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Abstract—We introduce a truly online anomaly detection algo-
rithm that sequentially processes data to detect anomalies in time
series. In anomaly detection, while the anomalous data are arbi-
trary, the normal data have similarities and generally conforms
to a particular model. However, the particular model that gener-
ates the normal data is generally unknown (even nonstationary)
and needs to be learned sequentially. Therefore, a two stage ap-
proach is needed, where in the first stage, we construct a proba-
bility density function to model the normal data in the time series.
Then, in the second stage, we threshold the density estimation of
the newly observed data to detect anomalies. We approach this
problem from an information theoretic perspective and propose
minimax optimal schemes for both stages to create an optimal
anomaly detection algorithm in a strong deterministic sense. To
this end, for the first stage, we introduce a completely online den-
sity estimation algorithm that is minimax optimal with respect
to the log-loss and achieves Merhav’s lower bound for general
nonstationary exponential-family of distributions without any as-
sumptions on the observation sequence. For the second stage, we
propose a threshold selection scheme that is minimax optimal (with
logarithmic performance bounds) against the best threshold cho-
sen in hindsight with respect to the surrogate logistic loss. Apart
from the regret bounds, through synthetic and real life experi-
ments, we demonstrate substantial performance gains with respect
to the state-of-the-art density estimation based anomaly detection
algorithms in the literature.

Index Terms—Anomaly detection, time series, online learning,
density estimation, minimax optimal.

I. INTRODUCTION

A. Preliminaries

W E STUDY anomaly detection [1], which has attracted
significant attention in recent years due to its applica-

tions in network monitoring [2], cybersecurity [3], surveillance
[4] and sensor failure [5]. Particularly, we study the sequential
anomaly detection problem, where at each time t, we sequen-
tially observe a vector xt ∈ X such that X ⊂ Rm and our aim
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is to decide whether this new observation is anomalous or not,
based on the past observations {x1 ,x2 , . . . ,xt−1}.

In the anomaly detection problem, “the normal data” dis-
plays similarities and generally conforms to a particular model
even though the anomalous data may be arbitrary and may not
show any similarities. However, the particular model that gener-
ates “the normal data” is generally unknown (may even change
throughout time) and needs to be learned sequentially from the
incoming data. Therefore, a two stage approach is needed, where
in the first stage, a model of “the normal data” is constructed
and in the second stage a decision is made based on the model
and the observed data. A common approach is to find a typical
set containing the most likely instances in an unknown measure
of probability, where “the normal data” is commonly assumed
to be generated from an independent and identically distributed
(i.i.d.) random variable sequence belonging to this unknown
measure [1]. In the density level set estimation framework [6],
the theoretically optimal nominal set would consist of the sam-
ples whose probability under the unknown measure is greater
than some density level set parameter that represents the frac-
tion of outliers in the model [6]. Hence, in the first stage of our
algorithm we train a density estimator for “the normal data.”

However, in general, the observations xt are prone to distor-
tion (because of a less than ideal communication channel and
noise contamination) and may not be the outputs of a stochastic
process yet alone independent and identically distributed since
the environment possibly exhibits nonstationary behavior and
may even be chaotic or adversarial [7]. Therefore, to solve this
otherwise difficult modeling of the nominal data, we approach
the density estimation problem from a competitive algorithm
perspective [8]–[12] and design algorithms that perform as well
as the best density estimator chosen in hindsight (with possibly
changing statistics) for any observation sequence. We show that
our approach has strong performance guarantees in an individual
sequence manner [12]. Thus, our algorithm is able to perform
as well as the optimal nonstationary density in our competition
class even if there is no underlying stochastic process. Since
these algorithms work in an individual sequence manner, they
are robust against distorted and dependent observations gener-
ated in a dynamically evolving environment as opposed to the
explicit design and modeling of an evolving system [13], [14].

Even though there exist several nonparametric approaches to
model the distribution of the nominal data [15]–[17], parametric
models are usually more practical because of their faster learn-
ing behavior and high modeling powers [16]. The parametric
models can suffer if only the assumed model is incapable of
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continuously modeling the data [1] in a robust manner. There-
fore, we model the source that generates the nominal data as an
exponential-family distribution [18], [19], since the exponential-
family of distributions cover a wide range of parametric statis-
tical models [7] and accurately approximates many nonpara-
metric classes of probability densities [20]. By using online
convex programming [21] to estimate the natural parameter of
this exponential-family distribution, we can achieve logarithmic
regret bounds under log-loss, i.e., O(log T ) (minimax optimal)
[7], [22]. However, most real life applications such as in cyber-
security [3] or surveillance applications [4], the underlying data
stream is nearly always nonstationary [1], [23], i.e., has vary-
ing statistics over time [24]. Hence, we model the nonstationary
source model (i.e., the changing natural parameter) as piecewise
stationary models. We emphasize that there are no restrictions
on the number of regions or the length of these regions that
are needed for accurate modeling. By combining these station-
ary models in a switching experts setting [25]–[28], we achieve
the minimax optimal performance bound O(C log T ), when
the statistics of the source, i.e., the natural parameter, changes
C − 1 number of times, i.e., the nonstationary model consists of
C stationary models (C time segments with piecewise constant
parameters), which constitutes our main contribution.

After the minimax optimal modeling of the distribution of
the nominal data in the time series, we produce our anomaly
decision by thresholding the density estimation, which opti-
mally minimizes Type-1 errors in certain environments [15],
[29]. Such anomaly detection methods with two stages, i.e.,
scoring the time series samples and thresholding them, are ex-
tensively studied in the literature [1], [7], [30]. Even though the
detection of anomalous samples when their likelihood (proba-
bility or score) falls below a certain threshold is an efficient and
popular strategy, the selection of this threshold is a notoriously
challenging problem [7]. Therefore, we implement a dynamic
thresholding scheme, which updates the threshold whenever a
feedback about the observed sample is available (i.e., whether
it is anomalous or not). We update our threshold using Online
Newton Step [22] and achieve again logarithmic performance
bounds (minimax optimal surrogate regret) with respect to the
best threshold selected in hindsight.

Even though there exists various methods to detect anoma-
lies in a time series, we, for the first time in literature, pro-
pose a truly minimax optimal (both in density estimation and
threshold selection) online anomaly detection algorithm in non-
stationary settings. Through synthetic and real-life experiments,
we demonstrate significant performance gains with respect to
the state-of-the-art methods in the literature [7], [21], [29], [31].

B. Prior Art and Comparisons

Various anomaly detection methods have been proposed in
the literature that utilizes Support Vector Machines (SVM) [32],
[33], nearest neighbors approach [34], [35], clustering [36] and
density estimation [37], [38]. However, techniques based on
probability density estimation are demonstrated to provide su-
perior performance when “the normal data” conforms to a nom-
inal distribution and the unknown probability measure can be

estimated near perfect [39]. Moreover, even though there exist
several anomaly detection methods [1] proposed for supervised
[40], semi-supervised [41] and unsupervised [6] settings, none
of them has performance bounds in nonstationary or adversarial
settings [7].

For these reasons, we adopt the probability density based
approach in an individual sequence perspective [12] to pro-
vide strong deterministic bounds both in density estimation and
anomaly detection stages of our algorithm. In the literature, there
are various methods that can achieve sublinear performance
bounds when estimating the density in nonstationary environ-
ments. In [21], authors propose an approach that can achieve
a regret bound of O(

√
CT ) when the time horizon T and the

total change C is known a priori. Without the prior knowledge
of T , the algorithm in [21] can still achieve O(

√
CT ) regret if

it is run in accordance with the doubling trick [11]. One can
also modify the algorithm of [21] to achieve a regret bound of
O(

√
CmaxT ) if an upper bound on C is known instead such

that Cmax ≥ C. For the case of no prior knowledge about C, an
algorithm that achieves a regret bound of O(C

√
T ) is proposed

in [7]. Nonetheless, none of these methods achieve the mini-
max regret bound O(C log T ) [42]. In [27] and [28], the authors
propose methods to achieve this minimax optimal regret only
in binary sources and discrete sources respectively. Achieving
the minimax optimal regret O(C log T ) is not possible with the
state-of-the-art methods when the source belongs to a general
exponential-family. To this end, we introduce a truly online den-
sity estimation algorithm that can achieve the minimax optimal
regret bound O(C log T ) without any knowledge of C and T
beforehand. The computational complexity and storage demand
of our algorithm is linear in time.

