
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Online Training of LSTM Networks in Distributed Systems
for Variable Length Data Sequences

Tolga Ergen and Suleyman S. Kozat, Senior Member, IEEE

Abstract— In this brief, we investigate online training of long short
term memory (LSTM) architectures in a distributed network of nodes,
where each node employs an LSTM-based structure for online regression.
In particular, each node sequentially receives a variable length data
sequence with its label and can only exchange information with its
neighbors to train the LSTM architecture. We first provide a generic
LSTM-based regression structure for each node. In order to train this
structure, we put the LSTM equations in a nonlinear state-space form for
each node and then introduce a highly effective and efficient distributed
particle filtering (DPF)-based training algorithm. We also introduce
a distributed extended Kalman filtering-based training algorithm for
comparison. Here, our DPF-based training algorithm guarantees conver-
gence to the performance of the optimal LSTM coefficients in the mean
square error sense under certain conditions. We achieve this performance
with communication and computational complexity in the order of the
first-order gradient-based methods. Through both simulated and real-
life examples, we illustrate significant performance improvements with
respect to the state-of-the-art methods.

Index Terms— Distributed learning, extended Kalman filter-
ing (EKF), long short term memory (LSTM) networks, online
learning, particle filtering.

I. INTRODUCTION

Neural networks provide enhanced performance for a wide range
of engineering applications, e.g., prediction [1] and human behavior
modeling [2], thanks to their highly strong nonlinear modeling capa-
bilities. Among neural networks, especially recurrent neural networks
(RNNs) are used to model time series and temporal data due to
their inherent memory storing the past information [3]. However,
since simple RNNs lack control structures, the norm of gradient may
grow or decay in a fast manner during training, i.e., the exploding and
vanishing gradient issues [4]. Due to these problems, simple RNNs
are insufficient to capture long- and short-term dependences [4].
To circumvent this issue, a novel RNN architecture with control
structures, i.e., the long short term memory (LSTM) network, is intro-
duced [5]. However, since LSTM networks have additional nonlinear
control structures with several parameters, they may also suffer from
training issues [5]. To circumvent these issues, we introduce highly
effective and efficient training methods for the LSTM architecture.

To this end, in this brief, we consider online training of the
parameters of an LSTM structure in a distributed network of nodes.
Here, we have a network of nodes, where each node has a set of
neighboring nodes and can only exchange information with these
neighbors. In particular, each node sequentially receives a variable
length data sequence with its label and trains the parameters of the
LSTM network. Each node can also communicate with its neighbors
to share information in order to enhance the training performance,
since the goal is to train one set of LSTM coefficients using all
the available data. As an example application, suppose that we have

Manuscript received June 15, 2017; revised September 8, 2017; accepted
November 1, 2017. This work was supported by TUBITAK under
Contract 115E917. (Corresponding author: Tolga Ergen.)

The authors are with the Department of Electrical and Electron-
ics Engineering, Bilkent University, 06800 Ankara, Turkey (e-mail:
ergen@ee.bilkent.edu.tr; kozat@ee.bilkent.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2017.2770179

a database of labeled tweets and our aim is to train an emotion
recognition engine based on an LSTM structure, where the training
is performed in an online and distributed manner using several
processing units. Words in each tweet are represented by word2vec
vectors [6] and tweets are distributed to several processing units in
an online manner.

The LSTM architectures are usually trained in a batch setting in
the literature, where all data instances are present and processed
together [3]. However, for applications involving big data, storage
issues may arise due to keeping all the data in one place [7].
In addition, in certain frameworks, all data instances are not available
beforehand, since instances are received in a sequential manner,
which precludes batch training [7]. Hence, we consider online
training, where we sequentially receive the data to train the LSTM
architecture without storing the previous data instances. Note that
even though we work in an online setting, we may still suffer
from computational power and storage issues due to large amount
of data [8]–[10]. As an example, in tweet emotion recognition
applications, the systems are usually trained using an enormous
amount of data to achieve sufficient performance, especially for
agglutinative languages [6]. For such tasks, distributed architectures
are used. In this basic distributed architectures, commonly named
as a centralized approach [8], the whole data is distributed to
different nodes and trained parameters are merged later at a central
node [3]. However, this centralized approach requires high storage
capacity and computational power at the central node [8]. In addition,
centralized strategies have a potential risk of failure at the central
node. To circumvent these issues, we distribute both the processing
as well as the data to all the nodes and allow communication only
between neighboring nodes; hence, we remove the need for a central
node. In particular, each node sequentially receives a variable length
data sequence with its label and exchanges information only with its
neighboring nodes to train the common LSTM parameters.

For online training of the LSTM architecture in a distributed
manner, one can employ one of the first-order gradient-based algo-
rithms at each node due to their efficiency [3]. In the distributed
implementation of the first-order gradient-based methods, each node
exchanges either its estimate or its first-order gradient with its
neighboring nodes in order to compute the final estimate, e.g., [11]
directly shares the estimates at each node with its neighbors and
then updates the linear combination of the estimates to get the final
estimate. However, since these training methods only exploit the
first-order gradient information, they suffer from poor performance
and convergence issues. As an example, the stochastic gradient
descent (SGD)-based algorithms usually have slower convergence
compared with the second-order methods [3], [11]. On the other
hand, the second-order gradient-based methods require much higher
computational complexity and communication load while providing
superior performance compared with the first-order methods [3].
Following the distributed implementation of the first-order meth-
ods, one can implement the second-order training methods in a
distributed manner, where we share not only the estimates but also
the Jacobian matrix, e.g., the distributed extended Kalman filtering
(DEKF) algorithm [12], [13]. However, as in the first-order case,
these sharing and combining the information at each node are

