
Online Anomaly Detection with Bandwidth
Optimized Hierarchical Kernel Density Estimators

Mine Kerpicci, Huseyin Ozkan, and Suleyman S. Kozat

Abstract—We propose a novel unsupervised anomaly detection
algorithm that can work for sequential data from any complex
distribution in a truly online framework with mathematically
proven strong performance guarantees. First, a partitioning tree
is constructed to generate a doubly exponentially large hierar-
chical class of observation space partitions, and every partition-
region trains an online kernel density estimator (KDE) with its
own unique dynamical bandwidth. At each time, the proposed
algorithm optimally combines the class estimators to sequentially
produce the final density estimation. We mathematically prove
that the proposed algorithm learns the optimal partition with
kernel bandwidths that are optimized in both region-specific and
time varying manner. The estimated density is then compared
with a data adaptive threshold to detect anomalies. Overall, the
computational complexity is only linear in both the tree depth
and data length. In our experiments, we observe significant
improvements in anomaly detection accuracy compared to the
state-of-the-art techniques.

Index Terms—Online, anomaly detection, kernel density esti-
mation, bandwidth selection, regret analysis.

I. INTRODUCTION

Anomaly detection, as an unsupervised one-class machine
learning problem, finds use in various applications ranging
from cyber security [1], surveillance [2], failure detection
[3], novelty detection [4] and data imputation [5]. We study
this problem for sequential data in a truly online setting;
and propose a novel algorithm that observes xt ∈ Rd at
each time t, and decides whether xt is anomalous based on
the past observations {x1,x2, . . .xt−1}. In our framework,
each instance xt is processed only once without being stored
and no label information is required. Therefore, the proposed
algorithm is online and unsupervised, and appropriate for real
time anomaly detection applications.

One of the main difficulties in anomaly detection prob-
lems is typically the extreme rarity of anomalies and their
unpredictable nature [6], which differentiates the anomaly
detection from the binary classification. In the binary clas-
sification problem, one has observations from both classes.
However, in anomaly detection, there are no or extreme rare

This work was supported by the Scientific and Technological Research
Council of Turkey under Contract 118E268 as well as Contract 117E153.
(Corresponding author: Mine Kerpicci)

M. Kerpicci is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA (e-mail: mker-
picci3@gatech.edu).

H. Ozkan is with the Faculty of Engineering and Natural Sci-
ences, Sabancı University, Orhanli-Tuzla, 34956, Istanbul, Turkey (e-mail:
hozkan@sabanciuniv.edu).

S. S. Kozat is with the Department of Electrical and Electron-
ics Engineering, Bilkent University, Ankara 06800, Turkey (e-mail:
kozat@ee.bilkent.edu.tr).

observations from the anomaly class. This essentially poses
a one-class classification problem where it is reasonable to
assume uniformity for anomalies [7]. Then, the Neyman-
Pearson (NP) test [8] corresponds to comparing the density
f(xt) with an appropriate threshold [9], [10] that maximizes
the detection power at a desired false alarm rate. This in
turn amounts to density estimation and learning the desired
threshold. Therefore, a common approach in the literature [6]
consists of two steps, which are assigning a density score to
the observed data instance, and then, comparing this score with
a threshold [6]. Scores below the threshold indicate anomaly.

Our technique is also two fold. We first estimate the
probability density of the data in a nonparametric manner
without any model assumption, and then find the anomalies
by thresholding the estimated density for each instance.

Our density estimator is regret-optimal [11], where the
loss is the accumulated negative log-likelihood, against a
large class of estimators. To be more precise, our density
estimator asymptotically performs at least as well as the best
class estimator in terms of the data likelihood. To obtain an
estimator in this class, we use a kernel density estimator
(KDE) [12] with a different bandwidth parameter in each
region of a given partition of the observation space. Hence,
the class of estimators are restricted to KDEs defined on the
tree where varying the bandwidth parameter in each region and
also varying the partition itself yield the aforementioned class.
The proposed algorithm learns the optimal partitioning (that
can be defined over the introduced tree) of the observation
space and also learns the optimal region-specific bandwidth
parameters for the optimal partition even in a time-varying
manner. Namely, the optimal bandwidth of the KDE that we
use for each region in the optimal partition might well be
different as well as nonstationary (the distribution that the data
instances are drawn/coming from might be changing in time,
i.e., might be time-varying).

The introduced density estimation for anomaly detection is
essentially a mixture of experts [13] based approach. These ex-
perts are “piecewise” KDEs, “pieces” of which are generated
by a hierarchical observation space partitioning via a depth-D
binary tree. Pieces correspond to the partition regions; and
for each region, the optimal time varying KDE bandwidth
from a finite set with cardinality k is separately learned.
Our algorithm produces its density estimation by combining
these expert estimations. The proposed combination is based
on a time-varying weighting that is used to mitigate overfit-
ting/overtraining issues, and to asymptotically pick the optimal
partition. The purpose in hierarchically organizing the KDEs
is to achieve computational efficiency while still maintaining

an exponentially large competition class of estimators. Specif-
ically, the introduced tree based hierarchical structure provides
us a class of size approximately (1.5)

2D whereas the overall
processing complexity in our framework scales linearly only
with O(TDk) where T is the number of processed instances.

Our initial findings belonging to the use of KDE with only
a single partitioning along with the bandwidth selection have
been presented in a national conference [14]. On the other
hand, in this paper, we complete our study comprehensively
and provide our final greatly detailed experimental results.
In particular, in this paper, we generalize to a hierarchically
structured competing class of doubly exponentially many
partitionings (i.e., density estimators) with our proposed band-
width selection method while additionally achieving strong
mathematical performance guarantees, which therefore yields
significantly higher anomaly detection performance as pre-
sented in our extensive experiments.

The result is a novel computationally efficient combina-
tion of hierarchically organized piecewise online KDEs with
bandwidths that are optimally varying in time and space.
We mathematically prove and guarantee the convergence of
the density estimation performance of our algorithm to the
best piecewise constructed class estimator in terms of the
data likelihood. Finally, we decide whether the observed data
instance is anomalous or not by comparing the estimated
probability with a threshold. In our approach, an optimal NP
test can be achieved with an appropriate threshold choice
for a constant false alarm rate. Alternatively, we provide
an algorithm to adaptively learn the optimal threshold in
terms of the detection accuracy when the true labels are
available. Also, we demonstrate significant performance gains
by our algorithm in comparison to the state-of-the-art methods
through extensive set of experiments.

A. Related Work

Kernel based techniques are extensively used in the machine
learning literature and in particular for density estimation [15]
due to their nonparametric high modeling power. Nevertheless,
kernel bandwidth selection is one of the most critical issues in
these approaches [16] since the bandwidth choice significantly
affects the performance of the density estimator. There are
two main approaches to handle this issue, which are based
on cross validation and plug-in [17]. Cross validation based
approaches mostly depend on leave-one-out scheme to find the
bandwidth [17]. Plug-in based methods are based on minimiza-
tion of asymptotic mean integrated squared error (AMISE)
[17], where pilot bandwidths are introduced for an iterative
solution. Another method is proposed in [18], which pointwise
varies the kernel bandwidth based on the minimization of error
such as AMISE. Although these techniques and others such as
[19], [20] are impressive in their own batch processing setting,
they suffer from one or both of the following two issues: i)
they use one global time-invariant bandwidth for the complete
observation space and time span, and ii) their computational
complexity is prohibitively large, preventing their use in our
sequential setting. There are also online KDE methods, which
use compression techniques to adapt the kernel method to an
online framework, with time-varying bandwidth optimization

as in [21], [22], [23]. These methods aim to reduce the number
of stored data instances to lower the complexity. However,
this compression approach requires iterative steps to update
the compressed model and bandwidth at each time, which
is prohibitively costly in an online framework. An online
adapted version of AMISE-optimal bandwidth approach is
proposed in [21], which requires iterative plug-in process for
each observed data instance. Compressed model of samples is
used in [22] to find the AMISE-optimal bandwidth at each time
after the model is updated with the observed data instance.
However, they are not able to learn the local variations of
data due to their bandwidth optimization approaches. Our
method, however, rigorously address all of these issues by the
introduced highly adaptive hierarchical KDEs and their locally
optimized bandwidths with low computational complexity.

There exists numerous methods [24], [25], [9], [26] that
solve the anomaly detection problem in the nonsequential
batch setting. For example, [25], [9] compute pair-wise cross
kth distances between the observed instance and training
samples for detecting an anomaly. Another method is proposed
in [26], which is less sensitive to the neighborhood parameter
k compared to the conventional distance based techniques.
Since these methods are all batch processors, repeated use of
all of the available data are required that leads to a too large
memory and computational complexity. Among the Neyman-
Pearson based anomaly detection techniques [10], [7], [27],
minimum volume set approach is used in [10] for detecting
anomalies. Also, local nearest neighbor distances are used
for the anomalies in video observations in [7]. These are
again both batch techniques for which an online extension
is proposed in [27] that can only work when the data is
Markovian. In contrast, our technique is truly online and
model free, which is appropriate for real time processing of
challenging data sources.

