
11: end for

where we used the definition in (6) in the second equality and μα̂t
is

the mean of T (xt ) (i.e., zt ) if xt were distributed according to f̂t (xt )

as in (8). We update α̂t , such that

α̂t+1 = PS(α̂t − η(zt − μα̂t
)) (11)

where PS(·) is the projection onto the set S and is defined as

PS(x) = arg min
y∈S

‖x − y‖. (12)

The complete algorithm is provided in Algorithm 1. Next, we provide
performance bounds of Algorithm 1. Theorem 1 shows that Algo-
rithm 1 can achieve the minimum regret bound O((CαT )1/2) if Cα

is known a priori to optimize η.
Theorem 1: When Algorithm 1 is used with parameter η to esti-

mate the distribution ft (xt ), its regret is upper bounded by

RT ≤ 1

η
DC + ηT G

where D is defined as in (5), C = 2.5D+Cα , such that Cα is defined
as in (3), and G = (φ2+2φ1 M+M2)/2, such that M = maxα∈S μα ,
φ1 = ∑T

t=1 ‖zt ‖/T , and φ2 = ∑T
t=1 ‖zt ‖2/T .

Proof of Theorem 1: The regret at time t is defined as

rt = l(α̂t , xt ) − l(αt , xt ) (13)

where l(α, x) is as in (9). Since the loss function is convex

rt ≤ 〈∇αl(α̂t , xt ), (α̂t − αt )〉. (14)

We bound the right-hand side of (14) using the update rule (11).
By definition of projection in (12), we have

‖PS(α̂t −η∇αl(α̂t , xt ))−αt‖ ≤‖α̂t −η∇αl(α̂t , xt )−αt‖. (15)

Substituting (11) in the left-hand side provides

‖α̂t+1 − αt‖ ≤ ‖α̂t − η∇αl(α̂t , xt ) − αt‖. (16)

Hence, we get

‖α̂t+1 − αt‖2 ≤ ‖α̂t − αt‖2 − 2η〈∇αl(α̂t , xt ), (α̂t − αt )〉
+ η2‖∇αl(α̂t , xt )‖2. (17)

Combining (14) and (17) results in

rt ≤ 1

2η
(‖α̂t − αt‖2 − ‖α̂t+1 − αt‖2) + η

2
‖∇αl(α̂t , xt )‖2

≤ 1

2η
(‖α̂t‖2−‖α̂t+1‖2−2〈α̂t −α̂t+1, αt 〉)+η

2
‖∇αl(α̂t , xt )‖2 (18)

since η > 0. Using (10) in the right-hand side yields

rt ≤ 1

2η
(‖α̂t‖2−‖α̂t+1‖2)− 1

η
〈α̂t −α̂t+1, αt 〉+ η

2
‖zt −μα̂t

‖2. (19)
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Thus, summing (19) from t = 1 to T , we have the cumulative regret
up to time T , which is given by

RT ≤ 1

2η
(‖α̂1‖2 − ‖α̂T +1‖2) + η

2

T∑

t=1

‖zt − μα̂t
‖2

− 1

η

⎛

⎝〈α̂1, α1〉+
T∑

t=2

〈α̂t , αt −αt−1〉−〈α̂T +1, αT 〉
⎞

⎠. (20)

Using (3) and (5), we get

RT ≤ 1

η
(2.5D2 + DCα) + η

2

T∑

t=1

(‖zt + μα̂t
‖2)

≤ 1

η
(2.5D2 + DCα) + ηT

2
(φ2 + 2φ1 M + M2) (21)

where M , φ1, and φ2 are given by

M = max
α∈S

μα, φ1 =
T∑

t=1

‖zt ‖
T

, φ2 =
T∑

t=1

‖zt ‖2

T
.

We denote G = (φ2+2φ1 M+M2)/2, which is related to the gradient
of the log-loss and C = Cα + 2.5D, which is the effective change
parameter. Hence

RT ≤ 1

η
DC + ηT G (22)

which concludes the proof of the theorem. �
The result in Theorem 1 is for an estimator that uses the fixed

learning rate, which will be used to prove the performance bound of
the universal estimator in Section III.