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4806-0224

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ad hoc, which does not provide the optimal training performance [12].
In addition to the EKF algorithm, the Hessian-free (HF) [14] and
quasi-Newton (QN) [15] algorithms are also employed as the second-
order training methods for training RNNs. The HF algorithm avoids
the direct Hessian computations, i.e., highly complex computations,
so that it significantly reduces its computational complexity while
enjoying high performance provided by a second-order method [14].
Similarly, the QN algorithm approximately computes Hessian to save
computational resources [15]. However, both of these algorithms
provide restricted performances in online tasks [3], [16]. In this brief,
to provide improved performance with respect to the second-order
methods while preserving both communication and computational
complexity similar to the first-order methods, we introduce a highly
effective distributed online training method based on the particle
filtering algorithm [17]. We first propose an LSTM-based model for
variable length data regression. We then put this model in a nonlinear
state-space form to train the model in an online and optimal manner.

Our main contributions include the following.

1) We introduce distributed LSTM training methods in an online
setting for variable length data sequences. Our distributed
particle filtering (DPF)-based training algorithm guarantees
convergence to the optimal centralized training performance in
the mean square error (MSE) sense.

2) We achieve this performance with a computational complexity
and a communication load in the order of the first-order
gradient-based methods.

3) Through simulations involving real life and financial data,
we illustrate significant performance improvements with
respect to the state-of-the-art methods [16], [18].

This brief is organized as follows. In Section II, we first describe
the variable length data regression problem in a network of nodes
and then introduce an LSTM-based structure. Then, in Section III,
we first put this structure in a nonlinear state-space form and then
introduce our training algorithms. In Section IV, we illustrate the
merits of our algorithms through simulations. We then finalize this
brief with concluding remarks in Section V.

II. MODEL AND PROBLEM DESCRIPTION

Here,1 we consider a network of K nodes. In this network,
we declare two nodes that can exchange information as neighbors
and denote the neighborhood of each node k as Nk that also
includes node k, i.e., k ∈ Nk . At each node k, we sequentially
receive {dk,t }t≥1, dk,t ∈ R and matrices, {Xk,t }t≥1, defined as

Xk,t = [x(1)
k,t x(2)

k,t . . . x(mt)
k,t], where x(l)

k,t ∈ R
p , ∀l ∈ {1, 2, . . . , mt }

and mt ∈ Z
+ is the number of columns in Xk,t , which can change

with respect to t . In our network, each node k aims to learn a
certain relation between the desired value dk,t and matrix Xk,t . After
observing Xk,t and dk,t , each node k first updates its belief about
the relation and then exchanges an updated information with its
neighbors. After receiving Xk,t+1, each node k estimates the next
signal dk,t+1 as d̂k,t+1. Based on dk,t+1, each node k suffers the
loss l(dk,t+1, d̂k,t+1) at time instance t + 1. This framework models
a wide range of applications in the machine learning and signal
processing literature, e.g., sentiment analysis [6]. As an example,
in tweet emotion recognition application [6], each Xk,t corresponds
to a tweet, i.e., the t th tweet at the node (processing unit) k. For
the t th tweet at node k, one can construct Xk,t by finding word2vec

representation of each word, i.e., x(l)
k,t for the lth word. After receiving

1All column vectors (or matrices) are denoted by boldface lower (or upper-
case) case letters. For matrix A (or vector a), AT (aT) is its ordinary
transpose. The time index is given as subscript, e.g., at is the vector at time t .
Here, 1 (or 0) is a vector of all ones (or zeros) and I is the identity matrix,
where the sizes of these notations are understood from the context.

Fig. 1. Detailed schematic of each node k in our network.

dk,t , i.e., the desired emotion label for the t th tweet at node k, each
node k first updates its belief about the relation between the tweet and
its emotion label and then exchanges information, e.g., the trained
system parameters, with its neighboring units to estimate the next
label.

In this brief, each node k generates an estimate d̂k,t using the
LSTM architecture. Although there exist different variants of LSTM,
we use the most widely used variant [5], i.e., the LSTM architecture
without peephole connections. The input Xk,t is first fed to the LSTM
architecture as illustrated in Fig. 1, where the internal equations are
given as [5]

i (l)k,t = σ
�
W (i)

k x(l)
k,t + R(i)

k y(l−1)
k,t + b(i)

k

�
(1)

f (l)
k,t = σ

�
W (f)

k x(l)
k,t + R(f)

k y(l−1)
k,t + b(f)

k

�
(2)

c(l)
k,t = i (l)k,t � g

�
W (z)

k x(l)
k,t+R(z)

k y(l−1)
k,t + b(z)

k

�+ f (l)
k,t � c(l−1)

k,t (3)

o(l)
k,t = σ

�
W (o)

k x(l)
k,t + R(o)

k y(l−1)
k,t + b(o)

k

�
(4)

y(l)
k,t = o(l)

k,t � h
�
c(l)

k,t

�
(5)

where x(l)
k,t ∈ R

p is the input vector, y(l)
k,t ∈ R

n is the output vector,

and c(l)
k,t ∈ R

n is the state vector for the l th LSTM unit. Moreover,

o(l)
k,t , f (l)

k,t , and i (l)k,t represent the output, forget, and input gates,
respectively. g(·) and h(·) are set to the hyperbolic tangent function
and apply vectors pointwise. Likewise, σ(·) is the pointwise sigmoid
function. The operation � represents the elementwise multiplication
of two vectors of the same size. As the coefficient matrices and the
weight vectors of the LSTM architecture, we have W (.)

k , R(.)
k , and

b(.)
k , where the sizes are chosen according to the input and output

vectors. Given the outputs of LSTM for each column of Xk,t as
shown in Fig. 1, we generate the estimate for each node k as follows:

d̂k,t = wT
k,t ȳk,t (6)

where wk,t ∈ R
n is a vector of the regression coefficients and

ȳk,t ∈ R
n is a vector obtained by taking average of the LSTM outputs

for each column of Xk,t , i.e., known as the mean pooling method,
as described in Fig. 1.