Anomaly detection problem is solved in the online setting
in [28], [29], [30], [31], [32]. For example, [29] proposes
a k-nearest neighbor technique, with required training steps.
Online training is introduced in [32] to adapt the batch
algorithms such as support vector machine (SVM) to real
time applications. Since these methods [29], [32] still re-
quire quadratic optimization, the computational running time
significantly increases with the data length. Anomaly detec-
tion is considered as a classification problem in [30] and
it is solved via a cost-sensitive approach, which requires
true label information, whereas our technique is completely
unsupervised. [28], [31] estimate the probability density of
the observed data, and compare it with a threshold. For this,
[28] assumes that the data distribution is from an exponential
family. An information theoretic approach is proposed in [31]
to increase the detection performance when the number of
training data samples is small. These methods [28], [31]
assume that the data distribution is Gaussian or a mixture of
Gaussians, and solves the anomaly detection problem with
a parametric approach. Unlike these methods, we do not
assume any parametric distribution shape for the observed
sequential data, hence our technique can model any unknown
arbitrarily complex distribution in a data driven online manner
with random Fourier features [33]. Kernel approximation with

random Fourier features [33] is used for binary classification
problem in [34] where the proposed algorithm learns (in online
manner) the linear discriminant in the approximated and linear
kernel space with online gradient descent based on the true
label information. Our method also uses random features for
obtaining an online implementation but, on the other hand,
solves the online anomaly detection problem by learning both
the optimal partition in a hierarchical tree and the optimal
bandwidths for all regions in this partition without requiring
any true label information.

B. Contributions

Our contributions are as follows:
• As the first time in the literature, we introduce a piecewise

nonparametric kernel density estimator with a highly
adaptive hierarchical tree structure. This addresses the
bandwidth selection problem in a locally adaptive man-
ner. Hence, we achieve a great modeling power for data
of any arbitrarily complex distribution while successfully
mitigating the overfitting by a carefully designed weight-
ing scheme over the introduced class of experts.

• We efficiently implement our kernel based anomaly de-
tection algorithm in an online setting. To this end, we
use a hierarchical approach to represent and manage a
very large class of estimators (1.5)2

D

to obtain the final
estimation with complexity only O(TDk) (T : data size,
D: tree depth, k: cardinality of the bandwidth set). This
is appropriate for real time processing while achieving a
highly powerful estimation power.

• Our algorithm achieves the performance of the best esti-
mator in class of estimators with a regret bound O(2

D

h)
(D: tree depth, h: learning rate).

• We illustrate significant performance improvements
achieved by our algorithm with respect to the state-of-
the-art as well as the recently proposed methods through
extensive set of experiments over synthetic and real data.

C. Organization

We first define our problem setting in Section II. In Section
III, we introduce the hierarchical partitioning of the obser-
vation space. Section IV presents our combination of hierar-
chically organized online KDEs for our density estimation.
Section V introduces our optimal time-varying thresholding
for the final anomaly detection. In Section VI, we demonstrate
our performance improvements on artificial and real datasets.
We conclude with final remarks in Section VII.

II. PROBLEM DESCRIPTION

We sequentially observe1 xt ∈ Rd at each time t. Our aim
is to decide whether the observed data xt is anomalous or
not based on the past observations, i.e., x1,x2, . . .xt−1. For
this purpose, we introduce a two step approach for anomaly

1In this paper, all vectors are column vectors, and they are denoted by
boldface lower case letters. For a vector w, w′ is its transpose. Also, for a
scalar x, |x| represents its absolute value and for a set X, |X| represents the
cardinality of the set. The time index is given as subscript, and a sequence of
{xt}Nt=1 is represented as xN . Also, 1{·} is the indicator function returning
1 if its argument condition holds, and returning 0 otherwise.

detection where we first sequentially estimate the probability
density of xt by using previously observed data sequence
xt−1 = {xi}t−1i=1 as ft(xt). Then, we compare the estimated
probability ft(xt) with a threshold to decide whether xt is
anomalous or not. We declare a decision d̂t at each time t as

d̂t =

{
+1, ft(xt) < ς (anomalous)
−1, ft(xt) ≥ ς (normal)

, (1)

where ς is the threshold. We also provide an algorithm that
updates the threshold ςt in time to reach the best choice in
terms of the detection accuracy, when the true label dt is
available. We emphasize that our framework is completely
unsupervised, i.e., no knowledge of the true label is required;
but if the true label is available for an instance, then it is
incorporated.

We assume that the observation sequence {xt}t≥1 is gen-
erated from an i.i.d. source where S is a bounded compact
domain. In order to estimate the probability density of xt,
we introduce a novel algorithm based on the context tree
weighting method [35], [36] in which we construct a class
of density estimators and asymptotically achieve -at least- the
performance of the best class estimator.

Our goal is first to sequentially estimate the density of each
instance xt causally in time by combining the class estimators
that we construct with hierarchical partitioning of a tree, and
asymptotically achieve at least the performance of the best
(in terms of the accumulated likelihoods) class estimator. This
combination can be seen as a mixture of experts with each
expert being a class estimator. Second, we optimally (in terms
of the anomaly detection accuracy) threshold our estimated
density for anomaly detection.

We use log-loss, i.e., negative log likelihood, as our point-
wise loss function: l(ft(xt)) = − log(ft(xt)) since this
loss successfully encodes the data likelihood. Then, our goal
of asymptotically performing at least as well as the best
density estimator in the introduced class is equivalent to the
minimization of the following regret R(T) [11], resulting in
a regret-optimal final estimator:

R(T) =

T∑
t=1

(
− log(ft(xt))

)
−

min
Pi

{ T∑
t=1

(
− log(f̂Pit (xt))

)}
, (2)

where T is the length of the sequence xT = {xi}Ti=1 and
the regret is the performance difference between our proposed
estimator ft and the best class estimator. Here, f̂Pi is the
piecewise constructed KDE for the partition Pi. In Section
IV, we achieve the introduced goal by proving that this regret
is bounded by a term that is convergent to 0 after normalization
with T .

We compare the estimated density ft(xt) with a time-
varying threshold ς to optimally decide (in terms of the
detection accuracy) whether the observed data xt is anomalous
as in (1). For this purpose, by using the logistic function
rt = log(1 + exp(−(ςt − ft(xt))dt), we update the threshold
to maximize the detection power, when the true label dt ∈

{−1,+1} is available. If the true label is never available, then
one can straightforwardly adjust the threshold to bound the
false alarm rate in a similar manner. Recall that the proposed
algorithm is unsupervised and can certainly operate without
requiring the label information.

III. TREE CONSTRUCTION

In this section, we present the hierarchical partitioning
tree to divide the observation space into disjoint regions and
construct a class of density estimators.

In the literature, trees are used in various ways to improve
the performance of the learning methods. The tree structure
is used in a change detection problem in [37]. The use of
randomized binary trees in the ensembles for outlier detection
is pointed out in [38]. Moreover, binary splitting scheme
for change detection problem is proposed in [39]. In our
framework, we use a tree structure to construct a class of
density estimators localized to various regions and combine
their decisions to achieve a better performance.

A hierarchical partitioning tree of depth-D is constructed
to partition the observation space S into various regions such
that each tree node θ2 corresponds to a specific region in S.
We start splitting from the middle of the first dimension of
the observation space. At each depth, we divide the observa-
tion space from the middle of the latter dimension. For an
illustration, in Fig. 1a, we consider two dimensional bounded
xt ∈ R2, i.e., xt = [xt,1, xt,2]

′ and |xi| < A, and use a
depth-2 tree. There exist 2D+1 − 1 nodes for a depth-D tree
in general, and each node region is the union of the regions
of its left and right children. For example, the children of
the root node θo are defined as θol = [−A, 0] × [−A,A]
and θor = [0, A] × [−A,A] in Fig. 1a. The root node
θo corresponds to the complete observation space such that
θo = θol ∪ θor = S = [−A,A]× [−A,A].

Remark: Note that there is no limit for the choice of
depth D since partitioning is used to construct the disjoint
regions, and increasing the number 2D+1−1 of nodes increases
(with sufficient data) the performance of KDE. However, the
depth D should be chosen carefully in practice with limited
data. In this study, we have conducted separate preliminary
experiments in each dataset we used, and observed that small
D around D = 3 or D = 4 generally provides a highly
good performance. Hence, we opted not to further optimize
D and set it to D = 3 across our datasets. On the other
hand, we emphasize that the required number of partition
regions scale exponentially with the feature dimension d if
one desires a specific level granularity in partitioning; and it
scales linearly if one desires to split each dimension at least
once. This poor scaling with the ambient dimension for a
desired degree of fine partitioning appears to be a limitation
of our presented technique. To address this limitation and
handle high dimension, we apply PCA to the data and reduce
its dimensionality to d = 3 prior to depth selection with a
preliminary experiment. Hence, with PCA, our technique can
still be applied successfully in high dimension especially when

2Here, θ denotes both the node and the corresponding region for notational
simplicity, where the precise meaning can be understood from the text.

the covariance structure in the data allows good compression,
which we strongly verify in our experiments. Note that PCA
is only used for partitioning and constructing the tree, after
which the instances traverse over tree with their full dimension.
Namely, for an instance, we decide the tree nodes based on
the reduced dimension, but the KDE at each node runs on the
full dimension.

