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Abstract—We investigate classification and regression for non-
uniformly sampled variable length sequential data and introduce
a novel Long Short-Term Memory (LSTM) architecture. In
particular, we extend the classical LSTM network with additional
time gates, which incorporate the time information as a nonlinear
scaling factor on the conventional gates. We also provide forward
pass and backward pass update equations for the proposed
LSTM architecture. We show that our approach is superior
to the classical LSTM architecture, when there is correlation
between time samples. In our experiments, we achieve significant
performance gains with respect to the classical LSTM and
Phased-LSTM (PLSTM) architectures. In this sense, the proposed
LSTM architecture is highly appealing for the applications
involving non-uniformly sampled sequential data.

Index Terms—Non-uniform Sampling, Long Short-Term Mem-
ory, Recurrent Neural Networks, Supervised Learning, Classifi-
cation, Regression

I. INTRODUCTION

A. Preliminaries

We study classification and regression of non-uniformly
sampled variable length data sequences, where we sequentially
receive a non-uniformly sampled data sequence and estimate
an unknown desired signal related to this sequence. In the
classical data processing applications, data sequences are usu-
ally assumed to be uniformly sampled, however, this is not the
case in many real life applications. For example, non-uniform
sampling is used in many medical imaging applications [1],
measurements in astronomy due to day and night conditions
[2] and financial data [3], where the stock market values are re-
determined by each transaction. Although non-uniformly sam-
pled data frequently arises in these problems, there exist a few
studies on non-uniformly sampled sequential data processing
in neural networks [4], [5], machine learning [6] and signal
processing literatures [7], [8]. Nonlinear approaches are usu-
ally used in these studies since linear approaches are usually
incapable of capturing highly complex underlying structures
[9]. Here, we study classification and regression problems
particularly for non-uniformly sampled variable length data
sequences in a supervised framework. We sequentially receive
a data sequence with the corresponding desired data or signal
and we find a nonlinear relation between them.

Even though there exist several nonlinear modeling ap-
proaches to process the sequential data [10], [9], neural
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network based methods are more practical in general because
of their capability of modeling highly nonlinear and complex
underlying relations [11]. Especially, recurrent neural networks
(RNNs) are employed to process sequential data since they
are able to identify sequential patterns and learn temporal
behaviour, thanks to their internal memory exploiting past
information. Although simple RNNs improve the performance
in sequential processing tasks, they fail to capture long term
dependencies due to vanishing and exploding gradient prob-
lems [12]. The LSTM networks are introduced as a special
class of the RNNs to remedy these vanishing and exploding
gradient problems and capture the long term dependencies
[12]. The LSTM networks provide performance gains with
their gating mechanisms, which control the amount of the
information entering the network and the past information
stored in the memory [11].

Even though the classical LSTM networks have satisfactory
performance in the applications using uniformly sampled
sequential data, they usually perform poorly in the case of non-
uniformly sampled data [13], [5]. To circumvent this issue, one
can convert non-uniformly sampled data to uniformly sampled
data by employing a preprocessing technique, e.g., [13], [14].
However, such approaches result in computational load and
provide restricted performance [15].

In this paper, we resolve these problems by introducing a
sequential nonlinear learning algorithm based on the LSTM
network, which is extended with additional gates incorporating
the time information. Our structure provides additional time
dependent control while keeping the computational load in the
same level. Through extensive set of simulations, we demon-
strate significant performance improvements compared to the
state of the art architectures in several different regression and
classification tasks.

B. Prior Art and Comparisons

RNN based learning methods are extensively used in pro-
cessing sequential data and modeling time series [16], [17],
[18]. Especially complex RNNs, e.g., LSTM networks, have a
satisfactory performance thanks to their memory capabilities
to exploit past information and gating mechanism to control
the flow of the information entering the network. However, this
performance of the LSTM networks depends on how the data
is sampled, i.e., uniform or non-uniform sampling, existence
of missing samples and time intervals between the samples
change the performance of the network [5]. In [19], [20],
which provide VLSI RNNs with continuous-time dynamical
systems approaches, the authors state their networks require



uniformly sampled data and have limitations in the case of
non-uniformly sampled data. Moreover, in [21], [22], it has
been shown that the size of the time intervals between samples
are important and convey significant information for many
sequential data processing tasks such as rhythm detection and
motor control.

Among few proposed solutions for processing non-
uniformly sampled sequential data, [13] and [14] first convert
non-uniformly sampled data to uniformly sampled data by
windowing and averaging the samples on the large intervals.
Then, they process this uniformly sampled data using the
LSTM network. In this setup, they still feed the LSTM
network with uniformly sampled data, which is obtained
after preprocessing the non-uniformly sampled data. These
windowing and averaging operations cause information loss
in data entering the LSTM network. As an example, this
preprocessing may cause failure in the corresponding tasks,
where the aim is to detect whether a value is greater than a
certain threshold or not, since averaging smooths the peaks.
Furthermore, they also lose the time information contained in
the sampling intervals instead of incorporating this information
to the network. On the contrary, our LSTM network uses the
whole sequence to generate the output, therefore, it exploits all
information in the sequence. In addition, it also incorporates
the time information to capture the relationship between the
underlying model and the sampling times.