Remark 1: In (6), we use the mean pooling method to generate
ȳk,t . One can also use the other pooling methods by changing
the calculation of ȳk,t and then generate the estimate as in (6).
As an example, for the max and last pooling methods, we use
ȳk,t = maxi y(i)

k,t and ȳk,t = y(mt)
k,t , respectively. All our derivations

hold for these pooling methods and the other LSTM architectures.
We provide the required updates for different LSTM architectures in
Section III.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

III. ONLINE DISTRIBUTED TRAINING ALGORITHMS

In this section, we first give the LSTM equations for each node in
a nonlinear state-space form. Based on this form, we then introduce
our distributed algorithms to train the LSTM parameters in an online
manner.

Considering our model in Fig. 1 and the LSTM equations
in (1)–(5), we have the following nonlinear state-spaces form for
each node k :

c̄k,t = �
�
c̄k,t−1, Xk,t , ȳk,t−1

�
(7)

ȳk,t = �
�
c̄k,t , Xk,t , ȳk,t−1

�
(8)

θk,t = θk,t−1 (9)

dk,t = wT
k,t ȳk,t + εk,t (10)

where �(·) and �(·) represent the nonlinear mappings performed
by the consecutive LSTM units and the mean pooling operation
as illustrated in Fig. 1, and θk,t ∈ R

nθ is a parameter vec-

tor consisting of {wk , W (z)
k , R(z)

k , b(z)
k , W (i)

k , R(i)
k , b(i)

k , W (f)
k , R(f)

k ,

b(f)
k , W (o)

k , R(o)
k , b(o)

k }, where nθ = 4n(n + p) + 5n. Since the
LSTM parameters are the states of the network to be estimated,
we also include the static equation (9) as our state. Furthermore, εk,t
represents the error in observations and it is a zero-mean Gaussian
random variable with variance Rk,t .

Remark 2: We can also apply the introduced algorithms to different
implementations of the LSTM architecture [5]. For this purpose,
we modify the function �(·) and �(·) in (7) and (8) according
to the chosen LSTM architecture. We also alter θk,t in (9) by
adding or removing certain parameters according to the chosen LSTM
architecture.

A. Online Training Using the DEKF Algorithm

In this section, we first derive our training method based on
the EKF algorithm, where each node trains its LSTM parameters
without any communication with its neighbors. We then introduce
our training method based on the DEKF algorithm in order to train
the LSTM architecture when we allow communication between the
neighbors.

The EKF algorithm is based on the assumption that the state
distribution, given the observations is Gaussian [13]. To meet this
assumption, we introduce Gaussian noise to (7)–(9). By this, we have
the following model for each node k :

⎡

⎣
c̄k,t
ȳk,t
θk,t

⎤

⎦ =
⎡

⎣
�

�
c̄k,t−1, Xk,t , ȳk,t−1

�

�
�
c̄k,t , Xk,t , ȳk,t−1

�

θk,t−1

⎤

⎦+
⎡

⎣
ek,t
�k,t
υk,t

⎤

⎦ (11)

dk,t = wT
k,t ȳk,t + εk,t (12)

where [eT
k,t , �T

k,t ,υ
T
k,t]T is zero mean Gaussian process with covari-

ance Qk,t . Here, each node k is able to observe only dk,t to estimate
c̄k,t , ȳk,t , and θk,t . Hence, we group c̄k,t , ȳk,t , and θk,t together
into a vector as the hidden states to be estimated.

1) Online Training With the EKF Algorithm: In this section,
we derive the online training method based on the EKF algorithm
when we do not allow communication between the neighbors. Since
the system in (11) and (12) is already in a nonlinear state-space form,
we can directly apply the EKF algorithm [13] as follows.

Time Update:

c̄k,t |t−1 = �(c̄k,t−1|t−1, Xk,t , ȳk,t−1|t−1) (13)

ȳk,t |t−1 = �(c̄t |t−1, Xk,t , ȳk,t−1|t−1) (14)

θk,t |t−1 = θk,t−1|t−1 (15)

�k,t |t−1 = Fk,t−1�k,t−1|t−1 FT
k,t−1 + Qk,t−1. (16)

Measurement Update:

R = HT
k,t �k,t |t−1 Hk,t + Rk,t

⎡

⎣
c̄k,t |t
ȳk,t |t
θk,t |t

⎤

⎦ =
⎡

⎣
c̄k,t |t−1
ȳk,t |t−1
θk,t |t−1

⎤

⎦+ �k,t |t−1 Hk,t R−1(dk,t − d̂k,t)