We combine ni disjoint regions on the tree to form a
partition Pi such that Pi = {θi,1, θi,2, . . . , θi,ni} with θi,k ∩
θi,j = ∅ if k 6= j and

⋃ni
j=1 θi,j = S. Examples of such

partitions in the case of a depth-2 tree are given in Fig. 1b. In
general, we construct np ≈ (1.5)2

D

[35] partitions for depth-
D tree. Note that each of these partitions can be obtained
by collecting the regions of the leaves after an appropriate
pruning. One can obtain 5 different partitions for D = 2
as in Fig. 1b. We assign a KDE to each region θi,j in
each partition Pi such that the KDE is trained with only the
instances falling in the corresponding region. Note that each
partition essentially collects ni many region-specific KDEs
yielding a “piecewise” constructed KDE. Consequently, the
set of (1.5)2

D

partitions from all possible prunings of the tree
defines a class of piecewise constructed KDEs.

IV. THE PROPOSED NOVEL DENSITY ESTIMATOR

In this section, we propose a novel density estimator based
on hierarchical partitioning of the observation space using a
binary tree. Our approach is to sequentially train nonpara-
metric kernel density estimators (KDE) [12] at each node of
the introduced tree by instances falling in the corresponding
region, while separately optimizing the bandwidth parameter
[16] for each region. This process and thus the proposed
algorithm is online and sequential with no storing.

A. Bandwidth Optimized Piecewise Online Kernel Density
Estimator (KDE)

The main building block of our anomaly detection algorithm
is the online bandwidth optimized KDE employed in regions
of the observation space, i.e., at each node of the defined tree.
In this section, our discussion about this building block is
confined to a single region from the observation space. In
Section IV-B, we introduce the combination of KDEs from all
possible regions.

1) Conventional KDE: We use the KDE method at each
node θk to estimate the local density in the corresponding
region of the observation space based on the instances falling
in that region. Let x be any point in θk, i.e., x ∈ θk, at time t
before observing xt along with the past data {xi}t−1i=1 = xt−1.
Then, KDE is obtained as

f̂θkt (x; δ) =
1

τθkt−1δ
d

∑
r:xr∈θk,1≤r≤t−1

K
(x− xr

δ

)
, (3)

where τθkt−1 =
∑t−1
r=1 1{xr∈θk} is the number of instances

falling in θk until time t − 1, δ is the bandwidth and K(·)
is a kernel function [12]. In this work, we use the Gaussian

A

-A
A-

A
X1

X2

θo

θol θor
A

-A

X2

-A 0 A

A

-
A

X2

-A 0 A
X1 X1

θoll θolr θorl θorr

A

-A
-A

A -A A -A A -A A

A

-A

A

-A

A

-A
0
X1

0
X1

0
X1

0
X1

0X2 0X2 0X2 0X2

(a)

A

-A
A-A

X2

X1

Ƥ1

A

-A
A-A

X2

X1

Ƥ2

θolθo
θor

A

-A
A-A

X2

X1

Ƥ3

θol
θorr

θorl

A

-A
A-A

X2

X1

Ƥ4

θorθolr

θoll

A

-A
A-A

X2

X1

Ƥ5

θolr

θoll

θorr

θorl

(b)

Fig. 1: In this example, a depth-2 binary tree partitions the observation space S = [−A,A]× [−A,A]. (a) Partition regions are
illustrated shaded at their corresponding nodes. (b) Every pruning of the introduced partitioning tree defines a unique partition
of the observations space.

kernel (or radial basis) function [33] K(x) , 1

(2π)
d
2
e−

∥∥x∥∥2

2 .

After inserting this into (3), we obtain

f̂θkt (x; g) =
1

τθkt−1

∑
r:xr∈θk,1≤r≤t−1

k(x,xr; g), (4)

where k(x,xr; g) , 1
Ng

exp(−g‖x− xr‖2) with g = 1
2δ2

being the bandwidth parameter and Ng = (πg)
d
2 is the

normalization constant.
2) Online KDE: The summation in (4) requires all of the

pairwise kernel evaluations between the test instance x and all
the previous instances, which is computationally prohibitively
complex. For an efficient kernel evaluation, we explicitly
map the data points (x,xr) in the kernel evaluation into a
high dimensional kernel feature space with an explicit and
randomized “compact” (cf. the remark below for compactness)
mapping φ : Rd → Rm such that the kernel evaluation
can be arbitrarily well approximated as an inner product
of the mapped points [33] k(x,xr; g) ≈ φ(x; g)′φ(xr; g).
In order to find such a mapping φ(·), we exploit the fact
that Fourier transform of a symmetric shift invariant and
continuous positive definite kernel represents a probability
distribution [33], yielding

k(x,xr; g) =

∫
(w,b)∈(Rd×1×R)

fw,b(w, b; g)×(g
π

)d/2√
2 cos(w′x+ b)×(g

π

)d/2√
2 cos(w′xr + b)dwdb,

(5)

k(x,xr; g) = Ew,b

[(g
π

)d/2√
2 cos(w′x+ b)(g

π

)d/2√
2 cos(w′xr + b)

]
(6)

where fw,b(w, b; g) = (4gπ)−
d
2 (e)−

∣∣∣∣w∣∣∣∣2
4g × 1

2π1{0≤b≤2π}
is a valid probability density function obtained as a result
of the Fourier transform of the kernel being used together
with an auxiliary uniform randomization over b [33]. Then, by
approximating the expectation result for the kernel evaluation
in (6) through a sample mean (due to law of large numbers),
we obtain the final approximation with the mapping function

φ(x; g) ,

√
2

m

(
g

π

)d/2[
cos
(√

2gw′1x+ b1

)
,

cos
(√

2gw′2x+ b2

)
, ..., cos

(√
2gw′mx+ bm

)]′
, (7)

where {(wi, bi)}mi=1 is a random sample from fw,b(w, b;
1
2)

and (wi, bi) are i.i.d. realizations [33]. Note that the algorithm
that we introduce can be used with any symmetric shift
invariant and positive definite kernel by only using the correct
randomization fw,b(w, b;

1
2) (which is the Fourier transform

of the kernel) and modifying φ(x; g) accordingly [33].

Remark: Note that w and b form fw,b(w, b; g), the
probability density function in (6), such that the dimensions
of w are independent scalar random variables and each has a
Gaussian distribution with 0 mean and 2g variance, and b is a
scalar random variable that is uniformly distributed between 0
and 2π. In our method, we also aim to use adaptive bandwidth
by changing g in time to improve the performance of the
estimation. Therefore, we define our mapping function in (7)
with “cos

(√
2gw′ix + bi

)
” to make the sampling procedure

of w’s independent of g. This modification corresponds to
drawing samples from fw,b(w, b;

1
2) such that the dimensions

of w have a Gaussian distribution with 0 mean and 1 variance,
and b is uniformly distributed between 0 and 2π. Then, we
multiply with

√
2g in (7) to adjust for the desired covariance.

We obtain the density estimation in (4) with the sample

mean approximation

f̂θkt (x; g) =
1

τθkt−1

∑
r:xr∈θk,1≤r≤t−1

k(x,xr; g) (8)

' 1

τθkt−1

∑
r:xr∈θk,1≤r≤t−1

φ(x; g)′φ(xr; g) (9)

=
t− 1

τθkt−1
φ(x; g)′φθkt (g), (10)

where

φθkt (g) ,
1

t− 1

∑
r:xr∈θk,1≤r≤t−1

φ(xr; g),

which can be implemented through sequential updates (after
normalization with the total probability mass in θk) as in line
11 in Algorithm 1.

Remark: This approximate form (but asymptotically exact
form as m → ∞) in (10) for the density estimation in (4)
removes the pairwise kernel evaluations, and allows us to
evoke only a single dot product for the whole expression. This
leads to an efficient online processing at the cost of the explicit
and randomized mapping of each instance through φ(·). We
emphasize that this mapping is “compact” and the addition of
mapping cost is fairly low: the quality of the approximation
of the expectation through the sample mean in (10) improves
at an exponential rate in m due to the Hoeffding’s inequality.
Consequently, we obtain an online kernel density estimation
at a negligible transformation cost.