Remark 1: The construction of zt requires the knowledge of
sufficient statistics mapping T (·) beforehand. Since the sufficient
statistics of different kinds of exponential family distributions may
differ, T (·) requires the knowledge of the exact distribution kind,
e.g., whether the distribution is normal, exponential, gamma, and so
on. This requirement can be easily bypassed by creating an extended
statistics vector z̃t = T̃ (xt ), such that z̃t encompasses all sufficient
statistics of different distributions that the true density may belong to.
This would also solve the problem of estimating a distribution that
changes types, e.g., from Gaussian to gamma, gamma to Bernoulli,
and so on. However, extending the sufficient statistics z̃t effectively
increases S, and hence D, C , G in Theorem 1 as well.

Remark 2: Suppose instead of xt , we observe a distorted ver-
sion, such that yt = Q(xt ), where Q(·) is the distortion channel,
e.g., an additive noise channel. Then, using an unbiased estimator
z̄t = T̄ (yt ) such that IE[z̄t ] = T (xt ) produces the same results for
the expected regret.

Remark 3: In general, an exponential-family distribution has the
form f (x) = exp(−〈α,T (x)〉− A(α)− B(x)), where B(x) is only a
function of the observation x . However, this function can simply be
included inside of T (x), whose corresponding parameter in the inner
product will simply be 1 in the true probability density. Hence, all
the analyses still hold.

III. UNIVERSAL ONLINE DENSITY ESTIMATION

In Section II, we constructed the basic estimators that can only
achieve the minimum regret bound with a priori information. In this
section, we construct a universal density estimator (UDE) that
achieves the minimum regret with no a priori information by mixing
the beliefs of the basic density estimators with exponentially quan-
tized learning rates.

Fig. 1. Illustration of a universal density estimator.

When used with parameter η, Algorithm 1 achieves the regret

RT ≤ √
DCGT

(
η∗
η

+ η

η∗

)
(23)

where η∗ � ((DC)/(GT ))1/2, which is the bound in Theorem 1.
To achieve the minimum regret with Algorithm 1, one must opti-
mize η with some knowledge of η∗. However, with limited or no
prior information, it is not possible to achieve the minimum regret
using Algorithm 1. Therefore, instead of just using Algorithm 1 with
a fixed learning rate, we combine different runs of Algorithm 1 with
different learning rates, which will contain (or approximate) η∗ to a
sufficient degree to achieve the minimum regret.

To this end, we first construct a parameter vector η of size N ,
such that η[r ] = ηr , for r ∈ {1, 2, . . . , N}. We construct N experts,
each of which runs Algorithm 1 with parameter ηr , i.e., r th element
of the parameter vector η. As shown in Fig. 1, each one of the N
experts takes the input xt and outputs a belief f̂ r

t (xt ) at each round
t (prediction stage). Then, we mix all of the beliefs in a weighted
combination such that

f̂ u
t (xt ) =

N∑

r=1

wr
t f̂ r

t (xt ) (24)

where wr
t is the combination weight of the belief of the r th expert

at time t (mixture stage). Initially, we assign uniform weights to
all expert outputs, such that their combination weights are given by
wr

1 = 1/N . Then, at each time t , we update their weights according
to the rule

wr
t+1 = wr

t f̂ r
t (xt )/ f̂ u

t (xt ) (25)

where f̂ u
t (xt ) acts as the normalizer. Instead of our weighting,

different methods [12], [17]–[20] can also be used. Our combination
in (24) and (25) makes use of the mixability property of density func-
tions under log-loss (it is 1-mixable) [12], where log N redundancy
is optimal [20]–[22]. We have provided a complete description of the
universal algorithm in Algorithm 2.

Next, we provide the performance bounds of the universal density
estimator, i.e., Algorithm 2. The results of Theorem 2 and Corollary 1
show that the optimal regret bound O((CT )1/2) is achieved without
any prior information on C .
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Algorithm 2 Universal Density Estimator
1: Initialize constants ηr , for r ∈ {1, 2, . . . , N}
2: Create N copies Alg. 1, where the r th algorithm runs with the

parameter ηr and its belief is given by f̂ r
t (x).

