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Abstract—We propose an online algorithm for sequential learn-
ing in the contextual multi-armed bandit setting. Our approach
is to partition the context space and then optimally combine
all of the possible mappings between the partition regions and
the set of bandit arms in a data driven manner. We show that
in our approach, the best mapping is able to approximate the
best arm selection policy to any desired degree under mild
Lipschitz conditions. Therefore, we design our algorithm based
on the optimal adaptive combination and asymptotically achieve
the performance of the best mapping as well as the best arm
selection policy. This optimality is also guaranteed to hold even in
adversarial environments since we do not rely on any statistical
assumptions regarding the contexts or the loss of the bandit
arms. Moreover, we design an efficient implementation for our
algorithm using various hierarchical partitioning structures such
as lexicographical or arbitrary position splitting and binary trees
(and several other partitioning examples). For instance, in the
case of binary tree partitioning, the computational complexity is
only log-linear in the number of regions in the finest partition. In
conclusion, we provide significant performance improvements by
introducing upper bounds (w.r.t. the best arm selection policy)
that are mathematically proven to vanish in the average loss
per round sense at a faster rate compared to the state-of-the-
art. Our experimental work extensively covers various scenarios
ranging from bandit settings to multi-class classification with
real and synthetic data. In these experiments, we show that our
algorithm is highly superior over the state-of-the-art techniques
while maintaining the introduced mathematical guarantees and
a computationally decent scalability.

Index Terms—Contextual bandits, universal, online learning,
adversarial, big data, multi-class classification.

I. INTRODUCTION

We study online learning [1], [2] in the contextual multi-
armed bandit setting [3]–[8]. In the classical formulation of
the multi-armed bandit problem, one of the available M bandit
arms (or actions) is chosen at each round to obtain a reward
(or loss), and the reward (or loss) of all of the other unchosen
M − 1 arms stay oblivious. The objective is to maximize the
cumulative reward of the selected arms in a series of rounds.
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Since the reward we would obtain from the other arms remain
hidden, this setting can be considered as a limited feedback
version of prediction with expert advice [9]–[14]. Additionally,
the well-known fundamental trade-off between exploration
and exploitation [15], [16] naturally appears in multi-armed
bandits. One should balance exploitation of actions that gave
the highest payoffs in the past and exploration of actions that
might give higher payoffs in the future.

The multi-armed bandit problem has attracted significant
attention due to the applicability of the bandit setting in a
wide range of applications from online advertisement [17]
and recommender systems [18]–[20] to clinical trials [21]
and cognitive radio [22], [23]. For example, in the online
advertisement application, different ads available to display to
users are modeled as the bandit arms and the act of clicking
by the user on the displayed ad is modeled as the reward [17].

In many instances of the bandit algorithms, additional
information is available [24] such as the age or the gender
of the patient in clinical trials [25], which is useful about
the arm selection decision. However, most of the conventional
bandit algorithms do not exploit or fail to fully exploit this
information [26]–[28]. To remedy, contextual multi-armed
bandit algorithms are introduced [16], [17], [29], where the
additional information is represented as a context vector. For
example, in the online advertisement applications, this context
vector may contain certain information about the users such as
historical activities or demographic/geographical information.
Then the goal of the multi-armed bandit problem is extended to
maximally exploit this additional information, i.e., the context,
for optimizing the arm selection strategy and therefore gaining
more rewards (or suffering less loss).

We consider the contextual extension in the online setting,
where we operate sequentially on a stream of observations
from a possibly non-stationary, chaotic or even adversarial
environment [30]–[32]. Hence, we have no statistical assump-
tions on the context vectors and behavior of the bandit arms
so that our results are guaranteed to hold in an individual
sequence manner [16]. We follow a competitive algorithm
perspective [16] and define the performance (total time ac-
cumulated reward or loss) with respect to a competition class
of context dependent bandit arm selection policies. For this
purpose, we design an exponentially large and parameterized
competition class of predetermined mappings from the space
of context vectors to the bandit arms such that the best arm
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selection policy1 can be approximated arbitrarily well to a
desired degree by the optimal mapping in the competition
class. We point out that each mapping in our competition class
partitions the space of context vectors into several disjoint
regions and assigns each one of these regions to one of
the bandit arms, i.e., each mapping selects the bandit arm
corresponding to the region containing the observed context
vector. Based on this competition class of such mappings, our
goal is to asymptotically -at least- achieve2 the performance of
the optimal mapping as well as the performance of the best arm
selection policy at a faster convergence (performance-wise or
in terms of the convergence of the regret upper bound to zero)
rate compared to the state-of-the-art as more data is observed.

In order to generate partitions of the context space and
therefore a rich competition class, we use various hierarchical
partitioning structures [33] such as the ones based on lex-
icographical or arbitrary position splitting, binary trees and
several other partitioning examples, cf. Section IV. In our
design, each of these structures leads to a different competition
class but approximates (arbitrarily well, and even perfectly if
desired) the same best arm selection policy by the optimal
mapping in the corresponding competition class. However,
each hierarchical structure encodes the best arm selection
policy differently and one of them is the most efficient in
the sense of the required number of partition regions (i.e. less
number of regions means higher efficiency). Therefore, we
explore various hierarchical structures and introduce an algo-
rithm which covers each of such structures by using a carefully
designed weighting over the corresponding competition class.
The output of the introduced algorithm is the optimal data
adaptive combination (w.r.t. the designed weighting) of the
policies (aforementioned mappings) in the competition class.
Our weighting/adaptive combination favors simpler models in
the beginning of the data stream and gradually switches to
more complex ones as the data overwhelms.

As a result, our algorithm is guaranteed to asymptotically
perform -at least- as well as the best arm selection policy. We
achieve this performance optimality at a faster convergence
rate (for instance, at the rate O(

√
(RM lnM lnN)/T ) in

the case of binary tree partitioning after averaging the regret
bound over T where R is the number of regions in the optimal
partition, M is the number of bandit arms, N is the number
of regions in the finest partition in the competition class and
T is the number of rounds) compared to the state-of-the-art3

rate O(
√

(MN lnM)/T ). Note that here, typically, N >> R
is the dominating factor. Our superior performance is due
to exploiting the right hierarchical partitioning structure that

1This best arm selection policy is based on the fixed best partitioning of the
context space and the best assignment of the arms to the regions of that best
partition. It is not necessarily in our competition class. However, it can be
approximated arbitrarily well by the optimal mapping in the class by varying
the class parameter; and it can be determined only when the complete data
stream is observed.

2In addition to achieving, we might well outperform since our approach is
data driven and based on combination of partitions, i.e., we do not rely on a
single fixed partition.

3The convergence rates given here samples our general regret results (after
averaging over T ) in the case of binary tree partitioning. Our rates for other
partitionings in our generic class of hierarchical structures naturally vary but
our superiority compared to the state-of-the-art stays valid in a similar manner,
cf. Section IV for our complete regret results for all structures.

encodes the best policy more efficiently and therefore assigns
higher initial weights to the optimal partition. This exploitation
of the right structure with the introduced weighting scheme
also mitigates the overfitting issue as an additional merit.