3) Piecewise Online KDE: We point out that every pruning
of our tree defines a partition of the observation space with
regions attached to the leaves of the pruned tree, and there
is an online KDE at each region. Following this observation,
for a given partition P = {θ1, θ2, · · · , θN}, we combine the
online KDEs f̂θkt ’s at the partition regions θk’s, i.e., pieces,
and form a piecewise online KDE f̂Pt to model the density for
the complete data. Recall that an online KDE is responsible
for only those instances falling in its region, hence each online
KDE must be normalized with the corresponding probability
mass τθk

t−1 in its region θk while combining them. As a result,
for each partition P (there are approximately (1.5)2

D

many
partitions defined over our tree), we define a piecewise online
KDE f̂Pt (x; g) as

f̂Pt (x; g) =
τθkt
t− 1

f̂θkt−1(x; g) = φ(x; g)′φθkt (g), (11)

which matches the estimation by the local online KDE in
region θk 3 x.

The updates for the piecewise online KDE are based on the
recursions of the local online KDEs. Note that a local online
KDE needs to be updated only when its region observes an
instance. Hence, we keep the last update time τ ′θk and use it for
the next coming observation in that region with the recursion

φθkt+1(g) =
τ ′θk

φ
θk
t (g)+φ(x;g)

t .
4) Bandwidth optimized piecewise online KDE: In addition,

our piecewise online KDE learns the optimal bandwidths
separately for its constituent local estimators. For this purpose,
we allow the bandwidths for the constituent local estimators

Algorithm 1 Hierarchical Kernel Density Estimator (HKDE)

1: Set tree depth D, bandwidth set G and learning rate h
2: Initialize bandwidth priors αθk0 (g) = 1

|G|
3: Draw m i.i.d. samples (w, b) ∼ fw,b(w, b,

1
2): w ∈ Rd

and b ∈ [0, 2π]
4: Evaluate
φθk0 (g) =

√
2
m

(
g
π

)d/2
[cos(b1), cos(b2), ..., cos(bm)]′

5: for t = 1, 2, . . . do
6: Calculate φ(xt; g), ∀g ∈ G
7: Calculate the loss

lθkt = − log
(
τ ′θk
t−1

∑
∀gεG α

θk
t (g)φ(xt; g)

′φθkt (g)
)
,∀k

8: Obtain the estimation ft(xt) =
∑D
k=0 c

θk
t exp(−lθkt)

9: Update τ ′θk = t, ∀k
10: Update Zθkt+1(g) = Zθkt (g) exp(h log φ(xt; g)

′φθkt (g))
for all (k, g)

11: Update φθkt+1(g) =
τ ′θk

φ
θk
t (g)+φ(xt;g)

t for all (k, g)

12: Update αθkt+1(g) =
Z
θk
t+1(g)∑
∀g Z

θk
t+1(g)

for all (k, g)

13: Update cθkt+1 for k = 0, ..., D, i.e., nodes for xt in each
level

14: end for

to be different from region to region, and also time varying in
line with the increasing data length. Hence, our technique is
tuned to local variations of the data manifold as well as the
rate of increase in the data size of the stream even in a non-
stationary environment. In contrast, conventional approaches
use one global KDE with a fixed time invariant bandwidth
which is certainly a strong limitation that we remove.

For this purpose, we use a finite set of bandwidths, and
run our online local KDEs in parallel with all bandwidth
values in the set. The computational complexity of this parallel
running in our approach is only O(D), since the local KDEs
of only those regions containing xt must be updated. In time,
our approach identifies the optimal bandwidth g∗ in node θk,
which has the highest log likelihood (after scaling with h that
is exactly the log-likelihood when h = 1)

Zθkt (g∗) = max
g

∏
j:xtj∈θk,1≤tj<t

exp(h log f̂θktj (xtj ; g)).

Note that the introduced optimality can be improved to
any desired degree by using a larger finite bandwidth set
G = {g1, g2, . . . , g|G|}, from which the optimal bandwidth is
inferred. However, the bandwidth set does not have to be fixed
in time: it can be dynamic of the same finite cardinality all the
time. Namely, as time goes, all bandwidth g values become
useless except the one which takes all of the weight. This
pattern can be traced and one can continuously inject/replace
the obsolete candidate bandwidths with new larger ones such
that the cardinality is kept fixed. Hence, our introduced method
is certainly still practical under such a continuously improving
optimality.

Our convergence result is in line with the weighted majority
approach in the mixture of experts [35], [40]. Briefly, we
assign time varying probabilities αθkt (g) to each node on

the tree for all bandwidth values in the set G such that∑g|G|
g=g1

αθkt (g) = 1, αθkt ≥ 0,∀t. Initially, all bandwidths at
a node θk have equal priors, i.e., αθk0 (g) = 1

|G| ,∀g ∈ G.
Then, we update these probabilities as in line 10 and 12
in Algorithm 1 to converge to the best bandwidth in the
set in the sense of likelihood maximization by learning the
combination parameters αθkt (g) in time. Namely, the final
density estimation of the node θk is a combination of density
estimations evaluated with different bandwidth values as

f̂θkt (x) =
∑
∀g∈G

αθkt (g)f̂θkt (x; g), (12)

where f̂θkt (x; g) is the density estimation evaluated with
bandwidth g as in (10) and f̂θkt (x) is asymptotically tuned to
the best g∗ since αθkt (g∗)→ 1 as t→∞. The reason is that
we define αθkt (g) through the likelihoods of the bandwidths
based on the sum of their losses. Hence, the weight of the
bandwidth value, which provides the best performance among
the others, converges to 1 while all the others converge to 0
in time based on the learning parameter h.

Note that this explanation for convergence to 1 is valid if
the data statistics is stationary, or asymptotically stationary
by allowing nonstationarity in the transient state, which is
necessary for the best performing g to consistently accumulate
a performance that is increasingly better compared to others
so that the best performing g can take all the weight. In case
of nonstationarity (the distribution that the data instances are
coming from might be changing in time, i.e., might be time-
varying), the aforementioned convergence is not true but even
in this case, we still can identify the best g by the largest
weight.

Similarly, for a given partition P = {θ1, θ2, · · · , θN},
we obtain bandwidth optimized piecewise online KDE as
f̂Pt (x) =

∑
∀g∈G α

θk
t (g)f̂Pt (x; g).

We emphasize that, since αθkt (g∗) → 1 as t → ∞, our
approach successfully identifies the best bandwidth in region
θk in a time varying manner. The presented convergence
result here indicates that we essentially favor the KDEs with
smoother bandwidths in the beginning of the stream and
gradually switch to the ones with steeper bandwidths as the
data overwhelm, which is specifically to handle the overfitting
issue directly from the bandwidth perspective.

B. Efficient Combination of Hierarchically Organized Band-
width Optimized Piecewise Online KDEs

We point out that one can produce a bandwidth optimized
piecewise online KDE for every given partition of the observa-
tion space. On the other hand, it is possible to obtain a doubly
exponential large number, i.e., (1.5)2

D

with D being the depth,
of many different partitions by all possible prunings of our
partitioning tree. Hence, it is possible for one to approximate
any desired partition with a tree-defined partition by using a
relatively small D.

It is critical to use the right partition in the case of anomaly
detection with density estimation. Specifically, in the case of
sequentially observed instances, the optimal partition is also
not fixed but time varying. Simpler partitions with less number

of regions are advantageous at the beginning of the stream,
whereas one needs to use partitions with more complexities
as more data become available. Hence, our algorithm produces
a weighted combination of the piecewise online KDEs each
of which corresponds to a specific partition. The combination
weights are obtained based on the performance, i.e., the data
likelihood, of each partition. Hence, the weights are time-
varying and our algorithm relies mostly on the best-performing
partitions due to the weighting where a better performing
partition always receives a higher weight. In addition, we
mathematically prove that our algorithm asymptotically per-
forms at least as well as the best piecewise online KDE from
the introduced large class of tree-defined partitions.

To this end, we introduce a computationally highly efficient
combination of all of the bandwidth optimized piecewise
online KDEs of prunings of our partitioning tree. 3 The
resulting final density estimator is given as

ft(x) =

np∑
k=1

c̃Pkt f̂Pkt (x). (13)

Here, np ≈ (1.5)2
D

and c̃Pkt is the weight of the partition Pk
at time t as

c̃Pkt =
2−ρ(Pi)exp

(
− h

∑
u:xu∈θku ,1≤u<t

(l
θku
u)

)
C̃

with C̃ =
∑(1.5)2

D

i=1 2−ρ(Pi)exp
(
− h

∑
u:xu∈θk,1≤u<t(l

θiu
u)

)
is the normalization constant where

∑
u:xu∈θku ,1≤u<t

(l
θku
u) is

the total loss of the partition Pk and θku is the corresponding
node of Pk at time u. We define our loss for the node θk as

lθkt = − log(f̃θkt (x)), (14)

which is the point-wise log-likelihood based on the estimator
at that node. Also, ρ(Pi) = ni + li − 1 corresponds to the
number of bits required to represent the partition Pi where
ni is the total number of nodes in partition Pi and li is the
number of nodes with depth smaller than D in the partition.