The sampling time information should be used in the
network to enhance the performance in the applications using
non-uniformly sampled data [5]. One can add the time inter-
vals between consecutive data samples to the input vectors as
another feature [5]. However, extending the input vector by the
time differences contributes only as an additive term with a
constant linear scaling deeming this approach as insufficient to
model the effect of non-uniform sampling as we demonstrate
in this paper. On the contrary, in our LSTM architecture the
time differences appear as an adaptive nonlinear scaling factor
on the conventional gates of the classical LSTM architecture,
which sufficiently model the effect of the non-uniform sam-
pling.

In [5], the authors provide a new LSTM architecture,
namely, the PLSTM architecture, which basically learns a
periodic sampler function and responds to only a small portion
of the input sequence, which is sampled by this function. The
sampler function is described by three parameters: period, shift
and on-ratio. In each period, the network is updated by only
the samples corresponding to its open phase, where on-ratio
is ratio of open phase to the period, and shift is the initial
time of the open phase. Processing only a small portion of the
data accelerates the learning process and provides capability to
work on non-uniformly sampled data by incorporating the time
information. Although the PLSTM network performs better
compared to the classical LSTM network in the classification
tasks using non-uniformly sampled data, our approach has two
significant contributions over this. Firstly, an important amount
of information is lost since the PLSTM architecture processes
only a small percentage of the data sequence corresponding to
its open phase, where we use the whole sequence. Secondly,
the PLSTM network generates the output only at the end of the

sequence, therefore, in the vanilla form, it can only be used
for the sequential data processing tasks requiring only one
output for the whole sequence. On the other hand, our LSTM
architecture can generate the output at each time step as well
as the end of the sequence, hence, it can also be employed in
the tasks such as time series prediction and online regression.

We emphasize that the conventional LSTM based methods
[13], [5], [11], [14] are inadequate to process non-uniformly
sampled sequential data since they suffer from certain restric-
tions such as loss in the information exploited by the network.
Furthermore, [13] and [14] lose the time information in the
preprocessing step due to windowing and averaging operations
instead of incorporating it. [5] has restricted application areas
since it can generate output only at the end of the sequence.
In this paper, we employ a novel LSTM network, which is
extended with additional time gates, for classification and se-
quential regression tasks. These time gates incorporate the time
information into the network as an adaptive nonlinear scaling
factor on the conventional gates. Since we use the whole data
sequence there is no loss in the incoming information unlike
[13], [14], [5]. Moreover, our LSTM architecture can generate
output at each time step unlike PLSTM, hence, it has a wide
range of application areas from sequence labelling to online
regression.

C. Contributions

Our contributions are as follows.
1) We introduce a novel LSTM network architecture

for processing non-uniformly sampled sequential data,
where for the first time in the literature we incorporate
the time information as a nonlinear scaling factor using
additional time gates.

2) We show that the sampling intervals have a scaling
effect on the conventional gates of the classical LSTM
architecture. To show this, we first model non-uniform
sampling with the missing input case and then extend it
to the arbitrary non-uniform sampling case.

3) Our architecture can generate output at each time step
as well as at the end of the input sequence unlike the
PLSTM network. Therefore, our LSTM architecture has
a wide range of application areas from online regression
to sequence labelling.

4) Our architecture contains the classical LSTM network
and simplifies to it when the time intervals do not carry
any information related to the underlying model.

5) Our LSTM architecture enables us to use the whole data
sequence without any loss in the information entering to
the LSTM network unlike [13], [14] and [5].

6) We achieve this substantial performance improvement
with the same order of computational complexity with
the vanilla LSTM network. The computational cost due
to the time gates is only linear in the number of hidden
neurons in the LSTM network.

7) Through extensive set of experiments involving synthetic
and real datasets, we demonstrate significant perfor-
mance gains achieved by our algorithm for both regres-
sion and classification problems.



D. Organization of the Paper

The organization of the paper as follows. We formally define
our problem setting in Section II. In Section III, we first
provide the derivations for the effect of the time information
on the conventional gates and then introduce our LSTM
architecture. In Section IV, we compare the performance of our
architecture with respect to the state of the art architectures.
The paper concludes with several remarks in Section V.

II. PROBLEM DESCRIPTION

In this paper, all vectors are column vectors and denoted by
boldface lower case letters. For a vector x, ||x|| =

√
xTx

is the `2-norm, where xT is the ordinary transpose. 〈·, ·〉
represents the outer product of two vectors, i.e., 〈x1,x2〉 =
x1x

T
2 . Vector sequences are denoted by boldface upper case

letters, e.g., X . X(i) represents the i th vector sequence in
the dataset {X(1), . . . ,X(N)}, where N is the number of
vector sequences in the set. X is the space of variable length
vector sequences, i.e., X(i) ∈ X . X(i) = [x

(i)
t1 , ...,x

(i)
tni

] are

the ordered sequence of vectors with length ni, where x(i)
tk

stands for the vector of X(i) at time tk, and k is the time
index. xj and xtk,j represent the jth elements in the vector x
and xtk , respectively. 1n ∈ Rn stands for the vector, where
all elements equal to 1. Wi,{j,k} represents the element of the
matrix W i in jth row and kth column.