In anomaly detection with thresholding some likelihood func-
tion (such as in the probability density based methods), the opti-
mal selection of the threshold is intrinsically difficult [7]. There-
fore, we adopt a dynamically selected thresholding scheme and
update our threshold in accordance with the feedback. Most
of the algorithms in literature do not provide guaranteed regret
bounds in this setting. In the literature [7], performance bounds
of only O(

√
T ) for surrogate regret are achieved with respect

to the best threshold selected in hindsight. However, such a re-
gret bound for the anomaly detection performance invalidates
our purpose of estimating the density function of the normal
data with minimax optimal, i.e., log-linear, (O(C log T )) regret.
Therefore, we propose a thresholding scheme that achieves log-
arithmic (minimax) regret bound, i.e., O(log T ), to provide a
truly minimax optimal anomaly detection algorithm.

C. Contributions

Our contributions are as follows:
1) For the first time in the literature, we propose a truly

minimax optimal anomaly detection algorithm for non-
stationary sources with logarithmic performance bounds
by optimizing both the density estimation and threshold
selection in an individual sequence manner.

2) Our algorithm can be used in unsupervised, semi-
supervised and supervised manner because of its
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individual sequence (i.e., universal prediction) perspec-
tive on its density estimation.

3) Our algorithm can assign distinct costs to making a predic-
tion error on normal and anomalous data since in general
their importance are not the same in various applications.

4) For the first time in literature, we propose a density
estimation algorithm that achieves the minimax opti-
mal regret O(C log T ) for general exponential-family of
sources. Our density estimation algorithm improves upon
the source coding literature and asymptotically achieves
Merhav’s lower bound [42] for any i.i.d. exponential-
family source with piecewise constant parameters.

5) Our proposed adaptive thresholding scheme achieves log-
linear regret against the best threshold chosen in hindsight
and improves greatly upon the

√
T regret scheme in the

literature [7].
6) Our algorithm is strongly sequential such that neither the

time horizon T nor the number of changes C of the source
statistics are known.

7) Through extensive set of experiments involving synthetic
and real datasets, we demonstrate significant performance
gains achieved by the proposed algorithm for both density
estimation and anomaly detection with respect to the state-
of-the-art methods.

D. Organization

First, we formally define our problem setting in Section II.
We introduce a minimax optimal density estimator that achieves
logarithmic regret bound for stationary memoryless sources
in Section III. In Section IV, we eliminate the requirement
of any a priori knowledge of the statistics of the source. In
Section V, we introduce a minimax optimal density estimator for
nonstationary sources. In Section VI, we propose a completely
online anomaly detection algorithm that adaptively thresholds
the density estimation. In Section VII, we illustrate significant
performance gains over both real and synthetic data, and finish
with concluding remarks in Section VIII.

II. PROBLEM DESCRIPTION

We introduce an online algorithm for anomaly detection in
time series that sequentially observes {xt}t≥1 , xt ∈ Rm , at
each time t, and estimates the probability of the unseen data
based on our previous observations. Based on this probability
estimate, we decide whether the newly observed data is
anomalous or not by comparing the estimated probability with
a threshold [1], [15].

We assume that the normal samples of the time series are gen-
erated by or can be closely modeled with a nonstationary source
with piecewise constant parameters. We can represent such a
density function as ft(·) whose source parameters are given by
the vector αt . Since the source at hand has piecewise constant
parameters, the source parameters αt remains unchanged for
some segment of time indices, i.e., αt = αt+1 , if both t and
t + 1 are in the same time segment where the source statis-
tics do not change. We represent the number of changes of the
source statistics in a T length observation sequence by C which

is given by

C � 1 +
T∑

t=2

1αt �=αt−1 , (1)

where the beginning is also counted as a change and 1x is
the indicator function that outputs 1 if the statement x is true
and 0 otherwise. As an example, for stationary sources, i.e.,
distributions with unchanging natural parameter, the number of
changes C is 1.

In our two stage algorithm, we first introduce a pdf estima-
tion algorithm, which estimates the density of the nonstationary
source that generates or closely models the normal data in the
time series. In the online setting, we observe a sample vector
xt at each time t with the unknown density function ft(·). We
estimate this unknown density ft(xt) based on our past observa-
tions {xr}t−1

r=1 and produce an estimate f̂t(xt). We approach this
problem of estimating the density of the nonstationary source
from a competitive algorithm perspective where the competing
strategy is naturally given by the true density function (if such
a distribution exists) or the density function that best represents
the data. To this end, as the performance measure (i.e., the loss
function in our competitive framework), we use the log-loss of
the density functions, i.e., l(f̂t(xt)) = − log(f̂t(xt)), since it is
the most widely used loss function for probability distributions
[43]. We use the notion of “regret” on the log-losses to define
our performance in an individual sequence manner [11], such
that the regret at time t is

rt = − log(f̂t(xt)) + log(ft(xt)), (2)

and the cumulative regret up to time T is

RT =
T∑

t=1

(
− log(f̂t(xt)) + log(ft(xt))

)
. (3)

Our goal is to achieve low regret bounds for any arbitrary
observation sequence. We do not analyze the regret with its sta-
tistical properties (e.g., the expected regret, its variance or high
probability bounds) whether or not the observation sequence is
stochastic in nature. Instead, we will derive regret bounds for
any individual observation sequence in a universal prediction
perspective [12]. Our algorithms are deterministic and our ac-
cumulated regret will not change given the same observation
sequence (hence, there is no randomness involved for any arbi-
trary observation).

We want to achieve the performance of the best distri-
bution with piecewise constant parameters where each seg-
ment is modeled by an exponential-family distribution, since
the exponential-family of distributions cover a wide range of
parametric statistical models [7] and accurately approximates
many nonparametric classes of probability densities [20]. For
exponential-family of sources, the source statistics αt is called
the natural parameter of the density function. Hence, the density
function ft(·) is given by an exponential-family of distribution
with possible changing natural parameter αt .

After modeling the normal data in the time series by creating
a minimax optimal density estimation f̂t(xt), we produce our
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anomaly decision by thresholding f̂t(xt), which optimally min-
imizes Type-1 errors in certain environments [15], [29]. Hence,
the binary anomaly decision d̂t is constructed as

d̂t =

{
+1, f̂t(xt) < τt (anomalous)

−1, f̂t(xt) ≥ τt (not anomalous)
, (4)

where τt is a time varying threshold. Our true 0 − 1 loss function
in this setting is defined as

lA (f̂t(xt), τ, dt) = 1sign(τ−f̂t (xt )) �=dt
, (5)

where τ is the threshold variable.
However, the loss in (5) is difficult to analyze since the loss

function is not convex in τ . To deal with this difficulty, we do a
convex relaxation. We use the standard practice of replacing the
comparator function with a convex surrogate function (common
examples are the square loss, hinge loss, cross entropy and
logistic loss) [44]. We use the logistic loss function,

l(τt , f̂t(xt), dt) = log(1 + exp(−(τt − f̂t(xt))dt)),

which is also exp-concave. We compete against the best thresh-
old chosen in hindsight τ ∗. Thus, the excess cost (regret) in-
curred up to time T by our anomaly detector with respect to the
best threshold chosen in hindsight is defined as

RA,T =
T∑

t=1

l(τt , f̂t(xt), dt) −
T∑

t=1

l(τ ∗, f̂t(xt), dt). (6)

Performance analysis for these surrogate loss functions are
meaningful because they completely upper bound the origi-
nal 0 − 1 loss function, hence, a performance guarantee for the
surrogate regret is likely to hold for the original regret as well.

Our aim is to achieve minimax optimal regret bounds for
both (3) and (6). To this end, in Section III, we introduce a min-
imax optimal density estimator that achieves logarithmic regret
bound for stationary memoryless sources. In Section IV, we use
these density estimators as our building blocks to eliminate the
requirement of any a priori knowledge of the statistics of the
source. In Section V, we introduce a minimax optimal density
estimator for nonstationary sources and achieve the minimax
optimal regret bound O(C log T ) for (3). In Section VI, we
propose a completely online anomaly detection algorithm that
adaptively thresholds the density estimation, which achieves
the minimax optimal regret bound for (6), i.e., O(log T ) regret
against the best fixed threshold selected in hindsight.

III. STATIONARY DENSITY ESTIMATOR

In this section, we first construct a density estimator that
achieves minimax regret bound for stationary sources (unchang-
ing statistics, hence, natural parameter). Here, at each time t,
we observe xt ∈ Rm distributed or closely modeled according
to a memoryless exponential-family distribution

f(xt) = exp (−〈α,zt〉 − A(α)) , (7)

where α ∈ Rd is the unknown natural parameter of the
exponential-family distribution that minimizes the cumulative

log-loss (i.e., the best offline estimation) and belongs to a con-
vex feasible set S, A(·) is a known function of the parameter α
(normalization factor or log-partition function), 〈·, ·〉 is the inner
product and zt is the d-dimensional known sufficient statistic
of xt [18], i.e.,

zt = T (xt). (8)

Remark 1: In general, a distribution belonging to an expo-
nential family has the form f(x) = exp(−〈α, T (x)〉 − A(α) −
B(x)), where B(x) is only a function of the observation x. How-
ever, this function can simply be included inside of T (x) whose
corresponding parameter in the inner product will simply be 1
in the true probability density.