We emphasize that our algorithm is designed to work for
a generic class of hierarchical partitioning structures and our
optimality results do hold for each type of structure in this
generic class. Therefore, one can use the proposed algorithm
with any type of partitioning that is appropriate for the target
application with the corresponding performance guarantees.
Such guarantees include upper bounds on the regret w.r.t. the
best arm selection policy that are mathematically proven to
vanish at O(1/

√
T ) (after averaging over T ) in a superior

manner over the state-of-the-art, cf. the following Section
I-A Prior Art and Section IV for detailed comparisons. We
also present a computationally highly efficient implementation
for the introduced algorithm that, for instance, combine MN

mappings with only computational complexity of O(M lnN)
in the case of binary tree partitioning structure. Through an
extensive set of experiments with real and synthetic data, we
demonstrate the proposed approach in several scenarios such
as multi-class classification, online advirtisement and multi-
armed bandit along with various partitioning structures. In
these experiments, our algorithm is shown to significantly
outperform the state-of-the-art techniques with real-time data
processing and strong modeling capabilities.

A. Prior Art

The contextual bandit problem is mostly studied in the
stochastic setting [29], [34], [35], where context vectors and
losses are assumed to be drawn randomly and independently
from an unknown distribution. Additional assumptions regard-
ing the relations between the context vectors and the arm
losses are also used in other studies, e.g., a linear relation in
[17] and [36], and more general ones in [37]. These algorithms
essentially fail to hold their performance guarantees if the
context vectors or the arm losses are chosen by an adversary
rather than a prefixed distribution.

An alternative to the stochastic approaches is the adversarial
setting, where algorithms do not use any assumptions on the
behavior of the context vectors and bandit arms. The well-
known EXP3 algorithm [32] formulates the non-contextual
bandit problem in an adversarial setting and achieves a regret
upper bound4 of O(

√
TM lnM) against the best arm. S-EXP3

algorithm [16] is a naive extension of EXP3 in the contextual
setting, which partitions the context space and runs indepen-
dent EXP3 algorithms over each one of the partition regions.
S-EXP3 achieves a regret upper bound of O(

√
TNM lnM)

against the best mapping from the regions to the bandit arms,
where N is the number of regions in the partition of the context
space. As implied by the regret bound, the S-EXP3 algorithm
works well only when the complexity (the granularity or the
level of detailing/fine-ness) of the required partitioning to
model the truly optimal selection policy is relatively small,
otherwise it quickly overfits and suffer from insufficient data.

4We illustrate regret upper bounds without averaging over T here in
this section; but with averaging in the previous section to demonstrate the
convergence to 0 there.
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(a) An example mapping from the
context space [0, 1]2 to the set of
bandit arms {1, 2}.
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(b) Closest mapping in the quan-
tized competition class with 16
quantization levels to the mapping
in Fig. 1a.
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(c) Closest mapping in the quan-
tized competition class with 64
quantization levels to the mapping
in Fig. 1a.

Fig. 1: An example mapping from the context space to the set of bandit arms and its approximations in the quantized competition
classes. In each mapping above, the dark and bright sections are mapped to the arms 1 and 2, respectively.

The EXP4 algorithm [32] is another extension of EXP3 in
the contextual setting. In this algorithm, a set of K experts
observe the context vectors and suggest distributions on the
arms. Their suggestions are adaptively combined to select the
arm to pull. It is shown that EXP4 achieves a regret upper
bound of O(

√
TM lnK) against the best expert. Considering

the MN mappings from a partition of the context space to
the arms as the K experts, EXP4 achieves O(

√
TNM lnM)

against the optimal mapping. As we show in Section III,
the EXP4 algorithm can be improved by producing an initial
tendency (in earlier times of the stream) toward the mappings
of smaller complexity. In this case, although the finest partition
has N regions (and hence there are MN mappings in total),
it suffices to run EXP4 over O((NM)R) mappings with R
regions resulting a regret bound of O(

√
TMR ln (NM)), if

the optimal partition consists of R regions. However, the main
problem with this algorithm is its computational complexity of
O((NM)R). On the other hand, the CSB-FTPL algorithm [38]
achieves a regret upper bound of O(T 2/3M

√
lnK) against the

best expert among a set of K experts with a computational
complexity that is polynomial in lnK. Hence, running CSB-
FTPL over O((NM)R) mappings with R disjoint regions
yields a regret upper bound of O(T 2/3M

√
R lnN) with a

polynomial computational complexity in lnN .

We emphasize that we seek to achieve a regret upper bound
vanishing (w.r.t. rounds/time after averaging over T ) faster
than that of EXP4 with a computational complexity linear in
lnN which allows us to grow the hierarchical structure freely.
To this end, our algorithm not only drastically reduces the
computational complexity (e.g., down to O(M lnN) in the
case of binary tree partitioning) compared to the discussed
state-of-the-art techniques, but also achieves a regret upper
bound of O(

√
TMR lnM lnN).

Finally, a simple instance of our hierarchical structures, the
context trees, are widely used in various applications including
but not limited to data compression [39], [40], estimation
[41], [42], communications [43], regression [44], [45] and
classification [46]. In all aforementioned applications, context
trees are used to partition the context space in a nested

structure, run an independent adaptive model over each one
of the tree nodes and combine the models. On the other
hand, in this paper, we use a generalized novel notion of
hierarchical structures that is specifically designed for the
completely different multi-armed contextual bandit problem.

B. Contributions

• We introduce a novel and efficient contextual bandit arm
selection algorithm, which first quantizes the space of
context vectors and then achieves the performance of the
optimal mapping from the quantized regions to the bandit
arms (in the average loss per round sense).

• We introduce an efficient quantization method and show
that using this quantization method, our algorithm asymp-
totically achieves (not only the optimal mapping but
also) the performance of the best arm selection policy
(in the average loss per round sense) as the number of
quantization levels increases.

• We introduce a novel and generalized notion of hierarchi-
cal context space partitioning structures for the contextual
bandit setting and use such hierarchical structures to
design an efficient implementation of our algorithm and
achieve a faster convergence rate for the regret compared
to the state-of-the-art.

• We demonstrate significant performance gains with the
proposed algorithm in comparison to the state-of-the-art
techniques through extensive experiments involving both
synthetic and real data.

C. Organization of the Paper

In Section II, we describe the contextual multi-armed bandit
framework. Next, we explain a first mixture of experts based
approach and its challenges in Section III. In Section IV, we
explain the notion of hierarchical structures and implement
our algorithm using these structures. We introduce an efficient
quantization method in Section V, and show that our algorithm
is competitive against any mapping, including the best arm
selection policy, from the context space to the bandit arms.
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Section VI contains the experimental results over several
synthetic and well known real life datasets followed by the
concluding remarks in Section VII.

II. PROBLEM DESCRIPTION

We study the contextual bandit problem in an adversarial
setting5. Recall that the original multi-arm bandit problem
is a sequential game. One of the available bandit arms
It ∈ {1, ...,M} is selected at each round t and then a
related loss lt,It is observed6. The objective is to minimize
the accumulated loss

∑T
t=1 lt,It in a sequence of T rounds. In

the contextual extension, a context vector st from a context
space S is additionally provided at each round before selecting
the arm. For example, S is [0, 1]2 in Fig. 1. Then the objective
stays same but can be improved with the available context.