�k,t |t = �k,t |t−1 − �k,t |t−1 Hk,t R−1 HT
k,t �k,t |t−1

where � ∈ R
(2n+nθ)×(2n+nθ) is the error covariance matrix,

Qk,t ∈ R
(2n+nθ)×(2n+nθ) is the state noise covariance, and Rk,t ∈ R

is the measurement noise variance. In addition, we assume that Rk,t
and Qk,t are known terms. We compute Hk,t and Fk,t as follows:

HT
k,t =

�
∂ d̂k,t

∂ c̄
∂ d̂k,t

∂ ȳ
∂ d̂k,t

∂θ

	

 c̄=c̄k,t|t−1

ȳ= ȳk,t|t−1

θ=θ k,t|t−1

(17)

and

Fk,t =

⎡

⎢
⎢
⎢
⎣

∂�(c̄,Xk,t , ȳ)

∂ c̄
∂�(c̄,X k,t , ȳ)

∂ ȳ
∂�(c̄,Xk,t , ȳ)

∂θ

∂�(c̄,Xk,t , ȳ)

∂ c̄
∂�(c̄,Xk,t , ȳ)

∂ ȳ
∂�(c̄,X k,t , ȳ)

∂θ

0 0 I

⎤

⎥
⎥
⎥
⎦

c̄=c̄k,t|t
ȳ= ȳk,t|t
θ=θ k,t|t

(18)

where Fk,t ∈ R
(2n+nθ)×(2n+nθ) and Hk,t ∈ R

(2n+nθ).
2) Online Training With the DEKF Algorithm: In this section,

we introduce our online training method based on the DEKF algo-
rithm for the network described by (11) and (12). In our network
of K nodes, we denote the number of neighbors for node k as ηk ,
i.e., also called as the degree of node k [12]. With this structure,
the time update equations in (13)–(16) still hold for each node k.
However, since we have information exchange between the neighbors,
the measurement update equations of each node k adopt the iterative
scheme [12] as the following.

For the node k at time t

φk,t ←−

c̄T
k,t |t−1 ȳT

k,t |t−1 θT
k,t |t−1

�T

�k,t ←− �k,t |t−1.

For each l ∈ Nk repeat:
R ←− HT

l,t �k,t Hl,t + Rl,t

φk,t ←− φk,t +�k,t H l,t R−1�
dl,t − wT

k,t |t−1 ȳk,t |t−1
�

�k,t ←− �k,t −�k,t H l,t R−1 HT
l,t �k,t .

Now, we update the state and covariance matrix estimate as

�k,t |t = �k,t

c̄T

k,t |t ȳT
k,t |t θT

k,t |t
�T =

�

l∈Nk

c(k, l)φl,t

where c(k, l) is the weight between nodes k and l and we compute
these weights using the Metropolis rule as follows:

c(k, l) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/ max(ηk, ηl) if l ∈ Nk/k

1−
�

l∈Nk/k

c(k, l) if k = l

0 if l /∈ Nk .

(19)

With these steps, we can update all the nodes in our network as
illustrated in Algorithm 1.

According to the procedure in Algorithm 1, the computational
complexity of our training method results in O(ηk(n8 + n4 p4))
computations at each node k due to matrix and vector multiplications
on lines 8 and 19 as shown in Table I.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 Training Based on the DEKF Algorithm
1: According to (17), compute Hk,t , ∀k ∈ {1, 2, . . . , K }
2: for k = 1 : K do
3: φk,t ←− [c̄T

k,t |t−1 ȳT
k,t |t−1 θT

k,t |t−1]T
4: �k,t ←− �k,t |t−1
5: for l ∈ Nk do
6: R←− HT

l,t �k,t H l,t + Rl,t

7: φk,t ←− φk,t +�k,t Hl,t R−1(dl,t − wT
k,t |t−1 ȳk,t |t−1)

8: �k,t ←− �k,t −�k,t Hl,t R−1 HT
l,t �k,t

9: end for
10: end for
11: for k = 1 : K do
12: Using (19), calculate c(k, l), ∀l ∈ Nk
13: [c̄T

k,t |t ȳT
k,t |t θT

k,t |t]T ←−
�

l∈Nk
c(k, l)φl,t

14: �k,t |t ←− �k,t
15: According to (18), compute Fk,t
16: c̄k,t+1|t ←− �(c̄k,t |t , Xk,t , ȳk,t |t)
17: ȳk,t+1|t ←− �(c̄k,t+1|t , Xk,t , ȳk,t |t)
18: θk,t+1|t ←− θk,t |t
19: �k,t+1|t ←− Fk,t �k,t |t FT

k,t + Qk,t
20: end for

TABLE I

COMPARISON OF THE COMPUTATIONAL COMPLEXITIES OF THE INTRO-
DUCED TRAINING ALGORITHMS FOR EACH NODE k . IN THIS TABLE,

WE ALSO CALCULATE THE COMPUTATIONAL COMPLEXITY OF
THE SGD-BASED ALGORITHM BY DERIVING EXACT GRADIENT

EQUATIONS; HOWEVER, WE OMIT THESE CALCULATIONS
DUE TO PAGE LIMIT

B. Online Training Using the DPF Algorithm

In this section, we first derive our training method based on the PF
algorithm when we do not allow communication between the nodes.
We then introduce our online training method based on the DPF
algorithm when the nodes share information with their neighbors.