Instead of directly estimating the density function f(·), we
cast the problem as a convex optimization problem and esti-
mate the natural parameter α according to our past observations
{xr}t−1

r=1 (α completely describes f(·) and estimating α instead
of f(·) still provides logarithmic performance bounds). Hence,
our density estimation is

f̂t(xt) = exp(−〈α̂t ,zt〉 − A(α̂t)). (9)

We use Online Gradient Descent (OGD) [22] to sequentially
produce our estimate α̂t , where we first start from an initial
estimate α̂1 , and update our recent estimation α̂t based on our
new observation xt . To update α̂t , we first observe a sample
xt and incur the loss l(α̂t ,xt) according to our estimation α̂t ,
which is the log-loss, i.e., − log(f̂t(xt)). From (9), we receive
the loss

l(α̂t ,xt) = 〈α̂t ,zt〉 + A(α̂t). (10)

Then, we calculate the gradient of the loss with respect to α̂t ,

∇α̂t
l(α̂t ,xt) = zt + ∇α̂t

A(α̂t),

= zt − μα̂t
, (11)

where μα̂t
is the mean of zt if xt were distributed according to

f̂t(·). We update the parameter α̂t such that

α̂t+1 = PS (α̂t − ηt(zt − μα̂t
)), (12)

where ηt is the learning rate and PS (·) is the projection onto the
convex feasible set S and is defined as

PS (x) = arg min
y ∈S

‖x − y‖. (13)

The complete algorithm is provided in Algorithm 1 where
the learning rates are given by ηt = (Ht)−1 where H > 0 is
an input to the algorithm. The optimal value for H and the
instructions on its selection are given in Theorem 1. Next, we
provide performance bounds of Algorithm 1. Theorem 1 shows
that using Algorithm 1 with a suitable parameter H , we can
achieve minimax regret O(log T ).

Theorem 1: When Algorithm 1 is used with parameter H to
estimate the distribution ft(xt), its regret is upper bounded by

RT ≤ D

2H
(log T + 1), (14)

if H is such that Σα̂t
 HId×d for all t, where Σα̂t

is the
covariance of zt when xt is distributed with natural parameter
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Algorithm 1: Stationary Density Estimator.
1: Set H
2: Initialize learning rates ηt = (Ht)−1 for t ∈ {1, 2, . . .}
3: Select initial parameter α̂1
4: Calculate the mean μα̂1

5: for t = 1, 2, . . . do
6: Declare estimation α̂t

7: Observe xt

8: Calculate zt = T (xt)
9: Update parameter: α̃t+1 = α̂t − ηt(zt − μα̂t

)
10: Project onto convex set: α̂t+1 = PS (α̃t+1)
11: Calculate the mean μα̂t + 1

12: end for

α̂t , Id×d is the d-by-d identity matrix and D is defined as

D �
∑T

t=1 t−1‖zt − μα̂t
‖2

∑T
t=1 t−1

.

The result of Theorem 1 shows that the regret is recipro-
cally dependent on our input parameter H . Therefore, choos-
ing H lower than necessary may result in a high regret. In
Section IV, we mitigate this problem by adopting a mixture of
experts approach [45], [46].

Proof of Theorem 1: The proof of the theorem is given in
Appendix A. �

Remark 2: Suppose instead of xt , we observe a distorted ver-
sion such that yt = Q(xt), where Q(·) is the distortion channel,
e.g., an additive noise channel. Then, using an unbiased estima-
tor z̄t = T̄ (yt) such that IE[z̄t ] = T (xt) produces the same
results in Theorem 1 for expected regret [7].

Remark 3: Instead of OGD, any other gradient based ap-
proach such as Momentum [47], Nesterov’s Accelerated Gradi-
ent [48], Adam [49], Adagrad [50], Adadelta [51] can also be
used. Similar derivations will also hold for them as well.

IV. UNIVERSAL DENSITY ESTIMATOR

The Algorithm in Section III needs an input H which needs
a priori knowledge we do not have on the underlying process to
be set appropriately. Therefore, in this section, we propose an
algorithm to estimate the density of a stationary source when
we do not know H a priori.

Suppose, we run N separate Algorithm 1 and label each of
the resulting estimators as f̂ r

t (x), r ∈ {1, 2, . . . , N}. We mix
all of the estimators in a weighted manner such that our density
estimation is given by

f̂ u
t (x) =

N∑

r=1

wr
t f̂

r
t (x), (15)

where wr
t is the mixture weight of the algorithm labeled r at

time t. These weights are normalized versions of the algorithms’
performance weights ŵr

t such that

wr
t =

ŵr
t∑N

r ′=1 ŵr ′
t

. (16)

The performance weights of the algorithms are given by

ŵr
t =

t−1∏

τ =1

f̂ r
τ (xτ ), (17)

for t > 1 and ŵr
1 = 1 at the start for r ∈ {1, 2, . . . , N}. We point

out that the mixture weights wr
t can be recursively updated as

wr
t+1 = wr

t f̂
r
t /f̂u

t , (18)

from (15), (16), (17), where wr
1 = 1/N . We next provide the

performance bound of this mixture approach.
Theorem 2: When we combine a total of N estimators with

the weighting scheme in (15) and (18), the regret incurred by
our universal density estimator (f̂ u

t (·)), RT ,U , is upper bounded
by

RT ,U ≤ log N + min
r∈{1,...,N }

RT ,r ,

where RT ,r is the regret incurred by the estimator labeled r.
Theorem 2 implies that even by mixing exponential number

of estimators we can still achieve sublinear regret since the
additional regret of mixing is only logarithmically dependent
on the number of density estimators mixed together.

Proof of Theorem 2: The proof of the theorem is given in
Appendix B. �

Corollary 1: Suppose we do not know H exactly but know
Hmin and Hmax such that Hmin ≤ H ≤ Hmax . For each of
the estimators mixed, i.e., f̂ r

t (·), we set the input parameter
as Hr = Hmin · 2r−1 for r = {1, 2, . . . , �log2

Hm a x
Hm in

� + 1}. We
incur RT ,U such that,

RT ,U ≤ log
(⌊

log2
Hmax

Hmin

⌋
+ 1
)

+
D

H
(log T + 1).

Proof of Corollary 1: The proof of the corollary is given in
Appendix C. �

The complete algorithm is given in Algorithm 2.
Remark 4: The result in Theorem 2 is general such that it is

true for any density estimation used in the mixture. Therefore,
we can incorporate various different density estimators (para-
metric or nonparametric, e.g., ML [29] and KDE [31]) as experts
in Algorithm 2 to achieve the optimum performance in the mix-
ture. For example, the construction of zt requires the knowledge
of sufficient statistics mapping T (·) beforehand. Since the suf-
ficient statistics of different kinds of distributions belonging to
the exponential family may differ, knowing the mapping T (·)
means knowing the exact kind of distribution to a certain degree,
e.g., whether the distribution is normal, exponential, gamma etc.
Therefore, we can add to the mixture in Algorithm 2 different
Algorithm 1’s with different sufficient statistics mappings T ′(·).
We point out that if the total number of possible candidates for
T (·) is M , our regret only increases by log M .

V. NONSTATIONARY DENSITY ESTIMATOR

In Section IV, we have introduced an algorithm that achieves
the minimax optimal regret when estimating a stationary
exponential-family source without any a priori knowledge. In
this section, we extend that result to nonstationary sources, i.e.,
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Algorithm 2: Universal Density Estimator.
1: INPUTS:
2: Set Hmin and Hmax
3: Set N = �log Hm a x

Hm in
� + 1

4: Start N density estimators f̂ r
t (·) each running

Algorithm 1
with parameter Hr = Hmin · 2r−1 for r = {1, 2, . . . , N}

5: Initialize weights wr
1 = 1/N , ∀r

6: ALGORITHM:
7: for t = 1 to T do
8: OUTPUT:
9: Declare estimation f̂ u

t (x) =
∑N

r=1 wr
t f̂

r
t (x)

10: UPDATE:
11: Observe xt

12: Calculate zt = T (xt)
13: for r = 1 to N do
14: Update density estimations f̂ r

t ()· according to
“Stationary Density Estimator”