We consider this contextual bandit problem in adversarial
setting [47], where at each round t, an adversary assigns a
specific loss to each arm i ∈ {1, 2, · · · ,M} simultaneously in
parallel with the player who chooses an arm to pull. The adver-
sary’s goal is to maximize the player’s loss, whereas the player
tries to maximize her/his gain (here the loss maximization by
the opponent give the name “adversary”). We emphasize that
the adversary is provided with all the information from the
previous rounds. It can even know the algorithm followed by
the player. However, if the player’s choice is randomized, then
the adversary does not know the outcome of this randomization
while assigning the losses to the arms, e.g, the adversary
may know that the player tosses a coin to choose the arm
to pull, but does not know the outcome of the toss. Namely,
“adversarial setting” refers to the algorithmic framework or
the game in which the data generation (assignment of losses
in this case) or the adversary is acting against the player
on purpose while the player tries to maximize her/his gain.
In accordance with the nature of this adversarial setting, in
designing the algorithm for the player to use, we make no
statistical assumptions about the context vectors and the bandit
arms [32], and our performance bounds are guaranteed to hold
in an individual sequence manner. Hence, in designing our
algorithm, we rigorously address such adversarial conditions
and provide strong mathematical guarantees that hold for
all possible data streams or for all possible moves of the
adversary. Our algorithm is strictly sequential such that at
each round t, it selects an arm It according to the information
coming from the previous rounds including observed context
vectors, selected arms and their losses, alongside the context
vector we are currently observing, i.e.,

It = ft(st; st−1, It−1, lt−1,It−1
; ...; s1, I1, l1,I1). (1)

In design of our algorithm, we aim at sequentially learning
the optimal partitioning of the context space with the optimal

5All vectors are column vectors and denoted by boldface lower case letters.
For a K-element vector u, ui represents the ith element and ‖u‖ =

√
uTu

is the l2-norm, where uT is the transpose. Indicator function 1{·} ∈ {0, 1}
outputs 1 only if its argument condition holds. A function f : Rn → R is
Lipschitz continuous over a region W ⊂ Rn, if there exists a non-negative
constant c such that |f(x1)− f(x2)| ≤ c‖x1 − x2‖ for all x1,x2 ∈W .

6We assume lt,It ∈ [0, 1] for simplicity, however, it can be straightfor-
wardly shown that our results hold for any bounded loss after shifting and
scaling in magnitude.

assignment between the regions of the learned partition and
the set of arms. For this purpose, we investigate a general
framework of hierarchical structures to generate context space
partitions and eventually learn the asymptotically optimal, time
varying, context driven arm chooser ft. We show that our
approach, compared to the state-of-the-art techniques, yields a
computationally highly superior algorithm with real time data
processing capabilities while achieving a faster convergence
rate to the optimal conditions (in terms of the convergence of
the regret upper bounds to 0). The superiority of the proposed
algorithm is due to that the set of all possible context space
partitions considered here can theoretically achieve arbitrarily
high degree of granularity (can be of arbitrarily high capacity)
whereas the true complexity of the optimal partition is limited
(cf. Section IV) in reality. Based on this observation, our
approach additionally allows the regret analysis to incorporate
an upper bound on the complexity of the optimal partition,
which in turn significantly improves the convergence of the
presented algorithm in almost all practical scenarios. This gain
is essentially from O(

√
N) to O(

√
lnN) (N is measuring

the granularity, cf. Section IV). If the complexity of the
optimal partition cannot be upper bounded, which would be
a purely theoretical consideration as the true complexity is
almost always limited and finite in real scenarios, our regret
analysis then produces similar rates of convergence in that
very worst theoretical scenario. Nevertheless, in any case, the
proposed algorithm is computationally highly efficient and
superior, and asymptotically optimal in the adversarial setting
including the very worst scenario regardless of the stationary
or non-stationary or perhaps chaotic source statistics.

To this end, we consider a large class G of deterministic
mappings, i.e., ∀g ∈ G, g : S → {1, ...,M}. Each such
mapping is composed of a fixed partition of the context space
and an arm is assigned to each partition region. Depending
on the partition region that a context st falls in, g chooses
the assigned arm g(st). An example is shown in Fig. 1a in
the case of 2 dimensional context space S = [0, 1]2 with 2
bandit arms, where g([0.5, 0.5]T ) = 1. Note that for a given
g ∈ G, all of the other deterministic mappings resulting from
all possible arm assignments to the regions of the partition of g
are also included in G. Since we work in the adversarial setting
and therefore refrain from making any statistical assumptions
about the context vectors and the loss of the bandit arms [32],
we next define our performance w.r.t. the optimum (minimum
loss) mapping in the “competition” class G based on the
following regret:

R(T,G) , max
g∈G

E

[
T∑
t=1

lt,It −
T∑
t=1

lt,g(st)

]
, (2)

where the expectation is w.r.t. the internal randomization in
our algorithm (the internal randomization here is not related
to data statistics). Our goal is to upper bound the regret by a
term that depends sublinearly in T , and hence asymptotically
achieve -at least- the performance of the best g in G (in
the averaged regret per round sense). Achieving this goal is
equivalent to achieving the performance of the chooser of the
optimal context space partition with the optimal assignment
to the arms. Here, optimality of the context space partition
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Fig. 2: All possible mappings in a 2-armed bandit problem
with a predetermined quantization of the context space S =
[0, 1]2 into 4 regions. In each mapping above, the dark and
bright regions are mapped to the arms 1 and 2, respectively.

should be understood w.r.t. the class G which is certainly not
restrictive, since it can be arbitrarily improved by generalizing
(detailing) G to a desired degree, cf. Section III.

We next construct the class G and provide a mixture-of-
experts based first solution to the introduced problem.

III. A CONTEXTUAL BANDIT ALGORITHM BASED ON
MIXTURE OF EXPERTS

The ultimate goal in the contextual bandit problem is ideally
to achieve the performance of the best mapping in the set U7

of all arbitrary mappings from the context space to the bandit
arms. Since this set of all arbitrary mappings is too powerful
to compete against in design of an algorithm, as the first step,
we uniformly quantize the context space S into N disjoint
regions r1, r2, ..., rN , i.e., ∪Ni=1ri = S and ri ∩ rj = ∅ for
∀i 6= j. We use uniform quantization for simplicity, however,
one can incorporate any arbitrary type of quantization into our
framework straightforwardly. In our framework, we consider
all possible assignments between the set of disjoint regions and
the set of bandit arms, and call each context mapping resulting
from one of those assignments an N -level quantized mapping.
Therefore, each N -level quantized mapping is essentially a
function from ∪Ni=1ri = S to {1, ...,M}: a context s ∈ r∗ ⊂ S
is mapped to the bandit arm that the region r∗ is assigned
to. Two examples of such quantized mappings of different
levels for the case of 2-armed bandit with the context space
[0, 1]2 are shown in Fig. 1b and Fig. 1c. Given a quantized
context space S = ∪Ni=1ri, we define the class GN of N -
level quantized mappings as the “competition class” with
N quantization levels consisting of all arbitrary assignments
between the bandit arms and the given N regions {ri}Ni=1.

Remark: We seek to achieve the performance of the best
quantized mapping in GN , which can get arbitrarily close (and
N can be freely chosen in our framework) to the performance
of the best arbitrary mapping in U , i.e., the best arm selection
policy, as N increases. For example, suppose that the mapping
shown in Fig. 1a is the best arbitrary mapping. In this case,

7This set U consists of all possible arbitrary context space partitions (not
confined to G) with all possible assignments of partition regions to the arms.

the mappings in Fig. 1b and Fig. 1c of improving optimalities
will be the best mappings in G16 and G64, respectively.