The PF algorithm only requires the independence of the noise sam-
ples in (11) and (12). Thus, we modify our system in (11) and (12)
for node k as follows:

ak,t = ϕ(ak,t−1, Xk,t)+ γ k,t (20)

dk,t = wT
k,t ȳk,t + εk,t (21)

where γ k,t and εk,t are independent state and measurement noise
samples, respectively, ϕ(·, ·) is the nonlinear mapping in (11), and
ak,t � [c̄T

k,t ȳT
k,t θT

k,t]T .
1) Online Training with the PF Algorithm: For the system in (20)

and (21), our aim is to obtain E[ak,t |dk,1:t], i.e., the optimal estimate
for the hidden state in the MSE sense. To achieve this, we first obtain
posterior distribution of the states, i.e., p(ak,t |dk,1:t). Based on the
posterior density function, we then calculate the conditional mean
estimate. In order to obtain the posterior distribution, we apply the
PF algorithm [19].

In this algorithm, we have the samples and the corresponding
weights of p(ak,t |dk,1:t), i.e., denoted as {ai

k,t , ω
i
k,t }Ni=1. Based on

the samples, we obtain the posterior distribution as follows:

p(ak,t |dk,1:t) ≈
N�

i=1

ωi
k,t δ

�
ak,t − ai

k,t
�
. (22)

Sampling from the desired distribution p(ak,t |dk,1:t) is intractable
in general so that we obtain the samples from q(ak,t |dk,1:t), which
is called as an importance function [19]. To calculate the weights in
(22), we use the following formula:

wi
k,t ∝

p
�
ai

k,t |dk,1:t
�

q
�
ai

k,t |dk,1:t
� , where

N�

i=1

ωi
k,t = 1. (23)

We can factorize (23) such that we obtain the following recursive
formula [19]:

ωi
k,t ∝

p
�
dk,t |ai

k,t

�
p
�
ai

k,t |ai
k,t−1

�

q
�
ai

k,t |ai
k,t−1, dk,t

� ωi
k,t−1. (24)

In (24), we choose the importance function so that the variance
of the weights is minimized. By this, we obtain particles that
have nonnegligible weights and significantly contribute to (22) [19].
In this sense, since p(ai

k,t |ai
k,t−1) provides a small variance for the

weights [19], we choose it as our importance function. With this
choice, we alter (24) as follows:

ωi
k,t ∝ p

�
dk,t |ai

k,t
�
ωi

k,t−1. (25)

By (22) and (25), we obtain the state estimate as follows:

E[ak,t |dk,1:t] =
�

ak,t p(ak,t |dk,1:t)dak,t

≈
�

ak,t

N�

i=1

ωi
k,t δ

�
ak,t − ai

k,t
�
dak,t =

N�

i=1

ωi
k,t ai

k,t .

Although we choose the importance function to reduce the variance of
the weights, the variance inevitably increases over time [19]. Hence,
we apply the resampling algorithm introduced in [19] such that we
eliminate the particles with small weights and prevent the variance
from increasing.

2) Online Training With the DPF Algorithm: In this section,
we introduce our online training method based on the DPF algorithm
when the nodes share information with their neighbors. We employ
the Markov Chain Distributed Particle Filter (MCDPF) algorithm [17]
to train our distributed system. In the MCDPF algorithm, particles
move around the network according to the network topology. In every
step, each particle can randomly move to another node in the
neighborhood of its current node. While randomly moving, the weight
of each particle is updated using p(dk,t |ak,t) at node k; hence,
particles use the observations at different nodes.

Suppose we consider our network as a graph G = (V, E), where
the vertices V represent the nodes in our network and the edges
E represent the connections between the nodes. In addition to this,
we denote the number of visits to each node k in s steps by each parti-
cle i as Mi (k, s). Here, each particle moves to one of its neighboring
nodes with a certain probability, where the movement probabilities
of each node to the other nodes are represented by the adjacency
matrix, i.e., denoted as A. In this framework, at each visit to each

node k, each particle multiplies its weight with p(dk,t |ak,t)
2|E(G)|

sηk in
a run of s steps [17], where |E(G)| is the number of edges in G and
ηk is the degree of node k. From (25), we have the following update
for each particle i at node k after s steps:

wi
k,t = wi

k,t−1

K�

j=1

p
�
d j,t |ai

k,t
� 2|E(G)|

sη j
Mi (j,s)

. (26)

We then calculate the posterior distribution at node k as

p(ak,t |Ok,t) ≈
N�

i=1

wi
k,t δ

�
ak,t − ai

k,t
�

(27)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Algorithm 2 Training Based on the DPF Algorithm

1: Sample {ai
j,t }N(j)

i=1 from p(at |{ai
j,t−1}N(j)

i=1), ∀ j

2: Set {wi
j,t }N(j)

i=1 = 1, ∀ j
3: for s steps do
4: Move the particles according to A
5: for j = 1 : K do
6: {ai

j,t }N(j)
i=1 ←

�
l∈N j
{ai

l,t }i∈Il→ j

7: {wi
j,t }N(j)

i=1 ←
�

l∈N j
{wi

l,t }i∈Il→ j

8: {wi
j,t }N(j)

i=1 ← {wi
j,t }N(j)

i=1 p(d j,t |{ai
j,t }N(j)

i=1)
2|E(G)|

sη j

9: end for
10: end for
11: for j=1:K do
12: Resample {ai

j,t , w
i
j,t }N(j)

i=1
13: Compute the estimate for node j using (28)
14: end for

where Ok,t represents the observations seen by the particles at node
k until t , and wi

k,t is obtained from (26). After we obtain (27),
we calculate our estimate for ak,t as follows:

E[ak,t |Ok,t] =
�

ak,t p(ak,t |Ok,t)dak,t

≈
�

ak,t

N�

i=1

ωi
k,t δ

�
ak,t − ai

k,t
�
dak,t

=
N�

i=1

ωi
k,t ai

k,t . (28)

We can obtain the estimate for each node using the same procedure
as illustrated in Algorithm 2. In Algorithm 2, N(j) represents the
number of particles at node j and Ii→ j represents the indices of
the particles that move from node i to node j . Thus, we obtain
a distributed training algorithm that guarantees convergence to the
optimal centralized parameter estimation as illustrated in Theorem 1.