15: wr
t+1 = wr

t f̂
r
t (xt)/f̂u

t (xt)
16: end for
17: end for

dynamic natural parameter αt . To achieve the minimax regret
in nonstationary sources, we can run Algorithm 2 on our obser-
vations and reset it at each instance the source statistics change.
While this approach achieves the minimax optimal regret, it
requires the knowledge of exact time instances the source statis-
tics change. Since we do not know these time instances, we
create a new Algorithm 2 at each time t and mix them instead
of resetting the algorithm. We point out that these newly created
Algorithm 2’s train their estimators with only the observations
after the time they were created. Hence, at each time τ , we create
a new Algorithm 2 and label the estimation of this algorithm at
time t (τ ≤ t) as ĝτ

t (·). We point out that ĝτ
t (·) only uses the ob-

servations {xτ ,xτ +1 ,xτ +2 , . . . ,xt−1} to construct its density
estimation at time t. Since ĝτ

t (·) is the output of Algorithm 2, it
has already gone through a mixture. We adopt a double mixture
approach and combine these ĝτ

t (·) again with carefully selected
weights as

ĝu
t (x) =

t∑

τ =1

vτ
t ĝτ

t (x), (19)

where vτ
t is the combination weight of the estimator started at

τ at time t. These combination weights are normalized versions
of the algorithms’ performance weights v̂τ

t such that

vτ
t =

v̂τ
t∑t

τ =1 v̂τ
t

, (20)

for 1 ≤ τ ≤ t. The performance weights are recursively calcu-
lated as

v̂τ
t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t − τ

t − τ + 1
v̂τ

t−1 ĝτ
t−1(xt−1), τ < t

t−1∑

τ =1

1
t − τ + 1

v̂τ
t−1 ĝτ

t−1(xt−1), τ = t

, (21)

Algorithm 3: Nonstationary Density Estimator.

1: Initialize v̂1
1 = 1

2: Set Hmin ,Hmax
3: Initialize estimator ĝ1

1 (·) using Algorithm 2
with inputs {Hmin ,Hmax}.

4: for t = 1 to T do
5: Declare estimation ĝu

t (x) =
∑t

τ =1 vτ
t ĝτ

t (x)
6: Observe xt

7: for τ = 1 to t do
8: Update v̂τ

t+1 =
t + 1 − τ

t − τ + 2
· v̂τ

t · ĝτ
t (xt)

9: Update ĝτ
t+1(·) according to Algorithm 2

10: end for

11: Create v̂t+1
t+1 =

t∑

τ =1

1
t − τ + 2

· v̂τ
t · ĝτ

t (xt)

12: Start estimator ĝt+1
t+1 (·) according to Algorithm 2

13: for τ = 1 to t + 1 do
14: vτ

t = v̂τ
t /
(∑t

τ =1 v̂τ
t

)

15: end for
16: end for

where v̂1
1 = 1 at the start. The complete description of the algo-

rithm is given in Algorithm 3. Next, we provide the performance
bound of Algorithm 3.

Theorem 3: Algorithm 3 has the following regret bound,
RT ,N S ,

RT ,N S ≤
C∑

i=1

log ti +
C−1∑

i=1

log(ti + 1) +
C∑

i=1

Ri,U , (22)

where C is the total number of change in the source statistics
as in (1) and the lengths of the piecewise stationary segments
are ti for i ∈ {1, 2, . . . , C} (

∑C
i=1 ti = T ). Initializing t0 = 0,

Ri,U is the regret incurred by the estimator ĝ
∑ i−1

j = 1 tj +1
t in time

interval t ∈ [
∑i−1

j=1 tj + 1,
∑i

j=1 tj ].
The result of Theorem 3 shows that the additional regret we

incur from not knowing the time instances when the source
statistics change is linearly dependent on the number of such
changes.

Proof of Theorem 3: Combining (19) and (20), we have,

ĝu
t (x) =

∑t
τ =1 v̂τ

t ĝτ
t (x)

v̂t
t +

∑t−1
τ =1 v̂τ

t

=
∑t

τ =1 v̂τ
t ĝτ

t (x)
∑t−1

τ =1 v̂τ
t−1 ĝ

τ
t−1(xt−1)

,

for t > 1 and ĝu
t=1(x) = ĝ1

1 (x). Thus, we receive the following
accumulated log-loss, LN S ,

LN S =
T∑

t=1

− log ĝu
t (xt),

= − log ĝ1
1 (x1) −

T∑

t=2

log
( ∑t

τ =1 v̂τ
t ĝτ

t (xt)∑t−1
τ =1 v̂τ

t−1 ĝ
τ
t−1(xt−1)

)
,

= − log
T∑

τ =1

v̂τ
T ĝτ

T (xT ).
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We see that this expression can be written as the log-loss of a
weighted sum of losses incurred from various strategies belong-
ing to a set ST after we recursively substitute v̂τ

T using (21)
and consider the distributive property of multiplication over ad-
dition. A strategy s in ST , uses ĝτ

t−1(·) at time t − 1 and it
is only allowed to continue along its last estimator to ĝτ

t (·) or
switch to ĝt

t (·) at time t. Let st denote the superscript (τ ) of
whichever estimator is utilized by s at time t. Consequently, our
loss becomes,

LN S = − log
∑

s ∈ST

(
Q(s)

T∏

t=1

ĝst
t (xt)

)
,

≤ − log Q(s)
T∏

t=1

ĝst
t (xt), (23)

for all s ∈ ST , where Q(s) denotes the prior weight determined
by how long each of the different estimators ĝτ

t (·)’s are used
by s.

In (21), the prior components t−τ
t−τ +1 and 1

t−τ +1 in the calcu-
lation of v̂τ

t result in the following Q(s) for an s which utilizes
a total of Cs estimators

Q(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
T

, Cs = 1

Cs∏

i=1

1
ti

Cs −1∏

i=1

1
ti + 1

, Cs > 1
,

where ti’s are the durations in which fixed ĝτ
t (·)’s are used, i.e.,

the same estimator that started at τ . To upper-bound LN S , we
use s∗ ∈ ST in (23), which changes its estimator at the exact
time instances where the true density changes (for a total of
C − 1 times). Hence,

LN S ≤ − log Q(s∗)
T∏

t=1

ĝ
s∗

t
t (xt),

≤ − log
( C∏

t=1

1
ti

C−1∏

i=1

1
ti + 1

T∏

i=1

ĝsi

T (xt)
)

,

≤
C∑

i=1

log ti +
C−1∑

i=1

log(ti + 1) +
T∑

t=1

− log ĝst
t (xt).

After subtracting the log-loss incurred by the best density from
both sides, we end up with the bound given in (22). �

Corollary 2: Combining Theorem 2 and Theorem 3, we can
achieve the following regret bound where

∑C
i=1 ti = T .

RT ,N S ≤
C∑

i=1

log ti +
C−1∑

i=1

log(ti + 1)

+ C log N +
C∑

i=1

Di

Hi
(log(ti) + 1).

If there exists a D ≥ Di and H ≤ Hi for all i ∈ {1, 2, . . . C},
the bound can be written in a more compact form as

RT ,N S ≤ C

((
2 +

D

H

)
log
(

T

C

)
+ 1 +

D

H
+ log N

)
.

(24)

Therefore, our density estimation algorithm achieves Merhav’s
lower bound O(C log T ) [42] hence achieving the minimax
optimal regret.

Remark 5: In [42], the authors show the achievability of log-
arithmic regret bounds using the Minimum Description Length
(MDL) principle. They show that the total number of bits needed
for universal coding of a source with piecewise constant param-
eters is at least (1.5C − 1) log T . Hence, our algorithm has a
multiplicative redundancy factor of D/H , where D increases
with the set of sufficient statistics and H increases with stronger
convexity. Note that the lower bounds in [42] are proven for a
finite size alphabet and their extension to the continuous dis-
tributions are not straightforward. However, similar logarithmic
redundancy bounds should hold for different continuous distri-
butions albeit with different constants. Our multiplicative redun-
dancy D/H increases with the hardness of the problem, so it is
reasonable to assume that a similar constant exists for the lower
bound as well, which is different for different distributions and
different estimation problems. Nonetheless, logarithmic perfor-
mance bounds are always welcomed in both machine learning,
signal processing and information theory literature since loga-
rithmic bounds decay exponentially fast.