Based on MN different mappings in GN , we consider an
expert chooser that is one-to-one-corresponding to each of
those mappings such that gj(s) is the arm chosen by expert Ej
for the context s, i.e., Ej ↔ gj , 1 ≤ j ≤MN . An example of
all 16 mappings followed by the experts for the case of M = 2
and N = 4 is shown in Fig. 2, where, unlike Fig. 1, we choose
a nonuniform quantization to demonstrate the generality in our
approach. One of these experts in Fig. 2 is G4-optimal for the
underlying sequence of losses, however, naturally, we do not
know which. Hence, instead of committing to a single expert,
we next use a mixture of experts approach to learn the best
one during rounds.

In order to achieve the performance of the best expert,
we assign each expert Ej a weight αt,j (showing our trust
on the expert Ej at round t) and use exponentiated weights
to adaptively combine them. After observing context st at
each round t, we randomly select one of the experts using
the probability simplex βt = (βt,1, ..., βt,MN ), where βt,j =

αt,j/
∑Mn

k=1 αt,k is the normalized weight. Importantly, the
probability of selecting each arm then follows the probability
simplex pt = (pt,1, ..., pt,M ), where

pt,i =

MN∑
j=1

βt,j1{gj(st)=i}. (3)

We initially set the weights α1,i according to the complexity
of the mappings of experts from GN , and use exponentiated
losses to update during rounds: at each round t ≥ 2, we have

αt,i = α1,ie
−η

∑t−1
τ=1 l̃τ,gi(sτ ) , (4)

where η ∈ R+ is the (constant) learning rate and l̃τ,gi(sτ ) is
the unbiased estimator of lτ,gi(sτ ). Since we do not observe the
loss lt,m of the unchosen arms, we use the unbiased estimator

l̃t,m =

{
lt,m
pt,m

m = It

0 m 6= It
, (5)

where E[l̃t,m] = lt,m. Using this bandit arm selection proba-
bility assignment defined through (3), (4) and (5), we have
the following regret result.

Theorem 1. Consider an M -armed contextual bandit prob-
lem. If the context space is quantized into N disjoint regions,
and experts Ej’s are following the MN possible mappings in
GN as described in Section III, then R(T,Ej) satisfies

R(T,Ej) ≤
ln (1/β1,j)

η
+
MTη

2
(6)

based on the probability assignments defined through (3),
(4) and (5), where T is the number of rounds, η ∈ R+ is
the learning rate parameter in (4) and β1,j is the normalized
initial weight of the jth expert Ej .

Proof of Theorem 1 follows similar lines to the proof of
Theorem 4.2 in [16] with certain variations due to our arbitrary
initial weighting as opposed to uniform initial weights of the
experts in [16]. The proof of our Theorem 1 is provided in
Appendix A.
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Fig. 3: A binary tree of depth D = 2 over the context space
[0, 1]2. The regions corresponding to each node are filled with
black color.

We observe that the regret bound is logarithmically de-
pendent on the reciprocal of the prior weight of the optimal
partitioning in the competition class (i.e., its complexity cost).
Hence, by using equal prior weights on the MN experts,
our regret bound will be in the order8 of O(

√
NT ) (after

optimizing the learning rate). We point out that this result is
similar to the EXP4 algorithm [16], which achieves a regret
upper bound of O(

√
NT ) with optimum selection of the

learning rate. Furthermore, S-EXP3 algorithm [16] achieves
a regret upper bound of the same order O(

√
NT ) using an

independent EXP3 algorithm over each quantized region of
the context space. This square root dependency of the regret
bound on the quantization level is prohibitive and working
against our motivation of approximating the performance of
the best arbitrary mapping by freely increasing the number of
quantization levels. Instead, we would like our regret bound
to be dependent on the actual number R of disjoint regions
that is needed and sufficient to model the actual complexity of
the best arbitrary mapping whatever the quantization level N
is. Hence, we want to achieve the order O(

√
RT ). Moreover,

working with these MN parameters αt,1, ..., αt,MN has quite
high space and computational complexities of O(MN ).

To this end, we introduce hierarchical structures to generate
context space partitions and exploit the level of complexity
that is sufficient to model the best mapping over the introduced
hierarchy. Thus, we achieve a regret upper bound with square-
root dependency on the actual number of regions R in a
computationally highly superior manner with significantly low
space complexity.

IV. HIERARCHICAL STRUCTURES

We use hierarchical structures to implement our contextual
bandit algorithm efficiently in terms of both the regret upper
bound convergence to 0 in average loss per round sense as
well as computational and space complexities. Suppose that
we have H nodes in a hierarchical structure labeled vi, i ∈
{1, 2, ...,H}. We assign each node vi a region ri from the
context space and there is hierarchical connection from each

8For ease of exposition and simplicity in our order notation here, we
drop the variables, on which the dependency of order is similar or same
or negligible across the compared algorithms.

parent node to its child nodes. Let Φi be the set of child node
groups of the node vi, where each group φ ∈ Φi consists of
child nodes such that the union of their corresponding regions
gives the region associated with the parent node vi.

For instance, consider the binary tree of depth 2 in Fig. 3,
which quantizes the 2-dimensional context space S = [0, 1]2.
Each node of such binary tree corresponds to a region of the
context space, as shown in the figure. The region correspond-
ing to each node is the union of the regions of its child nodes.
Hence, for each node vi in this tree (except for the leaf nodes),
the set Φi is of size 1, which consists of only one group of
cardinality 2 (which is the parent node’s child pair). For the
leaf nodes, Φi is the empty set and, hence, has a size of 0.

Next, we use this hierarchical structure to compactly repre-
sent our experts and combine them in an efficient manner.

A. A Weighted Mixture of Experts Algorithm Using Hierarchi-
cal Structures

In the following, we explain the details of our efficient im-
plementation of the mixture of experts algorithm (described in
Section III) by using hierarchical structures and present several
examples. In addition to achieving computational scalability in
our implementation, another goal of our work is to incorporate
the model complexity of the best expert to improve the upper
bound on the regret.

Here, each expert is composed of a partition of the context
space and an arm assigned to each partition region. The
partition corresponding to each expert can be represented using
several nodes of the hierarchical structure. Hence, each expert
can be represented using several nodes (showing the partition)
and an arm corresponding to each one of them (showing the
arm assignments). As an example, consider a 2-armed bandit
problem. Suppose that we use a binary tree of depth 2 to
quantize the context space into 4 regions. In this case, we
define 24 = 16 experts as in Fig. 2. We represent 4 samples
among these 16 experts on our binary tree in Fig. 4. In this
figure, the nodes representing the partition corresponding to
the experts are marked using the circles and the arm selected
by the expert at each one of these nodes is declared over
the node. We seek to adaptively combine all of the experts
to achieve the performance of the best one as explained in
Section III.

In order to implement our mixture of experts, over each
node vi, we define M parameters αt,m,i for m = 1 to M as
the weight of mth arm in the node vi. This weight shows our
trust on the mth arm when the context vector falls into the
region corresponding to the node vi. We set α1,m,i = 1 for
all m’s and vi’s, and for t ≥ 2,

αt,m,i = exp

(
−η

t−1∑
τ=1

lIτ
pτ,m

1{Iτ=m}1{sτ∈ri}

)
. (7)

We can easily update these weights as follows. At each round
t, after we receive st, calculate pt, select I th

t arm and observe
the loss lt,It , we calculate

αt+1,m,i = αt,m,i exp

(
−η lIt

pt,m
1{It=m}1{st∈ri}

)
. (8)
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Select arm 2

Select arm 2

Select arm 1

Select arm 2 Select arm 1 Select arm 1 Select arm 1Select arm 2 Select arm 2

Select arm 1

Fig. 4: Representation of 4 sample mappings in Fig. 2 over the binary tree in Fig. 3.