Theorem 1: For each node k, let ak,t be the bounded state vector
with a measurement density function that satisfies the following
inequality:

0 < p0 ≤ p(dk,t |ak,t) ≤ ||p||∞ <∞ (29)

where p0 is a constant and

||p||∞ = sup
dk,t

p(dk,t |ak,t).

Then, we have the following convergence results in the MSE sense:
N�

i=1

ωi
k,t ai

k,t → E[ak,t |{d j,1:t }Kj=1] as N →∞ and k →∞.

Proof of Theorem 1: Using (29), from [17], we obtain

E

⎡

⎢
⎣

⎛

⎝E

ε(at)|{d j,1:t }Kj=1

�−
N�

i=1

ωi
k,t ε

�
ai

k,t
�
⎞

⎠

2
⎤

⎥
⎦

≤ ||ε ||2∞
�

Ct
�

U(s, υ)+
�

ςt

N

�2
(30)

where ε is a bounded function, υ is the second largest eigenvalue
modulus of A, ςt and Ct are time-dependent constants, and U(s, υ)
is a function of s as described in [17] such that U(s, υ) goes to zero
as s goes to infinity. Since the state vector ak,t is bounded, we can
choose ε(ak,t) = ak,t . With this choice, evaluating (30) as N and s
go to infinity yields the results. This concludes our proof. �

According to the update procedure illustrated in Algorithm 2,
the computational complexity of our training method results in
O(N(k)(n2+np)) computations at each node k due to matrix vector
multiplications in (20) and (21) as shown in Table I.

IV. SIMULATIONS

We evaluate the performance of the introduced algorithms on
different benchmark real data sets. We first consider the prediction
performance on Hong Kong exchange rate data set [20]. We then
evaluate the regression performance on emotion-labeled sentence
data set [21]. For these experiments, to observe the effects of
communication among nodes, we also consider the EKF- and PF-
based algorithms without communication over a network of multiple
nodes, where each node trains LSTM based on only its observa-
tions. Throughout this section, we denote the EKF- and PF-based
algorithms without communication over a network of multiple nodes
as “EKF” and “PF,” respectively. Moreover, we denote the EKF-
and PF-based algorithms with communication over a network of
multiple nodes as “DEKF” and “DPF,” respectively. We also consider
the SGD-based algorithm without communication over a network of
multiple nodes as a benchmark algorithm and denote it by “SGD.”

We first consider the Hong Kong exchange rate data set [20].
For this data set, we have the amount of Hong Kong dollars that
can buy one United States dollar on certain days. Our aim is to
estimate future exchange rate by using the values in the previous
two days. In online applications, one can demand a small steady
state error or fast convergence rate based on the requirements of
application [22]. In this experiment, we evaluate the convergence
rates of the algorithms. For this purpose, we select the parameters
such that the algorithms converge to the same steady-state error level.
In this setup, we choose the parameters for each node k as follows.
Since Xk,t ∈ R

2 is our input, we set the output dimension as n = 2.
In addition to this, we consider a network of four nodes.

For the PF-based algorithms, we choose N(k) = 80 as
the number of particles. In addition, we select γ k,t and εk,t
as zero-mean Gaussian random variables with Cov[γ k,t] =
0.0004I and Var[εk,t] = 0.01, respectively. For the DPF-based
algorithm, we choose s = 3 and A = [0 (1/2) 0 (1/2);
(1/2) 0 (1/2) 0; 0 (1/2) 0 (1/2); (1/2) 0 (1/2) 0].

For the EKF-based algorithms, we select �k,0|0 = 0.0004I ,
Qk,t = 0.0004I , and Rk,t = 0.01. Moreover, according to (19),
the weights between nodes are calculated as 1/3.

For the SGD-based algorithm, we set the learning rate as μ = 0.1.
In Fig. 2(a), we illustrate the prediction performance of the

algorithms. Due to the highly nonlinear structure of our model,
the EKF and DEKF-based algorithms have slower convergence
compared with the other algorithms. Moreover, due to only exploiting
the first-order gradient information, the SGD-based algorithm has
also slower convergence compared with the PF-based algorithms.
Unlike the SGD- and EKF-based methods, the PF-based algorithms
perform parameter estimation through a high-performance gradient-
free density estimation technique; hence, they converge much faster
to the final MSE level, i.e., defined as (1/T)

�T
t=1(dt − d̂t)

2 for
a sequence of length T . Among the PF-based methods, due to
its distributed structure, the DPF-based algorithm has the fastest
convergence rate.

In order to demonstrate the effects of the number of particles N and
the number of Markov steps s, we perform another experiment using
the Hong Kong exchange rate data set. In this experiment, we use
the same setting with the previous case except Cov[γ k,t] = 0.0001I ,
�k,0|0 = 0.0001I , and Qk,t = 0.0001I . In Fig. 2(b), we observe
that as s and N increase, the DPF-based algorithm obtains a faster
convergence rate and a lower final MSE value. However, as s
and N increase, the marginal performance improvement becomes

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Error performances (a) over the Hong Kong exchange rate data set, (b) for different N and s combinations of the DPF-based algorithm, and (c) over
the sentence data set. In (b), we also provide computation times of the combinations (in seconds), i.e., denoted as T , where a computer with i5-6400 processor,
2.7-GHz CPU, and 16-GB RAM is used.

smaller with respect to the previous s and N values. Furthermore,
the computation time of the algorithm increases with increasing s
and N values. Thus, after a certain selection, a further increase
does not worth the additional computational load. Therefore, we use
N(k) = 80 and s = 3 in our previous simulation.