VI. ANOMALY DETECTION

To decide whether the data xt is anomalous or not, we thresh-
old the output of the nonstationary density estimation ĝu

t (xt) of
Algorithm 3 with τt such that

d̂t =
{

+1, ĝu
t (xt) < τt (anomaly)

−1, ĝu
t (xt) ≥ τt (normal)

. (25)

This thresholding is equivalent to thresholding a general mono-
tonically increasing function of ĝu

t . Hence, in a more general
form, we have

d̂t =
{

+1, p̂t(xt) < τt (anomaly)

−1, p̂t(xt) ≥ τt (normal)
, (26)

where p̂t = Φ(ĝu
t ) and Φ(·) is a monotonically increasing func-

tion. Our error with 0 − 1 loss is given by 1d̂t �=dt
. However,

we emphasize that, in general, the cost of making a prediction
error on normal and anomalous data may not be the same. To
this end, our algorithm can assign different costs to these dis-
tinct errors. Let Jdt

be the cost of misclassification of the data
with label dt (dt ∈ {−1, 1}). Then, we can rewrite the error as
Jdt

1d̂t �=dt
. However, the 0 − 1 loss definition is not convex in

τt , which makes optimization difficult. Therefore, we substi-
tute this 0 − 1 loss with the widely used logistic loss function
log(1 + exp(−(τt − p̂t)dt)), which completely upper bounds
the 0 − 1 loss 1d̂t �=dt

. Hence, the loss function is given by

l(τt , p̂t , dt) = Jdt
log(1 + exp(−(τt − p̂t)dt)).
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Algorithm 4: Anomaly Detector.

1: Determine error weights Jdt
for dt ∈ {−1,+1}

2: Select scoring mapping Φ(·)
3: Select feasible set V
4: Initialize α
5: Initialize τ1
6: for t = 1 to T do
7: Observe xt

8: Get density estimation ĝu
t (xt) according to

Algorithm 3
9: Produce score p̂t = Φ(ĝu

t (xt)).
10: Declare prediction d̂t = sign(τt − p̂t).
11: Set l′ = −Jdt

dt(1 + exp(τt − p̂t)dt)−11d̂t �=dt

12: Bt = Bt−1 + (l′)2

13: Kt = Kt−1 + ((l′)2τt − l′/α)
14: τt+1 = arg minv ∈V (v − Kt/Bt)

2

15: end for

We compete against a best fixed threshold, thus, regret in a time
horizon T is defined as

RA,T =
T∑

t=1

l(τt , p̂t , dt) − min
τ ∈V

T∑

t=1

l(τ, p̂t , dt), (27)

where V is the feasible set of the threshold. Let the time indices
where we make a prediction error be defined by the set Te . Then,
the actual regret that approximates the 0 − 1 loss regret is given
by

RA,T =
∑

t ∈Te

l(τt , p̂t , dt) − min
τ ∈V

∑

t ∈Te

l(τ, p̂t , dt). (28)

We use Online Newton Step [22] to update our threshold τt to
minimize the regret in (28). Since the game is now defined only
for the time instances we make a prediction error, the threshold
is updated only in those time instances. Therefore, the gradient
of our loss is given by

l′(τt , p̂t , dt) =
−Jdt

dt

1 + exp(−(τt − p̂t)dt)
1d̂t �=dt

. (29)

We define variables Bt−1 and Kt−1 as follows

Bt−1 =
t−1∑

r=1

(l′(τr , p̂t , dt))2 ,

Kt−1 =
t−1∑

r=1

((l′(τr , p̂t , dt))2τr −
1
α

l′(τr , p̂t , dt)),

for input parameter α. Let p̂t be in a feasible subset V of R.
Hence, τt belongs to the feasible set V , thus, the prediction τt

is given by

τt = arg min
v ∈V

(
v − Kt−1

Bt−1

)2

. (30)

The complete algorithm is given in Algorithm 4. Next, we pro-
vide regret bounds on the anomaly detector.

Theorem 4: Using Algorithm 4 with parameter

α =
1
2

min
(

exp(−A),
1 + exp(−A)

4AJ

)
,

we achieve the following anomaly detection regret bound for
(27)

RA,T ≤ 3
(

exp(A) +
4AJ

1 + exp(−A)

)
log T, (31)

where A is the diameter of the feasible set V such that A �
supx,y∈V ‖x − y‖, Jmax � max(J−1 , J+1) and Jmin � min
(J−1 , J+1).

Proof: The loss function is given by

l(τt , p̂t , dt) = Jdt
log (1 + exp(−(τt − p̂t)dt)). (32)

We take the first derivative of the loss function as

l′(τt , p̂t , dt) =
−Jdt

dt

1 + exp((τt − p̂t)dt)
, (33)

and second derivative as

l′′(τt , p̂t , dt) =
Jdt

exp((τt − p̂t)dt)
(1 + exp((τt − p̂t)dt))2 , (34)

since d2
t = 1 for dt ∈ {−1,+1}. The loss function is λ-exp-

concave for λ = Jmin exp(−A) since p̂t and τt are in the feasi-
ble set V and

(l′(τt , p̂t , dt))2

l′′(τt , p̂t , dt)
= Jdt

exp(−(τt − p̂t)dt),

≥ Jmin exp(−A).

The gradient of the loss function is upper bounded as

‖l′(τt , p̂t , dt)‖ ≤ Y =
Jmax

(1 + exp(−A))
. (35)

Using Online Newton Step [22] with α = 0.5min(λ,
(4AY )−1), we achieve a regret bound of 3(λ−1 + 4AY ) log T .
Therefore

RA,T ≤ 3
(

exp(A)
Jmin

+
4AJmax

1 + exp(−A)

)
log T. (36)

�
The result of Theorem 4 shows that our misclassification

regret is logarithmically dependent on the time horizon T . How-
ever, its dependence on the diameter of the feasible set is expo-
nential. To circumvent this problem, we can use suitable trans-
formations such as p̂t(xt) = log(1 + ĝu

t (xt)). However, atten-
uating the density estimation output too much may decrease
robustness.

Corollary 3: Running Algorithm 4 with transformation
Φ(x) = log(1 + x) results in the following regret if density
estimation is upper-bounded by P ≥ ĝu

t (xt)

RA,T ≤ 3
(

(1 + P )
(

1 +
4 log(1 + P )J

2 + P

))
log T. (37)

Proof of Corollary 3: Putting A = log(1 + P ) directly in
Theorem 4 concludes the proof. �
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Remark 6: In a semi-supervised setting, the threshold can be
updated at times when a feedback is received. In this setting, the
same performance bounds will hold if we define the regret for
only the times feedback is received, i.e., we let the set Te be the
time indices when we receive a feedback and make a prediction
error.

Remark 7: In unsupervised setting, we can use a fixed step
threshold update instead of the Newton Step approach. Suppose,
we want to achieve a false alarm rate of α. If we increment the
threshold by δ, when we observe a sample with density estimate
above the threshold and decrement it by δ(1 − α)/α when the
observed sample has a density estimate below the threshold, we
can converge to the optimal threshold with false alarm rate of α
for sufficiently small δ and sufficiently large number of observa-
tions since our density estimation has logarithmic performance
guarantees.

VII. EXPERIMENTS

In this section, we demonstrate the performance of our al-
gorithm both on synthetic and real data. We use two synthetic
datasets and three real datasets to show how our algorithm per-
forms individually and in comparison to the state-of-the art
algorithms.

In the first experiments, we are detecting outliers in a synthe-
sized dataset which is generated by a nonstationary Gaussian
process. This experiment compares the performances of the al-
gorithms when the anomalies consists of outliers. The second
experiment on the other hand is adversarial since the anoma-
lies consist of the recently modeled normal data (because of the
leakage). The third experiment shows the performance of our
algorithm in comparison to the state-of-the-art in a piecewise
stationary real world dataset. The fourth experiment illustrates
the performances of the algorithms in a sequential stock market
data. The final real world experiment consists of learning in an
unsupervised setting.

The non-density based anomaly detection approaches such
as SVM [32], [33], nearest neighbors [34], [35] and clustering
[36] can be thought of as the fitting of appropriate kernels to
decide the outliers (e.g., SVM fits appropriate kernels to deter-
mine its boundaries and nearest neighbors fits the appropriate
kernels on the training sample points respectively). Therefore,
we use the Kernel Density Estimator algorithm (KDE) [31] in
our performance comparisons for both the density estimation
and the anomaly detection. For the benefit of KDE, we use the
optimal kernel selection in accordance with the dataset and opti-
mally tune its bandwidth parameter with Silverman’s rule [52].
Moreover, we compare our algorithm against the Maximum
Likelihood algorithm (ML) [29], which optimally fits an appro-
priate parametric model to the dataset. Additionally, we compare
our method against the adaptive algorithms Filtering and Hedg-
ing for Time-varying Anomaly Recognition (FHTAGN) [7] and
Online Convex Programming (OCP) [21]. All of these algo-
rithms first estimate a density function for the normal data and
thresholds that function to detect anomalies. We used the same
thresholding scheme in Algorithm 4 in all of the algorithms for
a fair comparison. In the unsupervised real data experiment, the

algorithms use a fixed step threshold update for fixed false pos-
itive rate as in Remark 7. In all of the experiments, we showed
the log-loss performances of the density estimators for normal
data to compare their modeling power capabilities. The den-
sity estimation part of our algorithm is called Minimax Optimal
Density Estimator (MODE) and the anomaly detector is called
Anomaly Detection with Minimax Optimal Density Estimation
(ADMODE).