On the contrary, combining (1.5)2
D

partitions or running
(1.5)2

D

many bandwidth optimized piecewise online KDEs in
parallel is computationally intractable. However, there exists
an efficient solution [36], [35] to combine them with com-
putational complexity only O(D). Instead of combining the
partition specific estimations as in (13), one can obtain the
same exact final estimation result of (13) by only combining
D + 1 many node specific estimations as

ft(x) =

D∑
k=0

cθkt f̃
θk
t (x) (15)

where f̃θkt (x) is the density estimation of the corresponding
node at the kth layer of the tree, and cθkt is the weight of the
node θk at time t.

Remark: Recall that the density estimation of a partition
is equal to the estimation of the corresponding node in that

3For notational simplicity, we represent the normalized bandwidth opti-
mized density estimation of the node θk at time t as f̃θkt (x) in the rest of

the paper by f̃θkt (x)←
τ
θk
t−1

t−1
f̂
θk
t (x).

partition. Hence, although we have (1.5)2
D

many different
partitions, we only have D + 1 unique estimations since the
instance travels through only D layers. Therefore, combining
the partitions as in (13) exactly matches to combining the
corresponding nodes at layers as in (15) with re-collected
weights in (16). This allows us to solve the problem in a more
efficient way since it requires combining only D + 1 density
estimations.

The weight cθkt of the node θk can be collected as [41]

cθkt =
∑

Pk:f̂
Pk
t (x)=f̃

θk
t (x)

c̃Pkt . (16)

The weight cθkt can also be recursively calculated by the
evaluated loss or reward of the nodes as explicitly shown in
[36]. We directly provide the recursion here while referring
the reader to [36] for the details of the proof of this recursion.
Then, one can obtain the weight of the node θk as

cθkt =
2−(Dk+1) ×

∏Dk
j=1 Lθj (x

t−1)

Lθo(x
t−1)

× exp
(
− h

∑
u:xu∈θk,1≤u<t

(lθku)
)
, (17)

where θo is the root node, Dk is the layer of θk on the tree,
θj is the other child of the parent of θk at the jth layer of the
tree and Lθj (x

t−1) is an auxiliary variable4 that allows the
recursive calculation [36] for any node θj using

Lθj (x
t−1) =

exp(−h
∑
u:xu∈θj ,1≤u<t l

θj
u), (θj is leaf)

1
2Lθjl(x

t−1)Lθjr (x
t−1)

+ 1
2 exp(−h

∑
u:xu∈θj ,1≤u<t l

θj
u), (otherwise)

(18)

with θjl and θjr being the left and right child nodes of the
node θj , respectively. We point out that this recursion is of
computational complexity O(D).

Based on this recursion (18) (cf. line 13 in Algorithm 1)
and the description in (15) (cf. line 7 and 8 in Algorithm
1), which is based on the bandwidth probability assignments
(12) (cf. line 7, 10 and 12 in Algorithm 1), we obtain our
computationally efficient algorithm presented in Algorithm 1.

The following theorem provides the bound for the regret
of our final density estimator (2), which combines the density
estimations of the partitions.

Theorem 1. When our KDE based hierarchical model is
applied with Algorithm 1, the regret defined in (2) is upper
bounded as

R(T) =

T∑
t=1

(
− log(ft(xt))

)
−min
Pi

{ T∑
t=1

(
− log(f̂Pit (xt))

)}
≤ ρ(Pi) log(2)

h
≤ (2D − 1) log(2)

h
,∀i

(19)

4This variable can be interpreted, cf. [36], as a universal probability
assignment based on the losses accumulated over the tree and any legitimate
weighting of the prunings depending on the complexities of the resulting
pruned trees.

where Pi is the ith partition in the competition class of
estimators, T is the length of sequence xT = {xi}Ti=1, h
is the learning rate and ρ(Pi) = ni + li − 1 measures the
complexity of each partition by the number of bits required to
represent that partition Pi. Here, ρ(Pi) is defined based on
the total number ni of nodes in the partition and the number
li of nodes with depth smaller than D in the partition.

Proof of Theorem 1. The proof follows similar lines to the
one in [35], with the difference that we use the negative log-
loss of the point-wise likelihood instead of the squared error
loss. Following the definition in (18), Lθo(x

T) for the root
node can be written as [36]

Lθo(x
T) =

(1.5)2
D∑

i=1

2−ρ(Pi) exp(−h
T∑
t=1

l
θti
t),

where θti is the corresponding node of partition Pi at time t
and lθkt = − log(f̃θkt (x)) as in (14). Then, we obtain

Lθo(x
T) ≥ 2−ρ(Pi) exp(−h

T∑
t=1

l
θti
t). (20)

Also, when we apply (18) recursively to the root node, we
observe that

Lθo(x
t)

Lθo(x
t−1)

=

D∑
k=0

cθkt exp(h log f̃θkt (xt)),

where cθkt is defined as in (17). Since
∑D
k=0 c

θk
t = 1 and

exp(h log(·)) is concave for the learning rate 0 ≤ h ≤ 1, we
obtain by Jensen’s inequality

Lθo(x
t)

Lθo(x
t−1)

≤ exp

(
h log

(D∑
k=0

cθkt f̃
θk
t (xt)

))
,

where ft(xt) =
∑D
k=0 c

θk
t f̃

θk
t (xt) is final density estimation

(15). Since we have

Lθo(x
T) =

T∏
t=1

Lθo(x
t)

Lθo(x
t−1)

≤
T∏
t=1

exp(h log(ft(xt))) = exp
(
h

T∑
t=1

log(ft(xt))
)
,

where Lθo(x
0) = 1, we write (20) as

exp

(
h

T∑
t=1

log
(
ft(xt))

))
≥ Lθo(xT)

≥ 2−ρ(Pi) exp(−h
T∑
t=1

l
θti
t).

T∑
t=1

(
− log(ft(xt))

)
≤ log(2)ρ(Pi)

h
−

(−h
∑T
t=1 l

θti
t)

h
.

Finally, we obtain

T∑
t=1

(
−log(ft(xt))

)
−

T∑
t=1

(
− log(f̂Pit (xt))

)
≤ ρ(Pi) log(2)

h
.

Since ρ(Pi) ≤ 2D − 1, we obtain the following regret bound
R(T) ≤ (2D−1) log(2)

h where h must be chosen in [0, 1] and it
defines the learning rate.

Hence, the normalized regret R(T)
T is convergent to 0 at a

O(1/T) rate. This shows that our density estimation algorithm
is regret optimal, i.e., it asymptotically performs (in terms of
the accumulated log-likelihood) as well as the piecewise online
KDE that corresponds to the best tree-defined partition.

V. ANOMALY DETECTOR

We compare the estimated probability density ft(xt) at each
time t with a threshold to decide if xt is anomalous. A data
instance xt having a sufficiently low probability density is
considered anomalous with respect to the rule

d̂t =

{
+1, ft(xt) < ςt (anomalous)
−1, ft(xt) ≥ ςt (normal)

. (21)

Based on this rule, we find the optimal threshold that achieves
the best anomaly detection performance by updating its value
in time. For this, we use the logistic loss function of ςt that
is to be minimized [42]: rt = log(1+ exp(−(ςt − ft(xt))dt).
Note that the loss is small if dt = d̂t, and it increases if the
difference (ςt − ft(xt)) is increasing when dt 6= d̂t. Hence,
the model learns the optimal threshold that differentiates the
normal and anomalous data in time with loss minimization.

Then, the threshold is updated by using the Online Gradi-
ent Descent (OGD) method [11], which learns the optimal
parameter minimizing the desired loss, as in Algorithm 2.
We calculate the gradient of the loss function with respect

to ςt as ∇ςtrt = −dt
(
1 + exp

(
(ςt − ft(xt))dt

))−1
and

the update follows as ςt+1 = PT(ςt − ηt∇ςtrt) where ηt
is the learning rate, which depends on the number of data
instances and the convexity of the defined loss function [11],
PT(x) = argminy∈T ||x − y||2 is the projection onto convex
threshold set T. Since the loss function rt is convex, our
algorithm converges to the optimal threshold in the set by
minimizing the cumulative loss.