Other than the Hong Kong exchange rate data set, we consider the
emotion-labeled sentence data set [21]. In this data set, we have the
vector representation of each word in an emotion-labeled sentence.
In this experiment, we evaluate the steady-state error performance
of the algorithms. Thus, we choose the parameters such that the
convergence rate of the algorithms is similar. To provide this setup,
we select the parameters for each node k as follows. Since the number
of words varies from sentence to sentence in this case, we have
a variable length input regressor, i.e., defined as Xk,t ∈ R

2×mt ,
where mt represents the number of words in a sentence. For the
other parameters, we use the same setting with the Hong Kong
exchange rate data set except N(k) = 50, Cov[γ k,t] = (0.025)2 I ,
�k,0|0 = (0.025)2 I , Qk,t = (0.025)2 I , and μ = 0.055. In Fig. 2(c),
we illustrate the label prediction performance of the algorithms.
Again due to the highly nonlinear structure of our model, the EKF-
based algorithm has the highest steady-state error value. In addi-
tion, the SGD-based algorithm also has a high final MSE value
compared with the other algorithms. Furthermore, the DEKF-based
algorithm achieves a lower final MSE value than the PF-based method
thanks to its distributed structure. However, since the DPF-based
method utilizes a powerful gradient-free density estimation method
while effectively sharing information between the neighboring nodes,
it achieves a much smaller steady-state error value.

We also perform another experiment that includes a larger data
set, where we include two additional algorithms, namely the HF [14]
and QN [15] algorithms to illustrate their performances. For this
purpose, we use the temperature data set [23], and in this data set,
we have temperature data that was collected from 2006 to 2013 by
a weather station in Amherst, MA, USA. Our aim is to predict
tomorrow’s temperature value by examining the temperature of the
previous four days. Since we aim to compare the convergence rates of
the algorithms, we select the parameters such that all the algorithms
converge to the same steady-state error level. Here, we use the same
setting with the Hong Kong exchange rate data set except N(k) = 80,
Cov[γ k,t] = 0.0004I , �k,0|0 = 0.0004I , Qk,t = 0.0004I , and
μ = 0.001. Furthermore, we set the learning rate of the QN algorithm

Fig. 3. Sequential prediction performance of the algorithms for the
temperature data set.

as 0.0003, and for the other parameters of the HF and QN algorithms,
we follow [14], [15]. Here, we denote the HF and QN algorithms as
“HF” and “QN,” respectively. In Fig. 3, we demonstrate the tempera-
ture prediction performances of the algorithms. Since the SGD-based
algorithm only exploits the first-order gradient information, it has
the slowest convergence rate compared with the others. The QN
and HF algorithms perform similarly and achieve slightly slower
convergence rate compared with the EKF-based algorithm. The
PF-based algorithm achieves the fastest rate among the algorithms
that lack communication thanks to its powerful gradient-free density
estimation technique. However, overall the distributed algorithms
achieve much faster rates due to their communication capability,
among which the DPF-based algorithm converges to the final MSE
level in a much faster manner.

In addition to the temperature data set, we also perform experi-
ments on four different large data sets. For these data sets, we select
the parameters such that all the algorithms have similar convergence
rates. We first consider the CMU ARCTIC data set [24], where
an English male speaker reads 1132 different utterances and it
contains 4 × 105 samples. Our aim is to predict the next sample

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

TABLE II

TIME-ACCUMULATED ERRORS OF THE ALGORITHMS FOR THE SPEECH,
ELEVATORS, PUMADYN, AND BANK DATA SETS

based on the previous four samples. For this experiments, we use
the same setting with the temperature data set except N(k) = 50,
Cov[γ k,t] = 0.0001I , �k,0|0 = 0.0001I , Qk,t = 0.0001I , and
μ = 0.003. We then perform another experiment on the bank data
set [25], where we have feature vectors related to the queues in banks
and we aim to estimate the fraction of the people that leaves the bank
because of the full queues. This data set contains 8192 samples. For
this experiment, we use the same setting with the speech data set
except n = 32, N(k) = 150, Cov[γ k,t] = 0.0016I , Var[εk,t] = 0.25,
�k,0|0 = 0.0016I , Qk,t = 0.0016I , Rk,t = 0.25, and μ = 0.07.
As the third data set, we use the elevator data set [26], where we
have feature vectors related to an F16 aircraft and our aim is to
predict a certain variable that explains the aircraft’s actions. This
data set contains 16000 samples and we use the same setting with
the bank data set except n = 18, N(k) = 100, and μ = 0.7. Finally,
we perform an experiment on the pumadyn data set [26], where we
have feature vectors related to the action of a robotic arm and we aim
to predict its angular acceleration. Here, we have 8192 samples and
we use the same setting with the bank data set except N(k) = 170
and μ = 0.4. As shown in Table II, in all experiments, the DPF-based
algorithm achieves much smaller time-accumulated error thanks to its
distributed architecture and high-performance gradient-free density
estimation technique.