To compare the anomaly detection performances of the algo-
rithms, we used the Area Under Curve (AUC) parameter [53].
We used the AUC parameter in [54], [55], and approximated it
by using an approach similar to [56], where we have sampled
the ROC curve at multiple points by varying the discrimination
threshold [56] of each method. This sampling of the ROC curve
provided different True Positive Rate (TPR) and False Positive
Rate (FPR) pairs. Suppose TPRi, FPRi for i = 1, 2, 3, . . . , n
are the sampled points of the ROC curve at different values in-
cluding the trivial points (0, 0) and (1, 1). Suppose further, these
pairs are sorted in an ascending manner according to FPRi

values. Then, we can fit a piecewise linear function onto these
samples to approximate the ROC curve. The area under this plot
is given by

AUC =
n−1∑

i=1

0.5 (TPRi+1 + TPRi) (FPRi+1 − FPRi) .

(38)

We use this AUC metric [54] to evaluate the performances of
the anomaly detectors. We emphasize that the online setting is
different than the batch learning setting. During the course of
the algorithms’ run, we do not have fixed TPR/FPR pairs, they
evolve through time, hence, provide an AUC metric evolving
with time. We sample the ROC curve by varying the thresh-
old that determines the behavior of the anomaly detector [56].
However, our online algorithm, i.e., Algorithm 4, dynamically
updates the threshold. Hence, to sample the ROC curve at dif-
ferent points, we vary the cost metrics J−1 and J+1 . These
cost metrics are varied one at a time, where we fix one of
them to 1 and exponentially vary the other one in 100 steps
from 2−10 to 1 (i.e., the other cost metric is selected from the
set {1, 2−0.1 , 2−0.2 , . . . , 2−9.8 , 2−9.9 , 2−10}). Since the update
speed of the threshold is different at false positives and false
negatives, this approach provides us with multiple samples on
the ROC curve, which we use to approximate AUC.

We set Hmin = T−2 , Hmax = T and Hmax = T 2 for the den-
sity estimation of our algorithm in first three and last two ex-
periments respectively. The algorithms use Φ(x) = log(1 + x)
and Φ(x) = log(x) transformation on the density estimations
for the threshold update scheme in first three and last two ex-
periments respectively. The diameter of the feasible set A is set
to the maximum value of these score estimations for the algo-
rithms. Following [21], OCP is run with the parameter T

−1/2
r

and 10T
−1/2
r in first three and last two experiments respectively

for each epoch with length Tr . Following [7], FHTAGN is run
with the learning rate 1/

√
t and 10/

√
t at time t in first three

and last two experiments respectively. ML and KDE uses sliding
windows of length 10 log t, 5 log t, log t and 100 log t at time t in
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Fig. 1. (a) Average log-loss performances of the density estimation algorithms in the Outliers in Nonstationary Environment Dataset (b) Average AUC
performances of the anomaly detection algorithms in the Outliers in Nonstationary Environment Dataset (c) Visualization of the Outliers in Nonstationary
Environment Dataset (normal and anomalous sample points) (d) Visualization of the Change Point Anomaly Dataset (normal and anomalous sample points).

synthetic experiments, Iris dataset, ISE dataset and Occupancy
Detection respectively.

A. Outliers in Nonstationary Environment

In the first part of the experiments, we compare the perfor-
mances of the algorithms in detecting outliers in a nonstationary
environment. In each trial of the experiments we create a length
1000, i.e., T = 1000, dataset that is generated from a Gaussian
process with mean changing between 0.1 and −0.1 every 100
samples and variance of 10−4 . Then, we randomly select 100
indices that will contain the anomalous data. The samples at
the indices containing anomalies are generated from Gaussian
processes with mean equal to the mean of the normal data at
that index and variance equal to 10−2 . We feed this dataset to all
of the algorithms and repeat this experiment for 100 trials. The
log-loss performances and AUC performances are illustrated in
Fig. 1(a) and 1(b) respectively. The normal and anomalous data
points generated in all 100 trials are plotted in Fig. 1(c) for illus-
tration of the dataset. As can be seen in Fig. 1(c), the respective
position of the outliers to the normal data stays the same.

As can be seen in Fig. 1(a), the algorithms OCP, FHTAGN and
MODE are more robust since their log-loss performances are not
affected from the environment changes. However, ML and KDE
algorithm suffer greatly from the change of source statistics
since their tolerance to the nonstationary environment are quite
lower. Nonetheless, our algorithm, i.e., MODE achieves a much
lower log-loss since its modeling capabilities greatly surpass
OCP and FHTAGN.

From Fig. 1(b), we again see that FHTAGN outperforms OCP
as in the log-loss performances. Similarly, ML outperforms OCP
and FHTAGN at the beginning but its performance deteriorates
over time. However, the deterioration speed of its AUC perfor-
mance is slower than in its log-loss so that it is only outperformed
by FHTAGN while still having better performance than OCP.
The most interesting performance is maybe achieved by KDE.
While KDE performed the worst in terms of log-loss, its AUC
performance is significantly better than the other competitors.
While its log-loss behavior, similar to ML, deteriorated over
time, its AUC performance increases ever so slightly. This per-
haps shows that even though KDE may not necessarily model the
normal data in the best way, its modeling distinguishes outliers
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Fig. 2. (a) Average log-loss performances of the density estimation algorithms in the Change Point Anomaly Dataset (b) Average AUC performances of the
anomaly detection algorithms in the Change Point Anomaly Dataset (c) Average log-loss performances of the density estimation algorithms in the Iris Dataset (d)
Average AUC performances of the anomaly detection algorithms in the Iris Dataset.

quite well. Nonetheless, our algorithm, ADMODE, significantly
outperforms all of the other algorithms in a stable and robust
way by keeping its AUC performance nearly unaffected to the
changes in the source statistics. ADMODE is able to achieve
this superior performance because of its individual sequence
approach and superior modeling due to achieving the perfor-
mance of the best model with the optimal parameters tuned to
the underlying sequence.

B. Change Point Anomalies

In the second part of the experiments, we compare the per-
formances of the algorithms in detecting change anomalies in
a nonstationary environment, i.e., the anomalous samples in a
given time segment are caused by the leakage of normal data
from the previous time segment. In each trial of the experi-
ments, we create a length 1000, i.e., T = 1000 dataset that is
generated from a Gaussian process with mean changing be-
tween 0.1 and −0.1 every 100 samples and variance of 10−3 .
Then, we randomly select 100 indices that will contain the
anomalous data. The samples at the indices containing anoma-

lies have their means changed with the mean of the normal
data of the previous section. We feed this dataset to all of
the algorithms and repeat this experiment for 100 trials. The
log-loss performances and AUC performances are illustrated
in Fig. 2(a) and 2(b) respectively. The normal and anomalous
data points generated in all 100 trials are plotted in Fig. 1(d)
for illustration of the dataset. As can be seen in Fig. 1(d),
the position of the anomalies in a given time segment, e.g.,
t ∈ {401, 402, 403, . . . , 498, 499, 500}), is similar to the po-
sition of the normal data in the previous time segment, e.g.,
t ∈ {301, 302, 303, . . . , 398, 399, 400}), since the anomalies in
this dataset are created from the leakage of normal data to the
successive time segment.

As can be seen in Fig. 2(a), the algorithms OCP, FHTAGN and
MODE are more robust since their log-loss performances are not
really affected from the environment changes. However, ML and
KDE algorithm suffer from the change of source statistics albeit
with smaller margins compared to the previous experiment since
this dataset has a higher variance. Nonetheless, our algorithm,
i.e., MODE achieves a much lower log-loss since its modeling
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capabilities greatly surpass all of the algorithms because of its
individual sequence approach.

From Fig. 2(b), we see that FHTAGN outperforms OCP at
the beginning but its performance starts declining with the first
environment change until its performance is lower than OCP at
the end of the dataset. While ML and KDE outperform OCP
and FHTAGN similarly in log-loss, their performance seriously
decline with each change in environment. Nonetheless, our al-
gorithm, ADMODE, significantly outperforms all of the other
algorithms in a stable and robust way because of its superior
modeling capabilities. Its AUC performance remains unaffected
by the changes in the source statistics, and continues to increase
as its learning continues.