VI. EXPERIMENTS

In this section, we extensively evaluate the performance of
our anomaly detector on an artificial dataset of a mixture of
two Gaussian components, and several other real datasets such
as Occupancy [43], Breast Cancer Wisconsin [44], Pen digits
[44], Susy [45], Thyroid [44], Pima [44], Mammography and
Liver [44]. Comparisons with one-class Support Vector Ma-
chine (SVM) [24], incrementally trained SVM (we represent
as “I-SVM” throughout this section) [46], K-nearest neighbors
(K-NN) [25], K-D tree nearest neighbor search (K-D Tree)
[47], K-Localized p-Value Estimation (K-LPE) [9], online
oversampling Principal Component Analysis (online osPCA)
[48] and Fourier Online Gradient Descent (FOGD) [34] are
presented, which are commonly used for anomaly detection.
We also include comparisons with anomaly detection method
based on KDE with local bandwidths where the bandwidth
depends on the distance to the nearest neighbor of the observed
point as in [49], and we represent this technique as “K-
KDE”. Finally, we include the performance of our method

Algorithm 2 Anomaly Detector

1: Specify η̃ and initialize the learning rate η1 = 1
η̃

2: Specify the threshold set T and initialize ς1
3: for t = 1, 2, . . . do
4: Calculate the learning rate ηt = 1

η̃t

5: Compare ft(xt) with ςt and declare the decision d̂t
6: Observe the actual dt and calculate ∇ςtrt
7: Update the threshold ςt+1 = PT(ςt − ηt∇ςtrt)
8: end for

without partitioning, which is represented as “Kernel Density
Estimation with Adaptive Bandwidth (KDE-AB)”. We use the
receiver operating characteristics (ROC) and the Area Under
Curve (AUC) to compare the anomaly detection performances
of the algorithms. The ROC curves are obtained by plotting
the rates of true detection versus false alarm while varying the
corresponding threshold5 in each algorithm. For this, we use
the scores, i.e., values that are thresholded to detect anomalies,
assigned to the observed instances by the algorithms except
K-NN and K-D Tree. For them, we consider the score as
the proportion of the neighbors with positive class label. The
parameters (ν and γ for the SVM, I-SVM and K for the K-
NN, K-D Tree and K-LPE) of the compared algorithms6 are
optimized with 10-fold cross validation, where we reserve the
75% of each dataset for training, and the remaining for the test.
Since the other methods including our algorithm AD-HKDE
does not need cross validation as they are online, we set their
parameters, i.e., D, h and G for AD-HKDE, based on a small
preliminary experiment. In Algorithm 1, the tree depth and the
learning rate are fixed as D = 3 and h = 0.01, respectively.

Since in general the higher-layer nodes on our partitioning
tree observe exponentially smaller number of data instances
compared to the lower-layer ones, we form the bandwidth
set G = {g1, · · · , gk} with relatively small g values for
the root node, and larger g values for the leaf nodes. We
use |G| = k = 4, and form the sets such that G = ε ×
{20, 21, · · · , 2k−1}, where we increase ε = L(l) (l denotes the
layer and L = {0.01, 0.5, 1.5, 2}) from the root to the leaves.
Hence, the union of all such sets from the layers of the tree
yields relatively large actual set (whose size is proportional to
the tree depth) of bandwidth parameter values in which our
algorithm optimizes for g with low computational and space
complexity. Note that, in general, optimal kernel bandwidth δ
is proportional to N−

1
5 (N : number of data points) [12] (g = 1

δ

is proportional to N
1
5). In online framework, the number of

data points changes from 1 to T (T : total number of data
instances). Therefore, in our experiments, we define bandwidth
set such that its maximum is proportional to T

1
5 based on our

largest dataset. Finally, the dimensionality is reduced to d = 3
for all datasets (except the artificial one which is already 2-
dimensional) by using PCA for only partitioning purposes,
otherwise the full dimension is used in the remaining parts

5For all experiments, SVM, I-SVM, K-LPE, K-NN and K-D Tree are
trained with the training sets, and the ROC/AUC results are obtained based
on the test sets. Since the other methods including our method AD-HKDE
does not need training, all results for them are based on all data points.

6SVM is applied by using the libsvm [50] implementation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

os
iti

ve
 R

at
e

ROC Curves

AD-HKDE
KDE-AB
K-KDE
FOGD
K-LPE
Online osPCA
K-NN
K-D Tree
I-SVM
SVM

AUC of AD-HKDE=0.9201

AUC of K-LPE=0.9058

AUC of KDE-AB=0.9076

AUC of Online osPCA=0.8665

AUC of FOGD=0.8778

AUC of K-KDE=0.8590

AUC of K-D Tree=0.8957

AUC of K-NN=0.8957

AUC of I-SVM=0.9027

AUC of SVM=0.9040

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

os
iti

ve
 R

at
e

ROC Curves

AD-HKDE
KDE-AB
K-KDE
FOGD
K-LPE
Online osPCA
K-NN
K-D Tree
I-SVM
SVMAUC of Online osPCA=0.9292

AUC of K-KDE=0.9368

AUC of FOGD=0.9490

AUC of KDE-AB=0.9531

AUC of SVM=0.9828

AUC of K-LPE=0.9708

AUC of AD-HKDE=0.9907

AUC of K-NN=0.9854

AUC of K-D Tree=0.9854

AUC of I-SVM=0.9750

(b)

Fig. 2: The ROC performance of the compared algorithms on (a) a mixture of two Gaussian components and (b) the Occupancy
dataset.

100 101 102 103 104

Time(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
an

dw
id

th
 P

ro
ba

bi
lit

y
(

tr)

Kernel Bandwidth Probabilities

g=0.01
g=0.02
g=0.04
g=0.08

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

ru
e

P
os

iti
ve

 R
at

e

ROC Curves

AD-HKDE
g=0.01
g=0.02
g=0.04
g=0.08

AUC of (g=0.04)=0.8190

AUC of (g=0.08)=0.7460

AUC of (g=0.02)=0.8626

AUC of AD-HKDE=0.9907

AUC of (g=0.01)=0.9168

(b)

Fig. 3: For the occupancy dataset, (a) kernel bandwidth probability variations in time and (b) ROC performances of our
algorithm and its static bandwidth version with fixed bandwidths.

such as estimating the density. In Algorithm 2, the learning
rate parameter is set as η̃ = 0.001 ∈ (0, 1) and the threshold
set is T = {10−5, 2× 10−5, · · · , 1}.

In this section, “Anomaly Detector with Hierarchical Kernel
Density Estimators (AD-HKDE)” represents our technique.

A. Artificial Dataset
In the first part of our experiments, we generate a 2-

dimensional dataset of length T = 2000, whose probability
density is a mixture of two Gaussian components f ∼
1
2N

([
−1
−1

]
,

[
1 0
0 4

])
+ 1

2N

([
1
1

]
,

[
4 0
0 8

])
as the normal

data. Our algorithm does not need anomalous data to work,
however, we replace the normal data at 400 randomly picked
instances with uniformly distributed anomalous observations
to test the anomaly detection performance.

As can be seen in Fig.2a, our algorithm AD-HKDE outper-
forms all the others in terms of the AUC score, while being
largely superior in either relatively smaller or higher false
alarm rate regions. We point out to understand the reason
that the data consists of two Gaussian components, where
the second component has 4 or 2 times larger variance in its
dimensions compared to the other component. This specifically
detrimentally affects the methods K-NN, K-D Tree and K-
LPE. The reason is that, in regions of the higher variance
component, one has to base the estimations on wider neighbor-
hoods (compared to the other component) in order to observe
the same k number of instances. This certainly degrades their
estimation since the underlying density is probably far from
being uniform in such wide neighborhoods. K-KDE suffers
from the placements of the data points in the observation space
due to its point-wise bandwidth. Since its kernel bandwidth

is directly proportional to the distance between the observed
instance and its nearest neighbor, it is not able to learn the
optimal bandwidth and estimate the density correctly. Online
osPCA uses only the first principal direction, and hence it loses
the information carried by the second component, which de-
creases its performance significantly. FOGD, however, suffers
from the fixed kernel bandwidth, which does not allow the
algorithm to learn the local variations. For the same reason,
our algorithm AD-HKDE outperforms SVM and I-SVM since
they fit symmetric rbf kernels with equal bandwidths at each
instance for each component regardless of the component
covariances and the time varying data size. In accordance,
our algorithm exploits the local structure of the density and
learns the optimal bandwidths for each component even in a
time varying manner. Therefore, our algorithm AD-HKDE also
outperforms its non-partitioned version, i.e., KDE-AB, which
learns the bandwidth based on the whole observation space.

We emphasize that the algorithms SVM, incrementally
trained SVM, K-NN, K-D Tree and K-LPE with separate train-
ing and test phases are specifically chosen in our experiments
due to their competing high performance and comparable
model free working environment, but their computational
complexity is significantly larger than the one of our online
detector. For example, SVM has complexity O(T 3

tr) in training,
and O(TtrTtest) in test phase (both are in the worst case).
Incrementally trained SVM aims to reduce the computational
complexity of SVM. This method proposes to divide the
training data into N subsets, which has complexity O(

T 3
tr

N2)
in training, and O(TtrTtest

N) in test phase. The complexity of
K-LPE is approximately O(T 2

tr) in training, and O(TtrTtest) in
test phase. The complexity of K-NN is O(TtrTtest), which is
prohibitively costly when the number of data points is high.
K-D Tree decreases the computational complexity of K-NN
by introducing a tree structure. This method has complexity
O(Ttr log(Ttr)) in training and O(Ttest log(Ttr)) in test phase,
which is still high for large number of data points. On the other
hand, the complexity of our detector is only O(DTk) (T : data
length, D: depth of the partitioning tree, k: number of g values
in the bandwidth set). Moreover, our algorithm is truly online
without separate training or test phases, where increments are
straightforward with new data; however, increments in these
other competing ones are computationally demanding.