We study nonlinear regression and classification of non-
uniformly sampled sequential data. We observe variable length
vector sequences X(i) = [x

(i)
t1 , ...,x

(i)
tni

] ∈ X , x(i)
tk
∈ Rm.

The corresponding desired signal is given by d
(i)
tk
∈ R in

regression and d
(i)
ni ∈ {1, . . . , C} for classification, where C

is the number of classes. Our goal is to estimate d(i)
tk

by

d̂
(i)
tk

= ftk(x
(i)
t1 , . . . ,x

(i)
tk

),

where ftk(·) is a possibly time varying and adaptive nonlinear
function at time step tk. For the input vector x(i)

tk
, we suffer

the loss l(d(i)
tk
, d̂

(i)
tk

) and the loss for the vector sequence X(i)

is the average of individual losses, which is denoted by L(i) =
1
ni

∑ni
k=1 l(d

(i)
tk
, d̂

(i)
tk

). The total performance of the network is
evaluated by the mean of the losses over all sequences:

L =
1

N

N∑
i=1

L(i). (1)

Since the data is non-uniformly sampled, the sampling times
of the input vectors xtk are not regular, i.e., the time intervals
between the consecutive input vectors, xtk and xtk+1

, may
vary and we denote these sampling intervals by ∆tk’s,

∆tk , tk+1 − tk.

As an example, in target tracking and position estimation
application with a camera system [23], we sequentially receive
position vectors of a target xtk and estimate its distance from
a certain point p in the next position by d̂tk . Here, the desired
signal is given by dtk = ||xtk+1

−p|| and under squared error
loss, l(dtk , d̂tk) = (dtk − d̂tk)2. In the case of occlusions or
when the camera misses frames, we do not receive position

vectors and time intervals between consecutively received
position vectors change, which corresponds to non-uniform
sampling.

We use recurrent neural networks to process the sequential
data. A generic RNN is given by [24]

htk = f(W hxtk +Rhhtk−1
)

ytk = g(Ryhtk),
(2)

where xtk ∈ Rm is the input vector, htk ∈ Rq is the state
vector and ytk ∈ Rp is the output at time tk. W h ∈ Rq×m,
Rh ∈ Rq×q and Rh ∈ Rq×q are the input weight matrices.
f(·) and g(·) are point-wise nonlinear functions. We drop the
sample index i to simplify the notation.

We focus on a special kind of the RNNs, the LSTM net-
works without the peephole connections. The LSTM network
is described by the following equations [25]:

ztk = g(W zxtk +Rzytk−1
) (3)

itk = σ(W ixtk +Riytk−1
) (4)

f tk = σ(W fxtk +Rfytk−1
) (5)

otk = σ(W oxtk +Roytk−1
) (6)

ctk = itk � ztk + f tk � ctk−1
(7)

ytk = otk � h(ctk), (8)

where xtk ∈ Rm is the input vector, ctk ∈ Rq is the state
vector and ytk ∈ Rq is the output vector at time tk. ztk
is the block input, itk , f tk and otk are the input, forget
and output gates, respectively. Nonlinear activation functions
g(·), h(·) and σ(·) apply the point-wise operations. tanh(·)
is commonly used for g(·) and h(·) functions and σ(·) is the
sigmoid function, i.e., σ(x) = 1

1+e−x . � is the element-wise
(Hadamard) product and operates on the two vectors of the
same size. W z , W i, W f , W o ∈ Rq×m are the input weight
matrices andRz ,Ri,Rf ,Ro ∈ Rq×q are the recurrent weight
matrices. With the abuse of notation, we incorporate the bias
weights, bz , bi, bf , bo ∈ Rq , into the input weight matrices
and denote them by W θ = [W θ; bθ], θ ∈ {z, i, f, o}, where
xtk = [xtk ; 1]. For the regression problem, we generate the
estimate d̂tk as

d̂tk = wT
tk
ytk ,

where wtk ∈ Rq is the final regression coefficients, which
can be trained in an online or batch manner depending on the
application.

For the classification problem, we focus on the sequence
classification, i.e., we have only one desired signal d(i) for
each vector sequence X(i). As shown in Fig. 1, our final
decision d̂(i) is given by

d̂(i) = max
j

softmax(Wỹ(i))j ,

where W ∈ Rq×c is the weight matrix, c is the number of
classes, and ỹ(i) is the combination of the LSTM network
outputs, y(i)

t1 , . . . ,y
(i)
tni

. To obtain ỹ(i), we may use three
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Fig. 1: Detailed schematic of the classifiacation architecture. Note that the
index i is dropped in order to simplify the notation.

different pooling methods: mean, max and last pooling as

ỹ(i)
mean =

1

ni

ni∑
k=1

y
(i)
tk

ỹ(i)
maxj = max

k
(y

(i)
tk,j

)

ỹ
(i)
last = y

(i)
tni
.

In Section III, we introduce a novel LSTM architecture
working on non-uniformly sampled data, and also provide its
forward-pass and backward-pass update formulas.