C. Iris Dataset

To compare the algorithms in a real life dataset we use the
famous Iris dataset [57]. Iris dataset contains 3 classes with
50 instances each, which makes a total of 150 samples. Each
instance contains 4 features. We preprocess the dataset so that
we separate each feature and treat each feature of each class
as separate classes, hence, samples. This creates a dataset of
12 classes with 50 instances each. To get a sequential dataset
since we work in the online setting, we randomly decide on
an order of appearance for 12 classes and concatenate these
samples to get a time series of length 600 at each trial of the
experiment. Then, each 50 length section is shuffled randomly
in itself. Lastly, we randomly select 5 samples independently
for each section and mark them as anomalous. These 5 samples
in each section are substituted according to a cyclic order of the
sections we randomly decide on. We repeat this experiment for
100 trials and average the results to provide the performances.
We illustrate the log-loss performances and AUC performances
in Fig. 2(c) and 2(d) respectively.

As can be seen in Fig. 2(c), the algorithms OCP, FHTAGN
and MODE are more robust since their log-loss performances
are not really affected from the environment changes. However,
the performances of ML and KDE suffer with each change of the
source statistics. Nonetheless, our algorithm, i.e., MODE, again
achieves a much lower log-loss since its modeling capabilities
greatly surpass all of the algorithms.

From Fig. 2(d), we see that FHTAGN shows better perfor-
mance than OCP at the beginning. However, its performance
rapidly declines and it is finally outperformed by OCP ap-
proximately at the 250th sample. ML and KDE have better
performances than OCP and FHTAGN even though they were
outperformed in the log-loss performances. Moreover, their per-
formances greatly decline with each change in the environment.
Nonetheless, our algorithm, ADMODE, significantly outper-
forms all of the other algorithms in a stable and robust way
because of its superior modeling capabilities. ADMODE is the
only algorithm whose AUC performance increases in a decisive
manner.

D. Financial Anomalies

We have also compared the algorithms in the “Istanbul Stock
Exchange” (ISE) dataset [58], which includes the returns of
various international indexes. ISE dataset is a time series of

length 536 with 9 features. At each trial of the experiment, we
label 54 samples (10%) as anomalous and subtract 0.1 from them
(i.e., the returns of all of the indexes are decreased by 10%, e.g.,
6% return becomes −4%) to emulate financial anomalies (e.g.,
a market crash or financial crisis). We repeat this experiment for
100 trials and average the results to provide the performances.
We illustrate the log-loss performances and AUC performances
in Fig. 3(a) and 3(b) respectively.

As can be seen in Fig. 3(a), the algorithms OCP, FHTAGN
and ML perform poorly. Although KDE achieves a lower log-
loss, its convergence is slow. Our algorithm, MODE, on the
other hand, achieves the minimum log-loss very fast since it has
higher modeling capabilities.

From Fig. 3(b), we see that OCP, FHTAGN and ML have
very poor performances similar to before. Although KDE
illustrates a higher performance, it can only reach an AUC
performance of 0.7. Our algorithm, ADMODE, significantly
outperforms all of the other algorithms. Even though KDE and
MODE achieve similar log-loss at the end, ADMODE greatly
surpasses KDE in AUC performance because of its faster
convergence and adaptation.

E. Occupancy Detection

In the last experiment, we have compared the algorithms with
a real dataset in an unsupervised setting. We have used the Occu-
pancy Detection dataset [59], which contains 2 classes (occupied
or not) and 5 features, which are Temperature (in Celsius), Rel-
ative Humidity (%), Light (in Lux), CO2 (in ppm) and Humidity
Ratio. It is divided into three sets of time series. For our exper-
iments, we have concatenated these sets to create a single time
series of length 20560, where 15810 of these are normal data
(not occupied) and 4750 of these are anomalies (occupied). We
have normalized all the features to the intervals [0, 1]. Since we
are working in an unsupervised setting, the algorithms update
their density estimators with each incoming data sample. The
log-loss of the algorithms are capped at 300. For the learning
rate of the unsupervised update of the threshold, we have expo-
nentially searched over the interval [δ, 1/δ] (with multiplicative
increments of 20.1), where δ = 300/T (T = 20560), since it is
the minimum learning increment needed to transverse over the
whole log-loss space. We illustrate the log-loss performances
and AUC performances in Fig. 3(c) and 3(d) respectively. For
each algorithm, the best AUC performance resulting from the
optimal selection of the learning rate is plotted.

As can be seen in Fig. 3(c), the OCP algorithm has the worst
log-loss performance for the nominal data. The algorithms FH-
TAGN and ML have similar performances, which are better than
OCP. Even though KDE is able to outperform these algorithms,
it still performs significantly worse than our algorithm, MODE.
From Fig. 3(d), we see that the performance order of the algo-
rithms did not change much. The only difference is surprisingly
between the algorithms ML and FHTAGN. Although FHTAGN
had better log-loss performance for the nominal data, ML had
showed better AUC performance. Because of the characteristics
of the dataset, all of the algorithms have shown a similar be-
havior, where their AUC performance gradually decreases until
≈ 7000th sample and then increases until convergence near the
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Fig. 3. (a) Average log-loss performances of the density estimation algorithms in the Istanbul Stock Exchange Dataset (b) Average AUC performances of the
anomaly detection algorithms in the Istanbul Stock Exchange Dataset (c) Average log-loss performances of the density estimation algorithms in the Occupancy
Detection Dataset (d) Average AUC performances of the anomaly detection algorithms in the Occupancy Detection Dataset.

end. Since our algorithm is more robust to the changes in the
statistics in the dataset, the performance decrease caused by
these changes are significantly less. Thus, our algorithm, AD-
MODE, is able to outperform all of the other algorithms.

VIII. CONCLUSION

We have introduced a truly sequential anomaly detection al-
gorithm that detects anomalies in a time series. Our algorithm
has two stage and consists of first estimating the density of the
nominal data in an online manner and then thresholding this den-
sity estimation to detect anomalies. We approach this problem
from an information theoretic perspective and propose minimax
optimal schemes for both stages to create an optimal anomaly
detection algorithm in a strong deterministic sense. For the first
stage of our algorithm, we, for the first time in literature, have
introduced a truly sequential minimax optimal density estima-
tion algorithm for general nonstationary exponential-family of
sources without any assumptions on the observation sequence.
Moreover, for the second stage, we have proposed a threshold
selection scheme that is minimax optimal with respect to the best
threshold selected in hindsight. In both stages of our algorithm,

we achieve logarithmic regret bounds by adaptively updating its
parameters in a completely sequential manner. Our algorithm
showed significant performance gains against the state-of-the-
art methods in both synthetic and real datasets.

APPENDIX A
PROOF OF THEOREM 1

The regret at time t is defined as

rt(α̂t) = l(α̂t ,xt) − l(α,xt), (39)

where l(α, x) is as in (10).
By H-strong convexity, the regret becomes

rt ≤ 〈∇αl(α̂t ,xt), (α̂t − α)〉 − H

2
‖α̂t − α‖2 . (40)

We bound the first term in the right hand side of (40) using the
update rule (12). By definition of projection in (13), we have

‖PS (α̂t − ηt∇αl(α̂t ,xt)) − α‖
≤ ‖α̂t − ηt∇αl(α̂t ,xt) − α‖.
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Substituting (12) in the left hand side provides

‖α̂t+1 − α‖ ≤ ‖α̂t − ηt∇αl(α̂t ,xt) − α‖. (41)

Hence, we get

‖α̂t+1 − α‖2 ≤ ‖α̂t − ηt∇αl(α̂t ,xt) − α‖2 ,

≤ ‖α̂t − α‖2 − 2ηt〈∇αl(α̂t ,xt), (α̂t − α)〉

+ η2
t ‖∇αl(α̂t ,xt)‖2 . (42)

Since ηt > 0 for all t, rearranging (42) results in

〈∇αl(α̂t ,xt), (α̂t − α)〉

≤ 1
2ηt

(
‖α̂t − α‖2 − ‖α̂t+1 − α‖2)+

ηt

2
‖∇αl(α̂t ,xt)‖2 ,

≤ 1
2ηt

(
‖α̂t − α‖2 − ‖α̂t+1 − α‖2)+

ηt

2
‖zt − μα̂t

‖2 ,

(43)

where we used (11) in the last step. Putting (43) in the right
hand side of (40) yields

rt ≤
1

2ηt

(
‖α̂t − α‖2 − ‖α̂t+1 − α‖2)

+
ηt

2
‖zt − μα̂t

‖2 − H

2
‖α̂t − α‖2 . (44)

Thus, summing (44) from t = 1 to T , we have the cumulative
regret up to time T , which is given by

RT ≤ 1
2

T∑

t=2

(
1
ηt

− 1
ηt−1

− H

)
‖α̂t − α‖2 +

1
2

(
1
η1

− H

)

× ‖α̂1 − α‖2 − 1
2ηT

‖α̂T +1 − α‖2 +
1
2

T∑

t=1

ηt‖zt − μα̂t
‖2 ,

≤
T∑

t=1

‖zt − μα̂t
‖2

2Ht
,

≤ D

2H
(log T + 1),

where we used ηt = (Ht)−1 , and

D =
∑T

t=1 t−1‖zt − μα̂t
‖2

∑T
t=1 t−1

, (45)

which concludes the proof of the theorem.