B. Real Datasets

In this part, we present the ROC performances of the
compared algorithms on several real datasets in Table I that are
widely used in anomaly detection literature. We first perform
an experiment on the Occupancy dataset [43]. This dataset
consists of 10808 data points where the labels correspond to
occupied (normal) and unoccupied (anomalous) room states.

As seen in Fig. 2b, our technique AD-HKDE achieves the
highest AUC score, which indicates that the intrinsic covari-
ance structure within this dataset heavily requires local as well
as temporal bandwidth adaptation, therefore, the superiority of
our algorithm follows. In all of our experiments including the
Occupancy dataset and the others, our algorithm AD-HKDE
is generally highly superior in relatively smaller false alarm
regions (except a few cases). Small false alarm rate requires the

TABLE I: PROPERTIES OF THE REAL DATASETS USED IN THE
EXPERIMENTS

PPPPPPPPPDatasets

Properties Number of
features

Total
number of
instances

Number of
normal

instances

Number of
anomalous
instances

Occupancy 5 10808 8107 2701
Breast Wisconsin 30 569 357 212
Pen digits 16 6870 6714 156
Susy 18 106 54× 104 46× 104

Thyroid 6 3772 3679 93
Pima 8 768 500 268
Liver 6 345 200 145
Mammography 6 11183 10923 260

estimation of low density, which is in turn largely susceptible
to insufficient data in corresponding low density regions. This
necessitates to adjust the bandwidths or the neighborhood sizes
intelligently in those regions of the support. Our algorithm
elegantly addresses this need which introduces its superiority.

In addition, we plot the temporal variations of the bandwidth
probabilities/weights of our algorithm in Fig. 3a to show the
bandwidth adaptation power of our method. As an example,
we specify the bandwidth set as G = {0.01, 0.02, 0.04, 0.08}
for the root node θr, and apply our algorithm on the Occu-
pancy dataset. Since there are four possible bandwidths, initial
probabilities are αθk0 (g) = 1

4 ,∀g ∈ G. Then, as seen in Fig. 3a,
our algorithm asymptotically chooses g = 0.08 (the smallest
bandwidth) since its probability converges to one while the
others converge to zero7. This shows the efficacy of our algo-
rithm since KDEs generally achieve higher performance with
small bandwidths when the number of instances increases.

In Fig. 3b, we provide the ROC of our algorithm and its
static version with fixed bandwidths, i.e., with singleton G’s at
the nodes. The number of data instances is low at the beginning
and then increases since the algorithms operate in the online
framework. Therefore, KDEs with smaller bandwidths (larger
g) achieve higher bandwidth probabilities in Fig. 3a, towards
the end of the process. However, KDEs with fixed smaller
bandwidths get detrimentally affected by the scarce data in
the beginning in terms of the detection performance, which
results in an overall lower ROC performance as in Fig. 3b. For
this contrast between Fig. 3a and Fig. 3b, we point out that
an improvement in the density estimation does not directly
translate to an improvement in the ROC performance, as
the ranking of point density estimates matters more in our
detectors compared to raw density estimates. Also, Fig. 3a
shows the dynamic bandwidth probabilities with respect to the
changing data size, whereas Fig. 3b demonstrates the overall
AUC performance. Namely, a relatively larger bandwidth can
still yield a better AUC in overall, although a smaller one is
expected to perform better temporally locally toward the end
of processing. Finally, our algorithm outperforms the static
versions and has the highest AUC since it dynamically adapts
its bandwidths in accordance with the available data size.

We also apply the algorithms on Breast Cancer Wisconsin
dataset [44]. As in Table II, K-NN and K-D Tree are the best

7As we define the bandwidth parameter as g = 1
2δ2

, g = 0.08 corresponds
to the actual bandwidth δ = 2.5.