We point out that the weight of each expert αt,k in (4) can be
written as a multiplication of its initial weight and our weight
parameters (i.e. αt,m,i’s) on the tree nodes corresponding to
the mapping followed by the expert. To this end, in order to
obtain the expert weights (cf. Theorem 2), we define another
variable wt,i over each node vi such that

wt,i =
1

(|Φi|+ 1)M

M∑
m=1

αt,m,i +
1

|Φi|+ 1

∑
φ∈Φi

∏
j∈φ

wt,j

 .

(9)
Hence, if Φi is the empty set (i.e. |Φi| = 0), then the equation
simply becomes

wt,i =
1

M

M∑
m=1

αt,m,i. (10)

The following proposition shows that using this recursion to
calculate wt,i variables, the weight of the root node wt,1
becomes equal to the sum of the expert weights, i.e.,

∑
k αt,k

(as defined in (4)).

Proposition 1. Using the recursive formula in (9), at each
node vi, we have

wt,i =
∑
k∈Γi

αt,k, (11)

where Γi is the set of all experts defined over node vi.

Proof of Proposition 1 is provided in Appendix B.
Now, in order to calculate the probability simplex in (3),

we define M other variables to calculate
∑
k αt,k1{gk(st)=i}

for i = 1, ...,M . To this end, after we observe st, we set

γt,m,i =
1

M
αt,m,i, (12)

at the nodes vi containing st, where |Φi| = 0 (i.e., leaf nodes).
Then, we go up on the hierarchy using a recursive formula

similar to the way we calculate wt,i variables in (9) as

γt,m,i =
1

(|Φi|+ 1)M
αt,m,i

+
1

|Φi|+ 1

∑
φ∈Φi

∏
j∈φ

wt,j

(
γt,m,j
wt,j

)1{st∈rj}
 . (13)

Using this recursion, we calculate γt,m,1 for m = 1, ...,M .
The following proposition shows that using this recursion,
γt,m,1 is the weighted sum of all experts, which select the mth

arm when they observe st. Hence, we can build the probability
simplex in (3) as

pt,m = γt,m,1/wt,1,∀m ∈ {1, ...,M}. (14)

Proposition 2. Using the recursive formula in (13), at each
node vi, for all m ∈ {1, ...,M}, we have

γt,m,i =
∑
k∈Γi

αt,k1{gk(st)=m}, (15)

where Γi is the set of all experts defined over node vi.

Proof of Proposition 2 is provided in Appendix C.
With the proposed implementation of the algorithm, at

each round t, after observing st, we first calculate γt,m,1 for
m = 1, ...,M and then divide by wt,1 to form the probability
simplex pt = (pt,1, ..., pt,m), using which we select an arm
It. After we select our arm and suffer the loss according
to the selected arm, we first update αt,It,i parameters at the
nodes containing st. Then, we update wt,i variables at these
affected nodes and go to the next round. The pseudo code of
the explained procedure is provided in Algorithm 1.

Next, we show the regret bound of our hierarchical structure
algorithm.
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Algorithm 1 Hierarchical Structure based Bandits (HSB)

1: Parameter:
2: Set constant η ∈ R+

3: Initialization:
4: Initialize the structure including nodes vi, the regions ri

and the hierarchical relations Φi.
5: Initialize α1,m,i = 1 for all m, i.
6: Initialize w1,i for all i using (9)
7: Algorithm:
8: for t = 1 to T do
9: Observe st

10: for m = 1 to M do
11: Calculate γt,m,i according to (13)
12: end for
13: for m = 1 to M do
14: pt,m = γt,m,1/wt,1
15: end for
16: Select a random arm It according to the probability

simplex pt = (pt,1, ..., pt,M )
17: Set αt+1,m,i = αt,m,i for all m, i
18: Set wt+1,i = wt,i for all i
19: for the nodes vi, where st ∈ ri do
20: Calculate αt+1,It,i according to (8)
21: end for
22: for the nodes vi, where st ∈ ri do
23: Calculate wt+1,i using (9)
24: end for
25: end for

Theorem 2. Algorithm 1 achieves the regret bound

R(T,GN ) ≤ Ψ(AR + 1) ln((HS + 1)M)

η
+
MTη

2
, (16)

where Ψ is an upper bound on the cardinality of the child node
groups φ, i.e., Ψ ≥ |φ| for all φ, HS is an upper bound on
the cardinality of Φi, i.e., HS ≥ |Φi| for all i, and AR is an
upper bound on the minimum number of splittings needed in
the hierarchical structure to model the optimal partition with
R disjoint regions.

Proof of Theorem 2: If the optimal expert is defined over
the root node, i.e., AR = 0, its prior weight in the mixture is

β1,j =
1

(|Φi|+ 1)M
≥ 1

(HS + 1)M
. (17)

With each split in the hierarchical structure (i.e., with each
move down the hierarchy), the prior weights of the experts
are divided by a factor which is at most (HS + 1)ΨMΨ−1.
Thus, in case we need AR splittings to model the partition
corresponding to the optimal expert, its prior weight is

β1,j ≥ (HS + 1)−ARΨ−1MAR−ARΨ−1. (18)

Since AR ≥ 1 and Ψ ≥ 1, we have

β1,j ≥ (HS + 1)−Ψ(AR+1)M−Ψ(AR+1). (19)

Hence,

ln(1/β1,j) ≤ Ψ(AR + 1) ln((HS + 1)M). (20)

Putting (20) into (6) concludes the proof.

Corollary 1. By setting

η =

√
2Ψ(AR + 1) ln((HS + 1)M)

MT
, (21)

we get the regret bound of

R(T,GN ) ≤
√

0.5ΨMT (AR + 1) ln ((HS + 1)M). (22)

We next present several examples of hierarchical structures
which can be employed by our algorithm with the introduced
mathematical guarantees. Each structure has its own way of
encoding the best arm selection policy, i.e., optimal arbitrary
mapping. Hence, the proper selection of the hierarchical struc-
ture according to the target application leads to a smaller AR
and a better performance, i.e., a regret upper bound vanishing
faster in the average loss per round sense, together with the
introduced weighting over the corresponding competition class
GN , cf. Section VI as well as the examples below.

B. Example 1: Arbitrary Splitting

If the hierarchical structure is an arbitrary splitting of N
leaf nodes into 2 groups, then Ψ = 2, HS = 2N−1 − 1 and
AR = M − 1. Hence, the regret is upper bounded as

R(T,GN ) ≤ 2M ln(2N−1M)

η
+
MTη

2

≤ 2MN ln(M)

η
+
MTη

2
, (23)

where the last inequality uses 2 ≤M .