APPENDIX B
PROOF OF THEOREM 2

We receive the accumulated log-loss LT ,U such that

LT ,U =
T∑

t=1

− log f̂ u
t (xt) =

T∑

t=1

− log
( N∑

r=1

wr
t f̂

r
t (xt)

)
,

where we used (15). Using (16) and (17), we get

LT ,U = − log
∑N

r=1 f̂
r
1 (x1)

N
−

T∑

t=2

log

(∑N
r=1
∏t

τ =1 f̂
r
τ (xτ )

∑N
r=1

∏t−1
τ =1 f̂

r
τ (xτ )

)
,

= − log
1
N

N∑

r=1

T∏

τ =1

f̂ r
τ (xτ ) ≤ − log

1
N

T∏

τ =1

f̂ r
τ (xτ ),

for all r = {1, 2, . . . , N}. Hence,

LT ,U ≤ log N + min
r∈{1,2,...,N }

T∑

t=1

− log f̂ r
t (xt),

= log N + min
r

LT ,r ,

where LT ,r is the cumulative log-loss of the estimator
labeled r.

Subtracting the loss incurred by the true density function from
both sides we get,

RT ,U ≤ log N + min
r

RT ,r ,

which concludes the proof.

APPENDIX C
PROOF OF COROLLARY 1

In Theorem 1, we showed that by knowing H a priori and us-
ing it as the input in Algorithm 1, we can achieve the regret RT ≤
D
2H (log T + 1). Running Algorithm 1 with some Hr ≤ H in-
curs regret D

2Hr
(log T + 1) as all the derivations of Theorem 1

would still hold. Since, in the mixture, there is one Hr ′ such
that H/2 < Hr ′ ≤ H , the regret incurred by the corresponding
fr ′

is

RT ,f̂ r ′ ≤
D

2Hr ′
(log T + 1) ≤ D

H
(log T + 1).

Since we mix N = (�log2
Hm a x
Hm in

� + 1) number of algorithms,
our total regret is given by

RT ,U ≤ log
(⌊

log2
Hmax

Hmin

⌋
+ 1
)

+
D

H
(log T + 1),

from Theorem 2.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 11, pp. 1–72, 2009.

[2] B. Baingana and G. B. Giannakis, “Joint community and anomaly track-
ing in dynamic networks,” IEEE Trans. Signal Process., vol. 64, no. 8,
pp. 2013–2025, Apr. 2016.

[3] K. Cohen, Q. Zhao, and A. Swami, “Optimal index policies for anomaly
localization in resource-constrained cyber systems,” IEEE Trans. Signal
Process., vol. 62, no. 16, pp. 4224–4236, Aug. 2014.

[4] J. Sharpnack, A. Rinaldo, and A. Singh, “Detecting anomalous activity
on networks with the graph fourier scan statistic,” IEEE Trans. Signal
Process., vol. 64, no. 2, pp. 364–379, Jan. 2016.

[5] T. Xie, N. M. Nasrabadi, and A. O. Hero, “Learning to classify with
possible sensor failures,” IEEE Trans. Signal Process., vol. 65, no. 4,
pp. 836–849, Feb. 2017.

[6] A. B. Tsybakov et al., “On nonparametric estimation of density level sets,”
Ann. Stat., vol. 25, no. 3, pp. 948–969, 1997.



GOKCESU AND KOZAT: ONLINE ANOMALY DETECTION WITH MINIMAX OPTIMAL DENSITY ESTIMATION IN NONSTATIONARY 1227

[7] M. Raginsky, R. M. Willett, C. Horn, J. Silva, and R. F. Marcia, “Sequential
anomaly detection in the presence of noise and limited feedback,” IEEE
Trans. Inf. Theory, vol. 58, no. 8, pp. 5544–5562, Aug. 2012.

[8] A. Gyorgy, T. Linder, and G. Lugosi, “Efficient tracking of large classes
of experts,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6709–6725, Nov.
2012.

[9] A. Gyrgy, T. Linder, and G. Lugosi, “Efficient tracking of large classes of
experts,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2012, pp. 885–889.

[10] A. Gyorgy, T. Linder, and G. Lugosi, “Tracking the best quantizer,” IEEE
Trans. Inf. Theory, vol. 54, no. 4, pp. 1604–1625, Apr. 2008.

[11] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire,
and M. K. Warmuth, “How to use expert advice,” J. ACM, vol. 44, no. 3,
pp. 427–485, May 1997.

[12] N. Merhav and M. Feder, “Universal prediction,” IEEE Trans. Inf. Theory,
vol. 44, no. 6, pp. 2124–2147, Oct. 1998.

[13] A. Bain, Fundamentals of Stochastic Filtering. New York, NY, USA:
Springer, 2009, vol. 3.

[14] C. R. Shalizi et al., “Dynamics of Bayesian updating with dependent
data and misspecified models,” Electron. J. Stat., vol. 3, pp. 1039–1074,
2009.

[15] H. Ozkan, F. Ozkan, and S. S. Kozat, “Online anomaly detection un-
der Markov statistics with controllable type-I error,” IEEE Trans. Signal
Process., vol. 64, no. 6, pp. 1435–1445, Mar. 2016.

[16] H. Ozkan, F. Ozkan, I. Delibalta, and S. S. Kozat, “Efficient NP tests for
anomaly detection over birth-death type DTMCs,” J. Signal Process. Syst.,
vol. 1, no. 1, pp. 1–10, Jun. 2016.

[17] V. Vapnik and S. Mukherjee, “Support vector method for multivariate
density estimation,” in Adv. Neural Inf. Process. Syst., pp. 659–665, 2000.

[18] B. O. Koopman, “On distributions admitting a sufficient statistic,” Trans.
Amer. Math. Soc., vol. 39, no. 3, pp. 399–409, 1936.

[19] K. S. Azoury and M. K. Warmuth, “Relative loss bounds for on-line
density estimation with the exponential family of distributions,” Mach.
Learn., vol. 43, no. 3, pp. 211–246, Jun. 2001. [Online]. Available:
http://dx.doi.org/10.1023/A:1010896012157

[20] A. R. Barron and C.-H. Sheu, “Approximation of density functions by
sequences of exponential families,” Ann. Stat., vol. 19, no. 3, pp. 1347–
1369, 1991.

[21] M. Zinkevich, “Online convex programming and generalized infinitesimal
gradient ascent,” in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 928–936.

[22] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for
online convex optimization,” Mach. Learn., vol. 69, no. 2, pp. 169–192,
2007.

[23] C. W. Ten, J. Hong, and C. C. Liu, “Anomaly detection for cybersecurity
of the substations,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 865–873,
Dec. 2011.

[24] K. B. Dyer, R. Capo, and R. Polikar, “Compose: A semisupervised learn-
ing framework for initially labeled nonstationary streaming data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 12–26, Jan. 2014.

[25] M. Herbster and M. K. Warmuth, “Tracking the best linear predictor,”
J. Mach. Learn. Res., vol. 1, pp. 281–309, 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=944733.944743

[26] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Mach. Learn.,
vol. 32, no. 2, pp. 151–178, 1998.

[27] F. M. J. Willems, “Coding for a binary independent piecewise-identically-
distributed source,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 2210–2217,
Nov. 1996.

[28] G. I. Shamir and N. Merhav, “Low complexity sequential lossless coding
for piecewise stationary memoryless sources,” in Proc. IEEE Int. Symp.
Inf. Theory, Aug. 1998, p. 47.

[29] H. V. Poor, An Introduction to Signal Detection and Estimation. Stone
Harbor, NJ, USA: Springer, 1994.

[30] C. Horn and R. M. Willett, “Online anomaly detection with expert system
feedback in social networks,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., pp. 1936–1939, 2011.

[31] J. S. Simonoff, Smoothing Methods in Statistics. Berlin, Germany:
Springer Science & Business Media, 2012.

[32] D. M. Tax and R. P. Duin, “Support vector data description,” Mach. Learn.,
vol. 54, no. 1, pp. 45–66, 2004.

[33] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural Comput., vol. 13, no. 7, pp. 1443–1471, 2001.

[34] K. Zhang, M. Hutter, and H. Jin, “A new local distance-based outlier
detection approach for scattered real-world data,” in Proc. Pacific-Asia
Conf. Knowl. Discovery Data Mining., 2009, pp. 813–822.

[35] G. G. Cabral, A. L. Oliveira, and C. B. Cahú, “Combining nearest neighbor
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