TABLE II: AREA UNDER CURVE (AUC) SCORES OF THE ALGORITHMS FOR THE OCCUPANCY, BREAST WISCONSIN, PEN
DIGITS, SUSY, THYROID, PIMA, BUPA LIVER AND MAMMOGRAPHY DATASETS.
`````````Datasets

Algorithms SVM I-SVM K-NN K-D Tree Online osPCA K-LPE FOGD K-KDE KDE-AB AD-HKDE

Occupancy 0.9828 0.9750 0.9854 0.9854 0.9292 0.9708 0.9490 0.9368 0.9531 0.9907
Breast Wisconsin 0.9483 0.9480 0.9778 0.9778 0.7248 0.9408 0.9555 0.8363 0.9083 0.9672
Pen digits 0.9362 0.9334 0.9858 0.9858 0.8951 0.9902 0.9503 0.9145 0.9769 0.9913
Susy 0.6821 0.6343 0.8569 0.8569 0.5747 0.7651 0.8474 0.6997 0.6928 0.9078
Thyroid 0.8869 0.8747 0.9208 0.9208 0.8772 0.9286 0.8937 0.7431 0.8734 0.9401
Pima 0.6694 0.6694 0.7690 0.7690 0.6272 0.7032 0.6309 0.6473 0.6552 0.7932
Liver 0.5950 0.5950 0.7062 0.7062 0.5631 0.6923 0.6733 0.7013 0.5756 0.7436
Mammography 0.8337 0.8295 0.8676 0.8676 0.7667 0.8709 0.8279 0.7058 0.8568 0.9115

performing ones in this case (K-D Tree is K-NN with lower
computational complexity), and our method AD-HKDE is the
second best (the other methods are strongly outperformed).
The reason is that the data size is not large enough to perfectly
learn the bandwidths in all regions across time. Namely, in
our method, we require to learn more parameters (compared
to K-NN and K-D Tree), and hence demand more instances.
Even when the data size is not sufficient as in this case, the
difference is so small as seen in Table II. Also, note that our
method works sequentially in the truly online setting with
no separate training or test phases or even cross validation,
while K-NN and K-D Tree need training data making them
impractical in our processing setting. In our targeted data
streaming applications, the data size is typically not an issue.

Moreover, we perform an experiment on pen digits dataset
[44] that is composed of handwritten digits from 0 to 9. Here, 0
digits are considered as anomalous, and digits from 1 to 9 with
equal number are considered as normal. This dataset consists
of 10 digits, which can also be considered as the mixture of
10 distributions. Since our technique AD-HKDE is able to
localize these components piecewise in its density estimation
with adaptive bandwidths, we obtain a decent performance on
this dataset with better AUC than all the others as can be seen
in Table II.

We also evaluate the AUC scores of the algorithms on Thy-
roid [44], Pima [44], Mammography and Liver [44] datasets,
whose properties are given in Table I. As seen in Table II,
our algorithm AD-HKDE outperforms the other methods in
all cases with its high modeling capability. Particularly for
Thyroid and Mammography datasets, our method provides
significantly higher AUC scores than the compared algorithms.
Since the number of instances are greater in these datasets, our
algorithm AD-HKDE learns the data structure more, which
results in higher detection performance.

Finally, we perform an experiment on Susy dataset [45] with
106 instances. As in Table II, our algorithm AD-HKDE has the
highest AUC score among all methods. In this case, we clearly
observe the advantage of partitioning since our method AD-
HKDE also significantly outperforms the other kernel based
methods where FOGD uses fixed bandwidth and K-KDE uses
point-wise variable bandwidth based on the nearest neighbor
distance. The number of data points being large allows our
algorithm to perfectly learn the local structure of the dataset

and optimal partitioning with corresponding bandwidths.

VII. CONCLUSION

We introduced an online unsupervised anomaly detection
algorithm for sequential data. The probability density of the
observed instance is first estimated based on the past ob-
servations. Our density estimation can be used even if the
underlying distribution is of any complex form since we do not
have any parametric shape assumption. After the density for a
given data instance is estimated, an anomaly is declared if the
estimated density is sufficiently low following a comparison to
a data adaptive threshold. Our density estimation is a mixture
of experts approach based on an ensemble of hierarchically
organized kernel density estimators (KDEs). The proposed al-
gorithm guarantees to sequentially achieve the best likelihood
performance within the introduced large ensemble represented
by a binary partitioning tree. This mathematical performance
guarantee implies that our method essentially exploits fitting
kernels of bandwidths that are optimally varying both in space
and time in the KDE technique. Namely, our method learns
the optimal partitioning of the observation space with KDEs
trained separately in partition regions. Such partition region
KDEs are even fitted together with spatially and temporally
optimal kernel bandwidths that can vary across partition
regions and time in accordance with the data manifold and
the size of the available data. In this work, we use a fixed
bandwidth set where the algorithm converges to the optimal
one. However, the performance can be improved by using
a dynamic set such that one can continuously replace the
obsolete candidate bandwidths with new larger ones (Note
that our bandwidth parameter g is inversely proportional to the
actual kernel bandwidth that should continuously decrease as
more data become available) by keeping the cardinality fixed,
which we consider as a future work. Consequently, in our
extensive experiments, we observe significant performance im-
provements in anomaly detection by our method over various
artificial and real datasets in comparison to the state-of-the-
art techniques. The end-to-end processing in our framework is
truly online with computational complexity O(TDk) that is
only linear in the tree depth D, the length T of the data and
the number k of bandwidths in the bandwidth set. Hence, our
technique is appropriate for processing at extremely fast rates
with decent anomaly detection performance.



REFERENCES

[1] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi,
“Credit card fraud detection: A realistic modeling and a novel learning
strategy,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, no. 8, pp. 3784–3797, Aug 2018.

[2] L. Maddalena and A. Petrosino, “Stopped object detection by learning
foreground model in videos,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 24, no. 5, pp. 723–735, May 2013.

[3] H. Ferdowsi, S. Jagannathan, and M. Zawodniok, “An online outlier
identification and removal scheme for improving fault detection perfor-
mance,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 25, no. 5, pp. 908–919, May 2014.

[4] X. Ding, Y. Li, A. Belatreche, and L. P. Maguire, “Novelty detection
using level set methods,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 3, pp. 576–588, March 2015.

[5] H. Ozkan, O. S. Pelvan, and S. S. Kozat, “Data imputation through
the identification of local anomalies,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 26, no. 10, pp. 2381–2395, Oct
2015.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[7] V. Saligrama and Z. Chen, “Video anomaly detection based on local
statistical aggregates,” in 2012 IEEE Conference on Computer Vision
and Pattern Recognition, June 2012, pp. 2112–2119.

[8] H. V. Poor, An introduction to signal detection and estimation. Springer
Science & Business Media, 2013.

[9] M. Zhao and V. Saligrama, “Anomaly detection with score functions
based on nearest neighbor graphs,” in Advances in Neural Information
Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, Eds. Curran Associates, Inc., 2009,
pp. 2250–2258.

[10] C. D. Scott and R. D. Nowak, “Learning minimum volume sets,” Journal
of Machine Learning Research, vol. 7, no. Apr, pp. 665–704, 2006.

[11] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for
online convex optimization,” Machine Learning, vol. 69, no. 2, pp. 169–
192, Dec 2007.

[12] B. W. Silverman, Density estimation for statistics and data analysis.
CRC press, 1986, vol. 26.

[13] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of
experts,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 8, Aug 2012.

[14] M. Kerpicci, S. S. Kozat, and H. Ozkan, “Sequential anomaly detection
using nonparametric density estimators,” in 2019 27th Signal Processing
and Communications Applications Conference (SIU), 2019, pp. 1–4.

[15] Z. Zivkovic and F. Van Der Heijden, “Efficient adaptive density esti-
mation per image pixel for the task of background subtraction,” Pattern
recognition letters, vol. 27, no. 7, pp. 773–780, 2006.

[16] W. K. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric
and semiparametric models. Springer Science & Business Media, 2012.

[17] M. C. Jones, J. S. Marron, and S. J. Sheather, “A brief survey of
bandwidth selection for density estimation,” Journal of the American
Statistical Association, vol. 91, no. 433, pp. 401–407, 1996.

[18] G. R. Terrell and D. W. Scott, “Variable kernel density estimation,” The
Annals of Statistics, pp. 1236–1265, 1992.

[19] S. J. Sheather and M. C. Jones, “A reliable data-based bandwidth
selection method for kernel density estimation,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 53, no. 3, 1991.

[20] B. U. Park and J. S. Marron, “Comparison of data-driven bandwidth
selectors,” Journal of the American Statistical Association, vol. 85, no.
409, pp. 66–72, 1990.

[21] M. Kristan, D. Skočaj, and A. Leonardis, “Online kernel density esti-
mation for interactive learning,” Image and Vision Computing, vol. 28,
no. 7, pp. 1106–1116, 2010.

[22] M. Kristan, A. Leonardis, and D. Skočaj, “Multivariate online kernel
density estimation with gaussian kernels,” Pattern Recognition, vol. 44,
no. 10, pp. 2630 – 2642, 2011.

[23] J. Ferreira, D. M. de Matos, and R. Ribeiro, “Fast and extensible online
multivariate kernel density estimation,” CoRR, vol. abs/1606.02608,
2016.

[24] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[25] B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classifi-
cation Techniques. Los Alamitos, CA: IEEE Computer Society Press,
1991.

[26] K. Zhang, M. Hutter, and H. Jin, “A new local distance-based outlier
detection approach for scattered real-world data,” in Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining. Springer, 2009.

[27] H. Ozkan, F. Ozkan, and S. S. Kozat, “Online anomaly detection under
markov statistics with controllable type-i error,” IEEE Transactions on
Signal Processing, vol. 64, no. 6, pp. 1435–1445, March 2016.

[28] M. Raginsky, R. M. Willett, C. Horn, J. Silva, and R. F. Marcia,
“Sequential anomaly detection in the presence of noise and limited
feedback,” IEEE Transactions on Information Theory, vol. 58, no. 8,
pp. 5544–5562, Aug 2012.

[29] M. Xie, J. Hu, S. Han, and H. H. Chen, “Scalable hypergrid k-nn-
based online anomaly detection in wireless sensor networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 8, pp.
1661–1670, Aug 2013.

[30] J. Wang, P. Zhao, and S. C. H. Hoi, “Cost-sensitive online classification,”
IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 10,
Oct 2014.

[31] M. Filippone and G. Sanguinetti, “Information theoretic novelty detec-
tion,” Pattern Recognition, vol. 43, no. 3, pp. 805 – 814, 2010.

[32] F. Camci and R. B. Chinnam, “General support vector representation
machine for one-class classification of non-stationary classes,” Pattern
Recognition, vol. 41, no. 10, pp. 3021 – 3034, 2008.

[33] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in neural information processing systems, 2008,
pp. 1177–1184.

[34] J. Lu, S. C. Hoi, J. Wang, P. Zhao, and Z.-Y. Liu, “Large scale online
kernel learning,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1613–1655, 2016.

[35] S. S. Kozat, A. C. Singer, and G. C. Zeitler, “Universal piecewise linear
prediction via context trees,” IEEE Transactions on Signal Processing,
vol. 55, no. 7, July 2007.

[36] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree
weighting method: basic properties,” IEEE Transactions on Information
Theory, vol. 41, no. 3, pp. 653–664, May 1995.

[37] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi, “An
information-theoretic approach to detecting changes in multi-
dimensional data streams,” in In Proc. Symp. on the Interface of
Statistics, Computing Science, and Applications, 2006.

[38] A. Zimek, R. J. Campello, and J. Sander, “Ensembles for unsupervised
outlier detection: Challenges and research questions a position paper,”
SIGKDD Explor. Newsl., vol. 15, no. 1, pp. 11–22, Mar. 2014.

[39] G. Boracchi, D. Carrera, C. Cervellera, and D. Maccio, “Quanttree:
Histograms for change detection in multivariate data streams,” in In-
ternational Conference on Machine Learning, 2018, pp. 638–647.

[40] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge university press, 2006.

[41] H. Ozkan, N. D. Vanli, and S. S. Kozat, “Online classification via self-
organizing space partitioning,” IEEE Transactions on Signal Processing,
vol. 64, no. 15, Aug 2016.

[42] K. Gokcesu and S. S. Kozat, “Online anomaly detection with minimax
optimal density estimation in nonstationary environments,” IEEE Trans-
actions on Signal Processing, vol. 66, no. 5, March 2018.

[43] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of
an office room from light, temperature, humidity and co2 measurements
using statistical learning models,” Energy and Buildings, vol. 112, 2016.

[44] M. Lichman, “UCI machine learning repository,” 2013.
[45] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles in

high-energy physics with deep learning,” Nature communications, vol. 5,
p. 4308, 2014.

[46] N. A. Syed, S. Huan, L. Kah, and K. Sung, “Incremental learning with
support vector machines,” 1999.

[47] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[48] Y. Lee, Y. Yeh, and Y. F. Wang, “Anomaly detection via online oversam-
pling principal component analysis,” IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 7, pp. 1460–1470, July 2013.

[49] L. J. Latecki, A. Lazarevic, and D. Pokrajac, “Outlier detection with
kernel density functions,” in Machine Learning and Data Mining in
Pattern Recognition, P. Perner, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007.

[50] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, 2011.


	Introduction
	Related Work
	Contributions
	Organization

	Problem Description
	Tree Construction
	The Proposed Novel Density Estimator
	Bandwidth Optimized Piecewise Online Kernel Density Estimator (KDE)
	Conventional KDE
	Online KDE
	Piecewise Online KDE
	Bandwidth optimized piecewise online KDE

	Efficient Combination of Hierarchically Organized Bandwidth Optimized Piecewise Online KDEs

	Anomaly Detector
	Experiments
	Artificial Dataset
	Real Datasets

	Conclusion
	References