C. Example 2: Binary Tree

In binary trees we have Ψ = 2 and HS = 1. For a binary
tree with N leaf nodes, we need at most log2N splitting
to create each new region. Hence, AR = (R − 1) log2N .
Therefore,

R(T,GN ) ≤ 2((R− 1) log2N + 1) ln(2M)

η
+
MTη

2

≤ 2R log2N ln(2M)

η
+
MTη

2
. (24)

D. Example 3: K-ary Tree

If the hierarchical structure is a K-ary tree (for K = 2 this
becomes a binary tree) with N leaf nodes and depth D =
logK N , then Ψ = K, HS = 1 and AR = (R − 1) logK N .
Therefore, we have

R(T,GN ) ≤ K(1 + (R− 1) logK N) ln(2M)

η
+
MTη

2

≤ KR logK N ln(2M)

η
+
MTη

2
. (25)

E. Example 4: Lexicographical Splitting Graph

In a lexicographal splitting graph with N leaf nodes, we
have Ψ = 2, HS = N − 1 and AR = R− 1. Hence,

R(T,GN ) ≤ 2R ln(NM)

η
+
MTη

2
. (26)
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F. Example 5: K-group Lexicographical Splitting

If the hierarchical structure is a splitting of N sequentially
ordered leaf nodes into K groups (when K = 2 this structure
becomes the lexicographical splitting graph), then Ψ = K,
HS =

(
N−1
K−1

)
and AR = dR−1

K−1e. Therefore, the regret upper
bound is

R(T,GN ) ≤
K(dR−1

K−1e+ 1) ln((1 +
(
N−1
K−1

)
)M)

η
+
MTη

2

≤ K(R+ 2K) ln(NM)

η
+
MTη

2
. (27)

G. Example 6: Arbitrary Position Splitting

In this case, for a d-dimensional context space, we have
Ψ = 2, HS = d and AR = (R− 1) log2N . Therefore,

R(T,GN ) ≤ 2((R− 1) log2N + 1) ln((d+ 1)M)

η
+
MTη

2

≤ 2R log2N ln((d+ 1)M)

η
+
MTη

2
. (28)

We have successfully achieved a regret bound of
O(
√
MTR lnN lnM) with proper selection of the learning

rate. Note that typically, N >> R. Our regret bounds are only
logarithmically dependent on N , hence, in soft-O notation, we
achieve the minimax optimal regret bound Õ(

√
TR).

Next and finally, we address the goal of achieving the
performance of the best arm selection policy, i.e., the per-
formance of the optimal arbitrary mapping (in the ultimate
set U) from the context space to the bandit arms which
is not necessarily in the competition class GN but can be
approximated arbitrarily well and almost perfectly, if desired,
by the class by increasing N . The quantization process in our
algorithm naturally produces an additive linear-in-time term
in our regret against the truly optimal mapping in U . In the
following section, we assume that the arm losses are Lipschitz
continuous in the context vectors at each specific round. With
this assumption, we show that using a uniform quantization
of the context space, we can diminish the linear-in-time term
in our regret against the optimal mapping in U by increasing
the number of quantization levels N . Hence, we can achieve
a performance as close as desired to the performance of the
optimal mapping in U .

V. AN EFFICIENT QUANTIZATION METHOD TO
ASYMPTOTICALLY ACHIEVE THE OPTIMAL CONTEXT

BASED ARM SELECTION

Suppose that the context space is the n-dimensional space
S = [0, 1]n. Using a hierarchical structure with N leaf nodes,
our quantization scheme is as follows. We split the context
space into 2b(log2N)/nc+1 equal subspaces along the first
log2N (mod n) dimensions (of the total n dimensions), and
2b(log2N)/nc equal subspaces along the remaining dimensions.

Theorem 3. Using aforementioned quantization method for
our algorithm, if the arm loss functions are Lipschitz con-
tinuous with the Lipschitzness constant c, then the difference
between the loss corresponding to the best mapping in GN
and the loss corresponding to the truly optimal mapping (in

the ultimate set9 U of all possible arbitrary mappings from
the context space to the set of bandit arms) is upper bounded
by

2c
√
n

n
√
N
. (29)

Proof of Theorem 3: Using this quantization method,
the subspaces in the finest partition of the context space are
n-dimensional cubes with the longest diagonal length equal to√

n− (log2N (mod n))

(2b
log2 N
n c)2

+
log2N (mod n)

(2b
log2 N
n +1c)2

. (30)

Since log2N ( mod n) ≥ 0, this upper bound is at most equal
to √

n

22b log2 Nn c
≤ 2

√
n

2
log2 N
n

=
2
√
n

n
√
N
. (31)

Since the loss functions are Lipschitz continuous, the dif-
ference between the loss corresponding to the truly optimal
mapping in U and the best mapping in GN cannot exceed
the Lipschitzness constant times the quantized cubes diagonal
length, which concludes the proof.

Note that the Lipschitzness assumption does not intervene
with the adversarial setting. The loss functions can be quite
different in different rounds and as long as they are Lipschitz
continuous at each specific round, the assumption holds and
our algorithm is competitive against the ultimate set of all
possible arbitrary mappings U . In this case, combining (29)
with the regret bound in (22) directly concludes the following
theorem.

Theorem 4. Consider a contextual M -armed bandit problem
with the context space S = [0, 1]n, where the loss functions
of the arms are Lipschitz continuous with the constant c at all
rounds. If we use a hierarchical structure with N leaf nodes
following the quantization scheme described in Section V, the
regret of Algorithm 1 against the truly optimal strategy in a
T round trial is upper bounded as follows

R(T,U) ≤
√

ΨMT (AR + 1) ln ((HS + 1)M)

2
+

2Tc
√
n

n
√
N

.

(32)

We emphasize that we can make the linear-in-time term of
the upper bound in (32) as small as desired by growing the
hierarchical structure and increasing the number of leaf nodes
N , which is equal to the number of quantization levels.

VI. EXPERIMENTS

In this section, we demonstrate the performance of our algo-
rithm in different scenarios involving both real and synthetic
data. We demonstrate the performance of our main algorithm
HSB with various hierarchical structures including binary
tree (HSB-BT), lexicograph (HSB-LG) and arbitrary position
splitting (HSB-APS) [33]. We compare the performance of
our algorithm against the state-of-the-art adversarial bandit
algorithms EXP3 and S-EXP3 [16]. In all of the experiments,
the parameters of EXP3 and S-EXP3 algorithms are set to their
optimal values according to their publication [16].

9This ultimate set can be non-rigorously considered as G∞.
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Fig. 5: The averaged accumulated loss of HSB-BT, S-EXP3,
and EXP3 on the datasets defined using (33).

A. Stationary Environment

We first construct a game with 3-armed bandit, where the
context space is the 1-dimensional space S = [0, 1]. Each arm
i generates its loss according to a Bernoulli distribution with
parameter pi, i.e., the loss is equal to 1 with probability equal
to pi. These parameters, i.e., p1, p2, p3, depend on the context
variable st as

p1(st) = 0.5 + 0.5 sin(2πst),

p2(st) = sin(πst),

p3(st) = st. (33)

Here, the optimal strategy is defined as follows

g(st) =


3, st < 0.5

1, 0.5 ≤ st < 0.9182

2, 0.9182 ≤ st.
(34)

In this experiment, we generate the context variable st
randomly with uniform distribution over the context space, i.e.,
[0, 1], and compare the averaged cumulated loss performance,
i.e., (

∑t
τ=1 lτ,Iτ )/t, for our algorithm HSB-BT with various

depth parameters equal to 2, 5, and 10, S-EXP3 [16] with the
same depth parameters, and EXP3 [16].