3: Initialize weights wr
1 = 1/N

4: for t = 1 to T do
5: Receive the beliefs f̂ r

t (x) for r ∈ {1, 2, . . . , N}
6: Declare estimation f̂ u

t (x) = ∑N
r=1 wr

t f̂ r
t (x)

7: Observe xt
8: Calculate zt = T (xt )
9: for r = 1 to N

10: Update parameters α̂r
t of r th algorithm according to Alg. 1

11: wr
t+1 = wr

t f̂ r
t (xt )/ f̂ u

t (xt )

12: end for
13: end for

Theorem 2: Algorithm 2 has the regret bound

RT ≤ log(N) + √
DCGT

[
min

i∈{1,2,...,N}

(
η∗
ηi

+ ηi

η∗

)]

where D is defined as in (5), C = 2.5D+Cα such that Cα is defined
as in (3), G = (φ2 + 2φ1 M + M2)/2 such that M = maxα∈S μα ,
φ1 = ∑T

t=1 ‖zt ‖/T , φ2 = ∑T
t=1 ‖zt ‖2/T , η∗ = ((DC)/(GT ))1/2,

and ηi is the parameter of the i th expert.
Proof of Theorem 2: The regret at time t is given by

rt = − log
(

f̂ u
t (xt )

) + log( ft (xt )). (26)

Summing (26) from t = 1 to T gives

RT = − log

⎛

⎝
T∏

t=1

f̂ u
t (xt )

⎞

⎠ +
T∑

t=1

log( ft (xt )). (27)

Using (24), we have

RT = − log

⎛

⎝
T∏

t=1

⎛

⎝
N∑

r=1

wr
t f̂ r

t (xt )

⎞

⎠

⎞

⎠ +
T∑

t=1

log( ft (xt )). (28)

From (25), we can infer that the weights are given by

wr
t =

∏t−1
τ=1 f̂ r

τ (xτ )
∑N

r=1
∏t−1

τ=1 f̂ r
τ (xτ )

. (29)

Hence, substituting (29) in (28) produces

RT = − log

⎛

⎝
T∏

t=1

(∑N
r=1

∏t
τ=1 f̂ r

t (xt )
∑N

r=1
∏t−1

τ=1 f̂ r
t (xt )

)⎞

⎠ +
T∑

t=1

log( ft (xt ))

= − log

⎛

⎝
N∑

r=1

T∏

τ=1

f̂ r
t (xt )

⎞

⎠ + log(N) +
T∑

t=1

log( ft (xt ))

≤ log(N)−max
r

⎛

⎝
T∑

t=1

log
(

f̂ r
t (xt )

)
⎞

⎠+
T∑

t=1

log( ft (xt )) (30)

≤ log(N) + √
DCGT

[
min

i∈{1,2,...,N}

(
η∗
ηi

+ ηi

η∗

)]
(31)

and concludes the proof. �
The result of Theorem 2 shows that the performance bound

is dependent on the set of learning rates used in the algorithm.
In Corollary 1, we show that we can achieve the minimum regret
bound with log-linear complexity.

Corollary 1: Suppose we run the experts with parameters between
η′ and η′′. We denote K = η′′/η′ and N = �log2 K 
+1. Then,

running Algorithm 2 with parameter vector ηi = 2i−1η′ for i ∈
{1, 2, . . . , N} gives the following regret bounds:

1) If η′ ≤ η∗ ≤ η′′

RT ≤ log(�log2 η′′/η′
 + 1) + 3
√

2

2

√
DCGT

since ((η∗/ηi ) + (ηi/η∗)) is maximum if η∗ = 2(a+1/2) for
some a.

2) If η∗ ≥ η′′

RT ≤ log(�log2 η′′/η′
 + 1) +
(

1 + η∗
η′′

) √
DCGT

Since η∗ ≤ ((4 + 1/T )D2 M−2)1/2, by letting η′′ ≥
((4 + 1/T )D2M−2)

1/2
, we can make this case invalid.

3) If η∗ ≤ η′

RT ≤ log(�log2 η′′/η′
 + 1) +
(

1 + η′
η∗

) √
DCGT .

Since η∗ ≥(2.5D2/(T G))
1/2

, setting η′≤(2.5D2/T )
1/2

gives

RT ≤ log(�log2 η′′/η′
 + 1) + (1 + √
G)

√
DCGT .