V. CONCLUSION

We studied online training of the LSTM architecture in a dis-
tributed network of nodes for regression and introduced online
distributed training algorithms for variable length data sequences.
We first proposed a generic LSTM-based model for variable length
data inputs. In order to train this model, we put the model
equations in a nonlinear state-space form. Based on this form,
we introduced DEKF-based and DPF-based online training algo-
rithms. In this way, we obtain effective training algorithms for our
LSTM-based model. Here, our DPF-based algorithm guarantees
convergence to the optimal centralized parameter estimation in the
MSE sense under certain conditions. We achieve this performance
with communication and computational complexity in the order of
the first-order methods [3]. Through simulations involving real life
and financial data, we illustrate significant performance improvements
with respect to the state-of-the-art methods [16], [18].

REFERENCES

[1] D. F. Specht, “A general regression neural network,” IEEE Trans. Neural
Netw., vol. 2, no. 6, pp. 568–576, Nov. 1991.

[2] Y. Meng, Y. Jin, and J. Yin, “Modeling activity-dependent plasticity
in BCM spiking neural networks with application to human behavior
recognition,” IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1952–1966,
Dec. 2011.

[3] A. C. Tsoi, “Gradient based learning methods,” in Adaptive Processing of
Sequences and Data Structures: International Summer School on Neural
Networks, C. Lee Giles and M. Gori, Eds. Berlin, Germany: Springer,
Sep. 1998, pp. 27–62. [Online]. Available: https://doi.org/10.1007/
BFb0053994, doi: 10.1007/BFb0053994.

[4] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[6] S. Vosoughi, P. Vijayaraghavan, and D. Roy, “Tweet2Vec: Learning
tweet embeddings using character-level CNN-LSTM encoder-decoder,”
in Proc. 39th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.
(SIGIR), Pisa, Italy, 2016, pp. 1041–1044. [Online]. Available: http://doi.
acm.org/10.1145/2911451.2914762, doi: 10.1145/2911451.2914762.

[7] D. Wilson and T. R. Martinez, “The general inefficiency of batch
training for gradient descent learning,” Neural Netw., vol. 16, no. 10,
pp. 1429–1451, 2003.

[8] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97–107, Jan. 2014.

[9] C. Yan et al., “A highly parallel framework for hevc coding unit par-
titioning tree decision on many-core processors,” IEEE Signal Process.
Lett., vol. 21, no. 5, pp. 573–576, May 2014.

[10] C. Yan et al., “Efficient parallel framework for hevc motion estimation
on many-core processors,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 24, no. 12, pp. 2077–2089, Dec. 2014.

[11] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM J. Optim., vol. 26, no. 3, pp. 1835–1854, 2016.

[12] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
Kalman filtering and smoothing,” IEEE Trans. Autom. Control, vol. 55,
no. 9, pp. 2069–2084, Sep. 2010.

[13] B. D. Anderson and J. B. Moore, Optimal Filtering. North Chelmsford,
MA, USA: Courier Corporation, 2012.

[14] R. Kiros. (May 2013). “Training neural networks with sto-
chastic Hessian-free optimization.” [Online]. Available: http://arxiv.
org/abs/1301.3641

[15] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic
quasi-Newton method for large-scale optimization,” SIAM J. Optim.,
vol. 26, no. 2, pp. 1008–1031, 2016. [Online]. Available: https://doi.org/
10.1137/140954362

[16] J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber, “Kalman
filters improve LSTM network performance in problems unsolvable by
traditional recurrent nets,” Neural Netw., vol. 16, no. 2, pp. 241–250,
2003.

[17] S. H. Lee and M. West, “Convergence of the Markov chain distributed
particle filter (MCDPF),” IEEE Trans. Signal Process., vol. 61, no. 4,
pp. 801–812, Feb. 2013.

[18] A. W. Smith and D. Zipser, “Learning sequential structure with the real-
time recurrent learning algorithm,” Int. J. Neural Syst., vol. 1, no. 02,
pp. 125–131, 1989.

[19] P. M. Djuric et al., “Particle filtering,” IEEE Signal Process. Mag.,
vol. 20, no. 5, pp. 19–38, Sep. 2003.

[20] E. W. Frees. Regression Modeling With Actuarial and Financial Applica-
tions. Accessed: May 25, 2017. [Online]. Available: http://instruction.
bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec
2010/data.html

[21] M. Lichman. (2013). “UCI machine learning repository.” School Inf.
Comput. Sci., Univ. California, Irvine, CA, USA. Tech. Rep. [Online].
Available: http://archive.ics.uci.edu/ml

[22] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ, USA:
Wiley, 2003.

[23] M. Liberatore. UMass Trace Repository. Accessed: May 25, 2017.
[Online]. Available: http://traces.cs.umass.edu/index.php/Sensors/Sensors

[24] J. Kominek and A. W. Black. CMU Arctic Database. Accessed:
May 25, 2017. [Online]. Available: http://www.festvox.org/cmuarctic/
index.html

[25] L. Torgo. Regression Data Sets. Accessed: May 25, 2017. [Online].
Available: http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

[26] J. Alcalá-Fdez et al., “KEEL data-mining software tool: Data set repos-
itory, integration of algorithms and experimental analysis framework,”
J. Multiple-Valued Logic Soft Comput., vol. 17, nos. 2–3, pp. 255–287,
2011.

http://dx.doi.org/10.1007/BFb0053994
http://dx.doi.org/10.1145/2911451.2914762
http://dx.doi.org/10.1145/2911451.2914762