To this end, we generate 10 synthetic datasets of length 105.
To produce each dataset, first, 105 context variables st are
drawn according to a uniform probability distribution over the
interval [0, 1]. Then, the arm losses corresponding to different
rounds are drawn from the Bernoulli distributions, parameters
of which are determined according to (33). Each dataset
is presented to the algorithms 10 times and the results are
averaged. This process is repeated for all 10 datasets and the
ensemble averages are plotted in Fig. 5. Two important results
can be derived from the result of this experiment. First, our
algorithm HSB-BT outperforms both of the S-EXP3 and EXP3
algorithms. Second, while increasing the depth uniformly
improves the performance of our algorithm, it can degrade the
performance of S-EXP3 due to the overtraining. The superior
performance of our algorithm in this experiment is because of
its fast convergence to the optimal mapping. Here, EXP3 has
a fast convergence but it converges to a suboptimal mapping
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Fig. 6: The averaged accumulated loss of HSB-BT, S-EXP3,
and EXP3 on the datasets as described in Section VI-B,
involving a rapid change in the behavior of the arms after
25% of the rounds.

because it does not use the context information. On the other
hand, S-EXP3 converges to the optimal mapping, but needs
a huge amount of data to get trained. Our algorithm uses an
efficient adaptive combination of the experts with intelligent
initial weights to obtain the advantages of both EXP3 and S-
EXP3 algorithms, while mitigating their disadvantages.

B. Nonstationary Environment

In this part, we illustrate the averaged cumulated loss
performance of the algorithms in a nonstationary environment.
To this end, we construct 10 different datasets of length 105 as
in Section VI-A. However, here the arm losses follow a model
as in (33) in the first quarter of the rounds, and the following
model in the rest of the rounds:

p1(st) = sin(πst),

p2(st) = st,

p3(st) = 0.5 + 0.5 sin(2πst). (35)

Hence, we have an abrupt change in the model of the arms
within the rounds. Each dataset is presented to the algorithms
10 times and the results are averaged. This process is repeated
for all 10 datasets and the ensemble averages are plotted in
Fig. 6. As shown in the figure, our algorithm HSB-BT not
only outperforms its competitor before the rapid change in
the model of the bandit arms but also adopts better to this
rapid change in comparison to the competitors.

C. Real Life Online Advertisement Dataset

In this section, we demonstrate the superior performance
of our algorithms HSB-BT and HSB-LG against their natural
competitors EXP3 and S-EXP3 over the well known real life
dataset provided by Yahoo! Research. This dataset contains a
user click log for news articles displayed in the featured tab
of the Today Module on Yahoo!’s front page, within October
2 to 16, 2011. The dataset contains 28041015 user visits.
For each visit, the user is associated with a binary feature
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Algorithm 2 The offline evaluation method used to test the
competitor algorithms over the Yahoo! Today Module dataset

1: Input: Bandit algorithm A, logged data for T rounds
2: Initialize: L = 0 and R = 0
3: for t = 1 to T do
4: Get st ∈ {1, 2, ..., N} from the log
5: Run the algorithm A.
6: if the arm, selected by A is the arm which is shown to

the user then
7: Use the user feedback to update A.
8: Set R = R+ 1.
9: If the user has not clicked set L = L+ 1.

10: else
11: Ignore this round.
12: end if
13: end for
14: L and R show the total loss and the total rounds respec-

tively.

vector of dimension 136 that contains information about the
user like age, gender, behavior targeting features, etc. We
used an unbiased offline evaluation method as in [48], to test
the competitors over this dataset. A brief pseudo-code of this
evaluation method is shown in Algorithm 2. In this experiment,
we ran a PCA algorithm [49] over the first 5% of the data
to get the principal components of the feature vectors. We
mapped the feature vectors over the first principal component
to form a set of 1−dimensional context variables. We used
these context variables for S-EXP3, HSB-BT and HSB-LG
algorithms. We tested the EXP3 and S-EXP3 algorithms with
several depth parameters, while their parameters were set to
their optimum values [16]. However, since we do not have
any information about the number of disjoint regions in the
optimal mapping, i.e., R, the η parameter for the HSB-BT
and HSB-LG algorithms cannot be tuned to the optimum
value analytically. In this experiment, in order to have a fair
comparison, we set the η parameter of the HSB-BT and HSB-
LG algorithm with a specific depth equal to the η parameter
of the S-EXP3 algorithm with the same depth. We emphasize
that no numerical optimization is done for the η parameter
of our algorithms. The percentage of user clicks for different
algorithms are shown in Fig. 7. As shown in this table,
our algorithms outperform both of the S-EXP3 and EXP3
algorithms, even though the learning rate parameters of our
algorithms are not tuned to the optimum values due to the
lack of knowledge on the parameter R.

D. Real Life Classification Dataset
In this experiment, we use well-known LandSat dataset

[50] to show how our algorithm can be employed for online
multi-class classification in the Error Correcting Output Codes
(ECOC) framework [51]. This dataset consists of 6435 sam-
ples from 6 classes. The feature vectors are 36-dimensional
integer vectors.

In the ECOC framework, given a set of C classes, we
assign a binary codeword of length NC to each one of the
classes. We arrange these codewords as rows of a coding
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Fig. 7: Percentage of click in the Yahoo! Today Module dataset

matrix MC ∈ {+1,−1}C×NC . We consider each one of the
NC columns of MC as a binary classification problem and
run a binary classifier over each column. The ith classifier is to
learn whether the ith bit of the codeword is +1 or −1. In order
to label a new sample, the feature vector is fed to the binary
classifiers to obtain a codeword based on their outputs. We
then decide on the label of the sample based on its codeword.

In this experiment, we use the one-versus-all coding [51]
to form our coding matrix as shown in table 2 and run 6
Online Perceptrons in parallel as our binary classifiers. We use
the codewords obtained from the Perceptrons as our context
vectors and the classes as our bandit arms. We provide our
algorithm HSB with the context vectors and label the sample
based on the arm suggested by the algorithm. Then, we
observe the true label and suffer a loss equal to 1 in case
of incorrect label. The competitors in this experiment are our
algorithm HSB with two different hierarchical structures of
”Arbitrary Position Splitting” (HSB-APS) and ”Binary Tree”
(HSB-BT), alongside EXP3, S-EXP3 and Hamming Decoding
[51]. The learning parameters of the algorithms are set to their
optimal value.

We emphasize that while the Hamming Decoder knows
the codewords corresponding the classes a priori, other com-
petitors do not use this information and try to learn the
best mapping from the context space, i.e., codewords space,
to the classes. For presentation simplicity, we have splitted
the samples into 9 consecutive epochs and averaged the
number of errors over each epoch. As shown in Figure 8, the
algorithms S-EXP3, HSB-BT and HSB-APS compensate their
lack of information on the coding matrix (compared to the
Hamming Decoder) as time goes on. Among them, HSB-APS
outperforms the others and even Hamming Decoder in the last
3 epochs as expected.

VII. CONCLUDING REMARKS

We studied the contextual multi-armed bandit problem in an
adversarial setting and introduced a truly online and low com-
plexity algorithm that asymptotically achieves the performance
of the best context dependent bandit arm selection policy.
Our core algorithm quantizes the space of the context vectors
into a large number of disjoint regions using an efficient
quantization method and forms the class of all mappings from
these regions to the bandit arms. Then, it adaptively combines
these mappings in a mixture-of-experts setting and achieves
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Fig. 8: The percentage of misclassification of the competitors
over 9 consecutive epochs of length 715.

the performance of the best mapping in the class. We prove
performance upper bounds for the introduced algorithm. These
upper bounds show that we achieve the performance of the
truly optimal mapping (which might be out of our class of
mappings) by increasing the number of quantization levels.
We use hierarchical structures to implement our algorithm in
an efficient way such that the computational complexity is
log-linear in the number of quantization levels. We have no
statistical assumptions on the behavior of the context vectors
and the bandit arms, hence our results are guaranteed to hold
in an individual sequence manner. Through extensive set of
experiments involving synthetic and real data, we demonstrate
the significant performance gains achieved by the proposed
algorithm in comparison to the state-of-the-art techniques.