Note that we may not be able to make η′ ≤ (2.5D2/T )1/2 to
make this case invalid, since we may not be able to bound G.
However, we may be able to bound G with high probability,
which will in turn create the regret bound in 1 with high
probability.

Remark 4: If η∗ = ((DC)/(GT ))1/2 is known completely before-
hand, then running Algorithm 2 with the parameter vector η = {η∗},
i.e., N = 1, produces the regret bound

RT ≤ 2
√

DCGT

which is equivalent to achieving the optimal regret bound using
Algorithm 1 with the a priori information about the source.

Hence, by running Algorithm 2 with an appropriate parameter
vector, we achieve O((CT )1/2) regret with O(log T ) computational
complexity, since the separation between η′ and η′′ is mainly depen-
dent on C , which is bounded as 2.5D ≤ C ≤ (2T + 0.5)D.

Remark 5: Note that we have only included probability density
estimators of Algorithm 1 as experts for Algorithm 2. However,
the result in (30) is general and is true for any expert used in the
mixture. Therefore, incorporating various different density estima-
tors (parametric or nonparametric) in Algorithm 2, we can achieve
the optimum performance in the mixture.

IV. EXPERIMENTS

In this section, we demonstrate the performance of our algorithm
both on real and synthesized data in comparison with the-state-of-art
techniques maximum likelihood (ML) [23], online convex program-
ming with static (OCP.static) [16] and dynamic (OCP.dynamic)
learning rates [6], gradient descent (GD) [24], Momentum [25],
Nesterov accelerated gradient (NAG) [26], Adagrad [27],
Adadelta [28], and Adam [29].

All the algorithms are implemented as instructed in their respective
papers. OCP.static uses the doubling trick [11] to run in an online
manner and is implemented with the fixed learning rate T −1/2 for
an epoch of length T . OCP.dynamic, on the other hand, uses a
dynamic learning rate of t−1/2 at time t . For an online behavior,
ML uses a sliding window to determine its estimations. In our
implementation, ML uses the doubling trick and is run in epochs
of durations {1, 2, 4, 8, . . .}. Before the start of each epoch at time t ,
we run ML for the past t − 1 observations with window lengths
of {1, 2, 4, 8, . . . , t − 1}. Then, in its current epoch, we use the
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Fig. 2. Cumulative log-loss regret performances of the density estimation
algorithms with respect to the number of changes in the statistics of a
nonstationary Gaussian process.

window length that provides the minimum log-loss. Hence, ML
has a time complexity of O(log T ) per round. The other algo-
rithms are also run with the doubling trick and used a similar
approach to search their parameter spaces (like the window size
for ML), since implementing them with their default parameters
provided poor performance. We have run GD, Momentum, NAG,
Adagrad, and Adam in the past observations for the step sizes
η = {(1/T ), (2/T ), (4/T ) . . . , (1/4), (1/2), 1, 2, 4, . . . , (T/4),

(T/2)T }, and selected the step size that provided the minimum log-
loss and use it in their next epoch. We have optimized only the
step size and left the momentum term in Momentum, NAG to be its
default value, i.e., γ = 0.9, since the step size is the main parameter
that affects the performance and optimization of γ also would have
increased the time complexity to O(log2 T ), which would have been
unfair. We have set the smoothing term of Adagrad to its default
value ε = 10−8. In Adam, we have set the parameters β1 = 0.9,
β2 = 0.999, and ε = 10−8 as instructed in its paper. For Adadelta,
the parameter that most influences the performance is the exponen-
tial update parameter γ . Therefore, we optimize γ among the set
{0, (1/T ), (2/T ), (4/T ) . . . , (1/8), (1/4), (1/2), (3/4), (7/8), . . . ,
1− (4/T ), 1− (2/T ), 1− (1/T ), 1} and set the smoothing parameter
to its default value ε = 10−8.

We have run our algorithm, UDE, with learning rates in the range
1/T ≤ η ≤ T for a T length epoch of the algorithm. We have also
created a variant UDE.all that combines not only the subroutines
of UDE but also all the competing algorithms to demonstrate the
option of using various density estimators in combination. The exper-
iments1.” consists of two parts, which are performance comparison
in synthetic and real data sets.