III. A NOVEL LSTM ARCHITECTURE

We need to incorporate the time information into the LSTM
network to enhance the performance [5]. For this purpose, one
can directly append the sampling intervals, ∆tk’s, to the input
vector, i.e., x̃tk = [xtk ; ∆tk]. However, in this solution, ∆tk
is incorporated as an additional feature and its effect is only
additive to the weighted sum of the other features, e.g., as
multiplied by W̃ x̃tk , where W̃ ∈ Rq×(m+1) is the extended
weight matrix. For example, the input gate itk is calculated
by

itk = σ(W̃ ix̃tk +Riytk−1
), (9)

instead of (4), where W ixtk term changes as W̃ ix̃tk . In that
case, the only difference between (9) and (4) is the additive
term of W̃i,{j,m+1}∆tk inside σ(·). In the following, we will
demonstrate that the ∆tk should also have a scaling effect on
the conventional gates, i.e., the input, forget and output gates.

To this end, in subsection III-A, we first consider a special
case of non-uniform sampling, where X(i) is uniformly sam-
pled, however, certain columns of X(i) are missing. We then
extend our approach to arbitrary non-uniform sampling case
in subsection III-B.

A. Modeling Non-uniform Sampling with Missing Input Case

We make our derivations first for the RNN case for one step
ahead prediction problem, i.e., the aim is to estimate the next
signal xtk+1

, where the current input is xtk . We first consider
the case when we have uniform sampling, i.e., tk+1− tk = ∆
for all time steps, where ∆ is some fixed time interval. In this

framework, we simply combine the RNN equations (2), then,
the RNN model estimates the next sample as

x̂tk+1
= g

(
Ryf

(
W hxtk +Rhhtk−1

))
= f̄(xtk ,htk−1

),
(10)

where f̄(·) is a composite function, which includes f(·)
and g(·). Assume that xtk are the samples of an infinitely
differentiable continuous function of time, x. In this case,
xtk+1

is calculated by the Taylor series expansion of x around
xtk as

xtk+1
= xtk+∆

= xtk + ∆
∂xtk
∂t

+ ∆2 ∂
2xtk
∂t2

+ ∆3 ∂
3xtk
∂t3

+ . . .
(11)

We now model the non-uniform sampling case with missing
instances, i.e., any ∆tk is an integer multiple of the fixed
time interval ∆. For example, if the next input xtk+1

is not
missing, then the time interval ∆tk = ∆. Similarly, if xtk+1

is
missing, but we have xtk+2

, then ∆tk = 2∆. Assume that the
xtk−1

and xtk+1
are available, while the xtk is missing from

our data sequence. In this case, we cannot directly apply the
same Taylor series expansion in (11) to calculate xtk+1

since
the data xtk is missing. However, we have an estimate x̂tk ,
which is obtained by the model in (10) using the input xtk−1

.
Therefore, we estimate xtk+1

by using x̂tk instead of xtk in
(11) as

xtk+1
≈
∞∑
n=0

∆n ∂
nx̂tk
∂tn

= x̂tk + ∆
∂x̂tk
∂t

+ ∆2 ∂
2x̂tk
∂t2

+ ∆3 ∂
3x̂tk
∂t3

+ . . .

(12)

We next substitute x̂tk with f̄(xtk−1
,htk−2

) by using (10)
to yield

x̂tk+1
= f̄(xtk−1

,htk−2
) +

∆

1!

∂f̄(xtk−1
,htk−2

)

∂t

+
∆2

2!

∂2f̄(xtk−1
,htk−2

)

∂t2
+ . . .

(13)

We write (13) in the vector form as

x̂tk+1,j =
[
1 ∆

1!
∆2

2!
∆3

3! . . .
]


f̄
(
xtk−1

,htk−2

)
j

f̄ ′
(
xtk−1

,htk−2

)
j

f̄ ′′
(
xtk−1

,htk−2

)
j

f̄ ′′′
(
xtk−1

,htk−2

)
j

...

 ,
(14)

where f̄ ′(·) represents the derivative with respect to t and
similarly for the other derivative terms. We approximate this
equation as

x̂tk+1
≈ f∆(∆)� fx,h(xtk−1

,htk−2
), (15)

where f∆(·) is a nonlinear function of ∆, whereas fx,h(·)
represents a nonlinear function of xtk−1

and htk−2
. Note that

both f∆(·) and fx,h(·) return vectors as their outputs in the
length of xtk . This derivation can be extended to any length
of missing instances such as for 2∆ this yields

x̂tk+2
≈ f∆(2∆)� fx,h(xtk−1

,htk−2
). (16)
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Fig. 2: Detailed schematic of an LSTM block with additional time gates.
Note that xtk , ytk−1

and ∆tk are multiplied with their weights, W (·)
and R(·), according to (3)-(5) and (20)-(23). Also corresponding biases b(·)
is added.

Hence, the time interval ∆ has a nonlinear scaling effect
on fx,h(·). Note that in uniform sampling case, the classical
RNNs use only fx,h(·) to estimate the next sample, i.e., f̄(·)
in (10), although the scaling effect of time interval still exists.
However, fx,h(·) is able to handle this scaling effect since
∆’s and f∆(∆) are constant.

In subsection III-B, we focus on the arbitrary non-uniform
sampling case.

B. Arbitrary Non-uniform Sampling

In this subsection, we consider the arbitrary non-uniform
sampling, i.e., sampling without any constant sampling interval
and ∆tk is not an integer multiple of a fixed time interval
∆. The Taylor series expansion for the missing data case is
similarly extended to arbitrary non-uniform sampling case for
the one step ahead estimation problem, i.e.,

xtk+1
=

∞∑
n=0

∆tk
n ∂

nxtk
∂tn

= xtk + ∆tk
∂xtk
∂t

+ ∆t2k
∂2xtk
∂t2

+ ∆t3k
∂3xtk
∂t3

+ . . .