APPENDIX A
PROOF OF THEOREM 1

From the definition, denoting the mapping followed by the
jth expert by gj(.), we have

R(T,Ej) = E

[
T∑
t=1

lt,It −
T∑
t=1

lt,gj(st)

]
(36)

Here, lt,It can be expanded as

lt,It = Ej∼βt l̃t,gj(st)

=
1

η

(
ln
(
Ej∼βte

−ηl̃t,gj(st)
)

+ ηEj∼βt l̃t,gj(st)
)

− 1

η
lnEj∼βte

−ηl̃t,gj(st) . (37)

The first term in (37) can be bounded using the inequalities
lnx ≤ x− 1 and exp(−x)− 1 + x ≤ x2/2, for all x ≥ 0, as

ln
(
Ej∼βte

−ηl̃t,gj(st)
)

+ ηEj∼βt l̃t,gj(st)

≤ Ej∼βt
[
e
−ηl̃t,gj(st) − 1 + ηl̃t,gj(st)

]
≤ Ej∼βt

η2 l̃2t,gj(st)

2
=
η2l2t,It
2pt,It

≤ η2

2pt,It
. (38)

In order to bound the second term in (37), we just rewrite the
expectation using (4) as follows. For t = 1, we have

−1

η
lnEj∼β1

e
−ηl̃1,gj(s1) = −1

η
ln

∑MN

j=1 α1,je
−ηl̃1,gj(s1)∑MN

j=1 α1,j

,

(39)
and for t ≥ 2, we have

−1

η
lnEj∼βte

−ηl̃t,gj(st)

= −1

η
ln

∑MN

j=1 α1,je
−η

∑t
τ=1 l̃τ,gj(sτ )∑MN

j=1 α1,je
−η

∑t−1
τ=1 l̃τ,gj(sτ )

. (40)

Putting the bounds in (38) and (40) into (37), we have

T∑
t=1

lt,It ≤ −
1

η
(

T∑
t=2

ln

∑MN

j=1 α1,je
−η

∑t
τ=1 l̃τ,gj(sτ )∑MN

j=1 α1,je
−η

∑t−1
τ=1 l̃τ,gj(sτ )

+ ln

∑MN

j=1 α1,je
−ηl̃1,gj(s1)∑MN

j=1 α1,j

) +
ηT

2pt,It
. (41)

Opening the first two term in (41), we have

T∑
t=1

lt,It ≤ −
1

η
ln

MN∑
j=1

α1,je
−η

∑T
τ=1 l̃τ,gj(sτ )

+
1

η
ln

MN∑
j=1

α1,j +
ηT

2pt,It
. (42)

Since
∑MN

j=1 α1,je
−η

∑T
τ=1 l̃τ,gj(sτ ) ≤ α1,je

−η
∑T
τ=1 l̃τ,gj(sτ ) ,

we have
T∑
t=1

lt,It ≤ −
1

η
lnα1,j +

T∑
τ=1

l̃τ,gj(sτ )

+
1

η
ln

MN∑
j=1

α1,j +
ηT

2pt,It

=
ln 1/β1,j

η
+

ηT

2pt,It
+

T∑
τ=1

l̃τ,gj(sτ ). (43)

Taking expectation from both sides (with respect to It ∼ pt)
and substituting E[l̃τ,gj(sτ )] = lτ,gj(sτ ) and E[ 1

pt,It
] = M into

the result concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 1

We prove this proposition using induction. For leaf nodes
where Φi = ∅, we have

wt,i =
1

M

M∑
m=1

αt,m,i. (44)

From the definition of αt,m,i in (7) we have

wt,i =

M∑
m=1

1

M
exp(−η

∑
τ<t
sτ∈ri

l̃τ,m) =
∑
k∈Γi

αt,k, (45)

where α1,k = 1/M for all k ∈ Γi.
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Consider the node vi. Suppose ∀φ ∈ Φi,∀j ∈ φ we have

wt,j =
∑
k∈Γj

αt,k. (46)

It suffices to show that

wt,i =
∑
k∈Γi

αt,k. (47)

The set of experts defined over vi, i.e., Γi, can be decom-
posed into the following subsets:
• Γoi : The set of experts, which map the whole context

space into a fixed arm. This set contains M experts.
• Γφi , φ ∈ Φi : The set of experts, which partition the

context space into the regions rj , j ∈ φ, and follow
a specific expert over each node j ∈ φ, based on the
observed st. If st ∈ rj , the experts in Γφi follow the
experts in Γj . This set contains

∏
j∈φ |Γj | experts. Each

experts in Γφi can be represented by a vector of experts
kφ ∈

∏
j∈φ Γj , where kφ(j) is an expert defined over

node j.
We emphasize that even though we have

Γoi ∪ (
⋃
φ∈Φi

Γφi ) = Γi, (48)

the intersection of any two of these |Φi| + 1 subsets is not
empty necessarily. In particular, the M experts in Γoi are also
included among the elements of Γφi for all φ ∈ Φi. In fact,
each expert in Γoi can be seen as an expert which partitions
the context space into rj’s for j ∈ φ, and follows the experts
which select a fixed arm m over all the nodes vj’s.

We have∏
j∈φ

wt,j =
∏
j∈φ

∑
k∈Γj

αt,k

 =
∑

kφ∈
∏
j∈φ Γj

∏
j

α
t,kφ(j)

 .

(49)
We open the product term as∏

j

α
t,kφ(j)

=
∏
j

α
1,kφ(j)

exp

−η∑
τ<t

∑
j

l̃τ,gkφ(j)
(sτ )1{sτ∈rj}


=
∏
j

α
1,kφ(j)

exp

−η ∑
τ<t
sτ∈ri

l̃τ,gkφ
(sτ )

 . (50)

Putting (50) into (9) we get

wt,i =
1

(|Φi|+ 1)M

∑
k∈Γoi

αt,k

+
1

|Φi|+ 1

∑
φ∈Φi

 ∑
kφ∈

∏
j∈φ Γj

α
1,kφ exp

−η ∑
τ<t
sτ∈ri

l̃τ,gkφ(sτ )




=
1

(|Φi|+ 1)M

∑
k∈Γoi

αt,k +
1

(|Φi|+ 1)

∑
φ∈Φi

∑
k∈Γφi

αt,k =
∑
k∈Γi

αt,k,

(51)

where

α1,k =
1

(|Φi|+ 1)M
1{k∈Γoi }

+
1

|Φi|+ 1

∑
φ∈Φi

1{k=kφ}

∏
j∈φ

α
1,kφ(j)

 . (52)

APPENDIX C
PROOF OF PROPOSITION 2

Consider a specific bandit arm m∗. Given the context vector
st, for all m ∈ {1, 2, ..,M}, for all nodes vi in the hierarchy,
we define the variables α̃t,m,i as

α̃t,m,i =

{
0, st ∈ ri,m 6= m∗

αt,m,i, otherwise
. (53)

Now, from the definition of γt,m,i in (13), we have

γt,m∗,i =
1

(|Φi|+ 1)M

M∑
m=1

α̃t,m,i

+
1

(|Φi|+ 1)

∑
φ∈Φi

∏
j∈φ

w̃t,j

 . (54)

The exact same lines of the proof of Theorem 1 hold to show
that

w̃t,i =
∑
k∈Γi

α̃t,k, (55)

where

α̃t,k =

{
αt,k, gk(st) = m∗

0, otherwise
. (56)

Hence, (15) holds.
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