A. Synthetic Data Set

In this section, we compare the cumulative log-loss regrets of the
algorithms with respect to the number of changes in the statistics of
the source. To this end, we compare the algorithms’ performances
when the source has C ∈ {1, 2, 4, 8, . . .} changes in its statistics.
For each value of C , we synthesize a data set of size 10000
from a univariate Gaussian process with a unit standard deviation,
i.e., σ = 1 and mean value alternating between 100 and −100
in every T/C samples (equal length time segments), such that in

1The codes used in the experiments are made publicly available at
http://www.ee.bilkent.edu.tr/∼gokcesu/density_codes.zip

Fig. 3. Average log-loss performance of the density estimators over the
Individual Household Electric Power Consumption Data Set [30].

the first segment μ = 100, in the next segment μ = −100, and
alternates as such. No prior information about the data is given to
the algorithms (including the switching times) except the variance of
the distribution. All of algorithms start from an initial mean estimate
of 0.

In Fig. 2, we have illustrated the regret performance of the
algorithms. We observe in Fig. 2 that the Adam algorithm performs
substantially worse in high number of changes in the statistics. Since
Adam gets rid of the step size for a completely adaptive behavior, its
convergence rate is simply not good enough in this setting. OCP.static,
OCP.dynamic, and Adadelta have similar performances but still
perform worse than ML. Even though momentum and Adagrad have
better performance than ML, they are still outperformed by GD and
NAG. Nonetheless, our algorithm, UDE, outperforms all the other
algorithms by huge margins, because it does not try to optimize its
parameters, but rather combines them to ensure that the optimal one
will survive. UDE.all performs basically the same as UDE, since
UDE has substantially greater performance.

B. Real Data Set

We use “Individual Household Electric Power Consumption Data
Set”2.” for real big data benchmark purposes, which is readily
accessible online [30]. This data set includes measurements of
electric power consumption in one household with a 1-min sampling
rate over a period of almost 4 years [30]. We have assumed a
possibly nonstationary multivariate Gaussian process for this data
set and run the algorithms to estimate its distribution. Since the true
distribution is not known, we have compared the performances of the
algorithms directly with their log-losses instead of their regrets. All
the algorithms are initialized to zero-mean, unit variance.

In Fig. 3, we have illustrated the log-loss performances of all the
algorithms. Interestingly, GD performed the worst with OCP.static
a close second, even though it was one of the best performing
competing algorithms in the previous experiments. ML provided an
average performance similar to the first set of experiments. However,
this time performed worse than the OCP.dynamic and the Adadelta
algorithms. NAG performed similarly by being one of the best
performing competing algorithms. Even though Adagrad was able

2This data set is the most popular (≈ 125 000 hits) large data
set (greater than 105 samples) in the University of California,
Irvine, Machine Learning Repository, which is publicly available at
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+
consumption
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to outperform all the other competing algorithms up to the middle
of the data set, it encountered a sudden increase in its log-loss
and was unable to recuperate fast enough. The most interesting
result was for the Adam algorithm, which performed the best among
the competing algorithms, even though it performed the worst in
the first set of experiments. From the distinct performances of the
competing algorithms in real and synthetic data sets, we can infer that
our algorithm UDE is able to outperform them in various different
environments. In Fig. 3, we again observe a substantial performance
gain in comparison with the other algorithms. In addition, we are
also able to observe a small performance increase in UDE.all on
top of UDE, which supports the notion that combining different
estimators would lead to better performance because of the low regret
redundancy of the mixture.

V. CONCLUSION

We have introduced a truly sequential and online algorithm, which
estimates the density of a nonstationary memoryless exponential-
family source with Hannan consistency. Our algorithms are truly
sequential, such that neither the time horizon T nor the total drift
of the natural parameter is required to optimize its parameters. Here,
the regret of our algorithm is increasing with only the square-root
of time horizon T and the total drift of the natural parameter C .
The results we provide are uniformly guaranteed to hold in a
strong deterministic sense in an individual sequence manner for
all possible observation sequences, since we refrain from making
any assumptions on the observations. We achieve this performance
with a computational complexity only log linear in the data length
by carefully designing different probability density estimators and
combining them in a mixture-of-experts setting. Due to such efficient
performance and storage need, our algorithm can be effectively used
in big data applications.
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