(17)
Similar derivations lead to

x̂tk+1
= f∆(∆tk)� fx,h(xtk ,htk−1

). (18)

In the non-uniform sampling case, f∆(∆tk) have unique
scaling effect on fx,h(·) at each time step since ∆tk differs.
Therefore, ignoring the time information in estimation process
results in a limited performance. Extending input vector with
time intervals makes only an additive contribution to the
fx,h(xtk ,htk−1

) term, which is insufficient to model the
effect of f∆(∆tk). To circumvent this issue, we introduce a
new RNN structure, particularly, an LSTM architecture, which
includes the effect of f∆(∆tk). The new LSTM architecture
is explained in the next subsection.

C. Time Gated - LSTM Architecture

We present a novel LSTM architecture to incorporate the
time information into our estimation function as a nonlinear
scaling factor, i.e., it learns the time dependent scaling function
f∆(·). In the classical LSTM architecture, fx,h(xtk ,htk−1

)
is already modelled as σ(Wxtk +Rytk−1

) in the specialized
gate structures as in (3)-(6). Therefore, we focus on modeling
f∆(·). In accordance with (18), we can straightforwardly
incorporate the time information into the LSTM architecture
by altering (8) as

ytk = otk � h(ctk)� f∆(∆tk). (19)

Here, we incorporate f∆(∆tk) to the LSTM architecture as a
scaling factor only on the output gate. Since the gate structures
in the LSTM architecture are specialized for different tasks,
such as forgetting the last state, their responses to the time
intervals need to be different. For example, when the input xtk
arrives after a long time interval ∆tk, while the forget gate
needs to keep a small amount of the past state, the input gate
needs to incorporate more from the new input. To this end, we
decompose f∆(∆tk) into three different functions, f (i)

∆ (∆tk),
f

(f)
∆ (∆tk) and f

(o)
∆ (∆tk), and use these functions on the

conventional gates in order to allow them to give different
responses depending on the time intervals. In particular, we
introduce new time gates to the LSTM network in order to
model the scaling effect of f∆(·). This LSTM architecture is
named as Time Gated LSTM (TG-LSTM) in this paper.

We introduce three different time gates, which use sampling
intervals, ∆tk’s, as their inputs as shown in Fig. 2. The first
time gate is the input time gate and denoted by τ itk , the
second time gate is the forget time gate and represented by
τ ftk . Similarly, the third time gate is the output time gate and
denoted by τ otk . Note that there is no time gate τ ztk , since
itk and ztk participate to the network as multiplied with each
other and only one time gate τ itk is sufficient to scale both.
The input gate itk , forget gate f tk and output gate otk are
multiplied by τ itk , τ ftk , τ otk respectively as shown in Fig. 2.
In addition to (3)-(8), the forward-pass process of the new
LSTM architecture in Fig. 2 is modelled by the following set
of equations:

τ itk = u(W τ i∆tk) (20)

τ ftk = u(W τf∆tk) (21)

ctk = itk � ztk � τ itk + f tk � ctk−1
� τ ftk (22)

τ otk = u(W τo∆tk) (23)
ytk = otk � τ otk � h(ctk), (24)

where W τ i , W τf and W τo ∈ Rq×nτ are the weight matrices
of the time gates τ i, τ f and τ o, respectively. u(·) is the point-
wise nonlinearity, which is set to σ(·). ∆tk ∈ Rnτ is the input
for the time gates and one can append different functions of
∆tk such as (∆tk)2 and 1

∆tk
in addition to ∆tk. Here, (20),

(21) and (23) are added to the set of forward-pass equations
of the classical LSTM architecture, (22) and (24) are replaced
with (7) and (8), respectively.



Architecture Computational Load

LSTM-1 4q2 + 4qm + 3q

LSTM-2 4q2 + 4qm + 7q

PLSTM 4q2 + 4qm + 3q

TG-LSTM 4q2 + 4qm + 6q

TABLE I: The number of multiplication operations in the forward pass of
the TG-LSTM, PLSTM and the classical LSTM architectures for one time
step. LSTM-1 is the network that time intervals are not used. LSTM-2
represents the LSTM network, where the time intervals are added to the
input vector as another feature.

D. Training of the New Model

For the training of the TG-LSTM architecture, we employ
the back-propagation through time (BPTT) algorithm to update
the weight matrices of our LSTM network, i.e., the input
weight matrices W z,W i,W f ,W o,W τ i ,W τf ,W τo , and
the recurrent weight matrices Rz,Ri,Rf ,Ro. To write the
update equations in a notationally simplified form, we first
define a new notation for the gates before the nonlinearity is
applied, e.g.,

ītk = W ixtk +Riytk−1

τ̄ itk = W τ ixtk ,

where ītk ∈ Rq and τ̄ itk ∈ Rq are the sum terms before the
nonlinearity for the input gate and input time gate, respectively.
The terms for the other gates z̄tk , f̄ tk , ōtk , τ̄ ftk , τ̄ otk ∈ Rq
have similar formulations. Then, we first calculate the local
gradients as follows:

δytk =
∂L

∂ytk
+RT

z δztk+1
+RT

i δitk+1

+RT
f δf tk+1

+RT
o δotk+1

δotk = δytk � h(ctk)� τ otk � σ
′(ōtk)

δτ otk = δytk � h(ctk)� otk � u′(τ̄ otk)

δctk = δytk � otk � τ
o
tk
� h′(ctk) + f tk+1

� δctk+1

δf tk = δctk � ctk−1
� τ ftk � σ

′(f̄ tk)

δτ ftk = δctk � ctk−1
� f tk � σ

′(τ̄ f tk)

δitk = δctk � ztk � τ tk � σ′(ītk)

δztk = δctk � itk � τ tk � g′(z̄tk)

δτ itk = δctk � itk � ztk � u′(τ̄ itk),

where δytk , δotk , δτ otk , δctk , δf tk , δτ ftk δctk , δitk , δztk ,
δτ itk ∈ Rq are the local gradients for corresponding nodes.
The gradients for the input and the recurrent weight matrices
are calculated by

δW θ =

n∑
k=0

〈δθtk ,xtk〉

δRθ =

n−1∑
k=0

〈δθtk+1
,ytk〉,

where θ ∈ {z, i, f, o}, and the gradient for weights of the time
gates are calculated by

δW τ∗ =

n∑
k=0

〈δτ ∗tk ,∆tk〉,

where ∗ ∈ {i, f, o} and ∆tk = [∆tk; 1]. 〈·, ·〉 represents the
outer product of two vectors, i.e., 〈x1,x2〉 = x1x

T
2 .

Remark 1: Our TG-LSTM architecture has additional time
gates on top of the vanilla LSTM architecture. One can remove
any time gate by setting its all elements to 1, for example,
to close input time gate, τ i = 1q . In the worst case, the
time intervals have no correlation with the underlying model,
all time gates converge to 1q vector and our TG-LSTM
architecture simplifies to the classical LSTM architecture.

Remark 2: The complexity of the new architecture is in
the same order of the complexity of the classical LSTM
architecture. In Table I, we provide the computational loads
in terms of the number of required multiplication operations
in the forward pass for the classical LSTM, PLSTM and
TG-LSTM architectures. In the table, LSTM-1 represents the
LSTM network in which the time intervals are not incorporated
to the input vector, i.e., the input vector is merely xtk . LSTM-
2 is the network in which the input vectors are extended with
the time intervals between the samples as another feature,
i.e., x̃tk = [xtk ; ∆tk]. Four matrix vector multiplications
for the input, i.e., Wxtk , four matrix vector multiplications
for the last hidden state, i.e., Rhtk−1

, and three vector-
vector multiplications between gates, i.e., (7) and (8) in the
response of the previous comment, are included in the basic
LSTM architecture, which need 4q2 +4qm+3q multiplication
operations. Since the LSTM-2 architecture has an extended
input vector, it has 4q(m+ 1) multiplications instead of 4qm
from the Wxtk terms. The PLSTM architecture has additional
scalar operations for the sampler functions, however, since we
include only vectorial multiplications, it has 4q2 + 4qm+ 3q
multiplication operations in one time step. The TG-LSTM
architecture has additional 3q multiplications due to the mul-
tiplications of time gates with the conventional gates.

IV. SIMULATIONS

In this section, we illustrate the performance of the proposed
LSTM architecture under different scenarios with respect to
the state of the art methods through several experiments.
In the first part, we focus on the regression problem for
various real life datasets such as kinematic [26], bank [27] and
pumadyn [28]. In the second part, we compare our method
with the LSTM structures on several different classification
tasks over real life datasets such as Pen-Based Recognition of
Handwritten Digits [29] and UJI Pen (Version 2) [29] datasets.

A. Regression Task

In this subsection, we evaluate the performances of the TG-
LSTM and the vanilla LSTM architectures for the regression
problem. The classical LSTM architecture uses the time inter-
vals as another feature in the input vectors, i.e., the LSTM-
2 architecture defined in III-D. Therefore, for a dataset with
the input size m, the classical LSTM architecture has the
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Fig. 3: Regression performance of the TG-LSTM and the LSTM networks
on the syntehtic sine dataset with different sampling intervals. The sampling
intervals ∆tk are drawn uniformly from the range [2, 10], [5, 20] and
[20, 50] ms for S1, S2 and S3 simulations, respectively. LSTM represents
the classical LSTM architecture in [5], which uses the time intervals as
another feature. LSTM-WA is the classical LSTM architecture in [13], [14],
which uses windowing and averaging operations on the data before entering
the LSTM network.

input size m + 1. LSTM-WA represents the classical LSTM
architecture in [13], [14], which uses windowing and averaging
operations on the data before entering the LSTM network. We
train the networks with Stochastic Gradient Descent (SGD)
algorithm using the constant learning rate.

We first consider a sine wave with frequency 10 Hz and
length n = 1000 for training and n = 500 for testing. The
sampling intervals ∆tk are drawn uniformly from the range
[2, 10], [5, 20] and [20, 50] ms for S1, S2 and S3 simulations,
respectively. Our aim is to predict the next sample xtk+1

. For
this data, the input is scalar xtk ∈ R, i.e., the input size m = 1,
and the output dtk ∈ R, where dtk = xtk+1

. For the parameter
selection, we perform a grid search on the number of hidden
neurons and learning rate in the intervals q = [3, 20] and
η = [10−3, 10−6], respectively. For the window size of the
classical LSTM architecture with preprocessing method, we
search on the interval [ ∆max

2 ,∆max], where ∆max equals to
10, 20 and 50 ms, respectively. We choose the parameters with
5-fold cross validation, however, we only use the first and last
folds for validation to keep the sequential pattern of the data.
Otherwise, the sequence is corrupted, e.g., the last sample of
the first fold is followed by the first sample of the third fold
instead of the second fold. We choose the learning rate as
η = 10−4 for S1 and S2 simulations and η = 2 × 10−5 for
S3 simulations. The number of hidden neurons are chosen as
q = 20 for all simulations. The window sizes for the method
using windowing and averaging technique are 5, 20 and 50 ms
for S1, S2 and S3, respectively. We initiate the weights of the
time gates of the TG-LSTM architecture from the distribution
N ( 1

E[∆tk] , 0.01) to start the time gates in the smooth area of
the sigmoid activation function and prevent the gradients from
diminishing due to multiplication. Other weights are initiated
from the distribution N (0, 0.01).
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Fig. 4: Regression performance of the TG-LSTM and LSTM networks on
the Kinematic dataset.

In Fig. 3, we demonstrate the regression performance of the
algorithms under different sampling interval ranges in terms
of the mean squared error on the test set per epoch. LSTM
represents the classical LSTM architecture in [5], which uses
the time intervals as another feature. LSTM-WA is the classical
LSTM architecture in [13], [14], which uses windowing and
averaging operations on the data before entering the LSTM
network. In Fig. 3, one can see that the performance improve-
ment by the TG-LSTM architecture becomes more evident
for the larger time intervals. While all three architectures
achieve similar results in terms of the steady-state error in
S1 simulations, the performance difference between the TG-
LSTM architecture and the classical LSTM architecture using
preprocessing technique significantly increases in S2 simula-
tions. Furthermore, in S3 simulations, we observe a higher
performance difference between TG-LSTM and the classical
LSTM architectures. Moreover, the TG-LSTM architecture
outperforms the other architectures in terms of the convergence
rate in all cases.

Other than the sine wave, we compare the TG-LSTM and
the classical LSTM architectures on kinematic [26], bank [27]
and pumadyn [28] datasets. The results for the LSTM-WA
method are not included due to comparatively much better
performances of the other methods. Each dataset contains an
input vector sequence and the corresponding desired signals
for each time step. These datasets do not have separate
training and test sets, therefore, we split the sequences in each
dataset such that first 60% of the sequence is used for the
training and the following 40% is used for the test. Since the
datasets contain uniformly sampled sequences, we first need to
convert them to the non-uniformly sampled sequences. For this
purpose, we sequentially under-sample the sequences based
on a probabilistic model. Assume that we have the uniformly
sampled input sequence X = [x1, . . . ,xl]. If we receive xj
from the original sequence as xtk , the next sample xtk+1

is
chosen from the remaining sequence [xj+1, . . . ,xl] according
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Fig. 5: Regression performance of the TG-LSTM and LSTM networks on
the Bank dataset.

to the probabilistic model. In our simulations, we use

p(∆tk) =


0.4, if ∆tk = 1

0.4, if ∆tk = 2

0.2, if ∆tk = 3

0 otherwise

, (25)

where p(∆tk) is the probability mass function for the time
difference ∆tk = tk+1 − tk, e.g., P (xtk+1

= xj+1|xtk =
xj) = 0.4 and P (xtk+1

= xj+3|xtk = xj) = 0.2. Using (25),
we generate the non-uniformly sampled sequence Xnu =
[xt1 , . . . ,xtn ], n < l, and use this sequence in our simulations.
Note that, there is no fine tuning on the under-sampling
function. We observed similar results with the probabilistic
models using different probability mass functions. For each
simulation, we used the same number of hidden neurons for
both LSTM architectures and set q to the original input size
of the dataset, m. Note that, input size for the classical LSTM
becomes m+1 since we extend the input vector with the time
differences, i.e., LSTM-2 architecture.
• Kinematic dataset is a simulation of 8-link all-revolute

robotic arm, where the aim is to predict the distance of
the effector from the target. The original input vector size
m = 8 and we set the number of hidden neurons q = 8
for both LSTM and TG-LSTM networks. For the SGD
algorithm, we select the constant learning rate η = 10−5

from the interval [10−6, 10−3] using the cross-validation.
• Bank dataset is generated by a simulator, which simulates

the queues in banks. Our goal is to predict the fraction of
the customers leaving the bank due to long queues. The
input vector xtk ∈ R32. We set the number of hidden
neurons q = 32, and the constant learning rate η = 10−5

from the interval [10−6, 10−3].
• Pumadyn dataset is obtained from a simulation of Unima-

tion Puma 560 robotic arm, which simulates the queues
in banks. Our goal is to predict the angular acceleration
of one of the arms. For this dataset, the input vector
size m = 32 and we set the number of hidden neurons
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Fig. 6: Regression performance of the TG-LSTM and LSTM networks on
the Pumadyn dataset.

q = 32 for both TG-LSTM and LSTM networks. The
constant learning rate is set as η = 10−5 from the interval
[10−6, 10−3].

In Fig. 4, Fig. 5 and Fig.6, we illustrate the regression
performances of the TG-LSTM and the classical LSTM ar-
chitectures in terms of mean squared error per epoch for
the kinematic, bank and pumadyn datasets, respectively. The
TG-LSTM architecture has an outstandingly faster conver-
gence rate compared to the classical LSTM architecture. In
addition, the TG-LSTM architecture significantly outperforms
the classical LSTM architecture in terms of the steady-state
performance. These results show that the time gates, which
incorporate the time differences as a nonlinear scaling factor,
successfully model the effect of the non-uniform sampling.
Both faster convergence and better steady-state performance
are achieved by the TG-LSTM architecture. In these simula-
tions no decaying factor is used for the learning rate of SGD
algorithm since the architectures are able to converge. In the
tasks, which requires a decaying factor for the convergence,
the performance difference of the TG-LSTM and the classical
LSTM architectures significantly increases since our algorithm
has a faster convergence rate.

B. Classification Task

In this subsection, we evaluate the performances of the TG-
LSTM, PLSTM [5] and the classical LSTM architectures for
the classification tasks. For this task, we used the real life
datasets Pen-Based Recognition of Handwritten Digits [29]
and UJI Pen (Version 2) [29]. For the SGD algorithm, we use
Adam optimizer [30] with the initial learning rate η = 10−3.

In the first experiment, we demonstrate the classification
performance of the LSTM architrectures on the Pen-Based
Recognition of Handwritten Digits [29] dataset. This dataset
contains handwritten digits from 44 different writers, where
each writer draws 250 digits. These digits are drawn on a
500x500 tablet and uniformly sampled with 100 milliseconds.
We non-uniformly under-sample these uniform samples by
using (25). The input vector xtk = [x, y]T , where x and y
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Fig. 7: Classification performances based on (a) the categorical cross entropy error (b) the accuracy on the Pen-Based Recognition of Handwritten Digits
[29] dataset.
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Fig. 8: Classification performances based on (a) the categorical cross entropy error (b) the accuracy on the UJI Pen (Version 2) [29] dataset.

are the coordinates, and the desired signal dtk ∈ {0, . . . , 9}.
For the parameter selection, we use 5-fold cross validation,
and set the number of the hidden neurons q = 100, which
is selected from the set {10, 25, 50, 100}. For the PLSTM
architecture, all three parameters, i.e., the period, shift and
on-ratio, are set as trainable to employ the network with full
capacity. In Fig. 7, we illustrate the cross-entropy loss and
the accuracy plots for the architectures with three different
pooling methods. We observe from these figures that the TG-
LSTM architecture outperforms both the PLSTM and the
classical LSTM architectures. In particular, the TG-LSTM
architecture using last pooling method significantly improves
the performance for both convergence rate and the steady-
state accuracy, which shows that the time gates in our method
successfully model the the effect of the non-uniform sampling.

We also compare the performance of the architectures
on the relatively more difficult dataset, UJI Pen (Version

2) [29]. This dataset is created by the same method with
Pen-Based Recognition of Handwritten Digits [29] dataset.
Although there are many other characters in the dataset, we
used only upper-case and lower-case letters in the English
alphabet, and the digits. The input vector xtk = [x, y]T ,
where x and y are the coordinates, and the desired signal
dtk ∈ {a, . . . , z, A, . . . , Z, 1, . . . , 9}, where we consider the
digit ”0” and the upper-case letter ”O” as the same label.
In this setup, we have 61 different labels, therefore, this a
relatively difficult dataset. For all architectures, we set the
number of the hidden neurons q = 100, which is selected from
the set {10, 25, 50, 100} by 5-fold cross validation. For the
PLSTM architecture, all three parameters are trainable as in
the first experiment. In Fig. 8, we illustrate the performance of
the architectures in terms of the categorical cross entropy error
and accuracy, respectively. We observe that the TG-LSTM
architecture with max and last pooling methods significantly



improve the performance. Since the dataset is more difficult
with 61 different classes, the performance increase is more
observable in this simulation.

V. CONCLUSION

We studied nonlinear classification and regression problems
on variable length non-uniformly sampled sequential data
in a batch setting and introduced a novel LSTM architec-
ture, namely, TG-LSTM. In the TG-LSTM architecture, we
incorporate the sampling time information to enhance the
performance for applications involving non-uniformly sampled
sequential data. In particular, the input, forget and output
gates of the LSTM architecture are scaled by these time
gates using the sampling intervals. When the time intervals
do not convey information related to the underlying task, our
architecture simplifies to the vanilla LSTM architecture. The
TG-LSTM architecture has a wide range of application areas
since it can generate output at each time step as well as at
the end of the input sequence unlike the other state of the art
methods. We achieve significant performance gains in various
applications, while our approach has nearly the same compu-
tational complexity with the classical LSTM architecture. In
our simulations, covering several different classification and
regression tasks, we demonstrate significant performance gains
achieved by the introduced LSTM architecture with respect to
the conventional LSTM architectures [11], [5] over several
synthetic and real life datasets.
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