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Competitive Prediction Under Additive Noise

Suleyman S. Kozat and Andrew C. Singer

Abstract—In this correspondence, we consider sequential prediction of
a real-valued individual signal from its past noisy samples, under square
error loss. We refrain from making any stochastic assumptions on the gen-
eration of the underlying desired signal and try to achieve uniformly good
performance for any deterministic and arbitrary individual signal. We in-
vestigate this problem in a competitive framework, where we construct al-
gorithms that perform as well as the best algorithm in a competing class
of algorithms for each desired signal. Here, the best algorithm in the com-
petition class can be tuned to the underlying desired clean signal even be-
fore processing any of the data. Three different frameworks under additive
noise are considered: the class of a finite number of algorithms; the class
of all th order linear predictors (for some fixed order ); and finally the
class of all switching th order linear predictors.

Index Terms—Additive noise, competitive, real valued, sequential deci-
sions, universal prediction.

I. INTRODUCTION

In this correspondence, we investigate “sequential” prediction of a
real-valued and bounded individual sequence from its past noisy sam-
ples. Specifically, we consider the case when the corrupting noise is
independent identically distributed (i.i.d.) and additive. Here, neither
the desired clean signal nor its past samples are available for con-
structing predictions or training the underlying algorithm, yet, the goal
is to predict the (unavailable) clean signal. This framework models the
case in which the desired deterministic signal is observed through an
additive white noise channel and, then, predicted using only the re-
ceived past noise-corrupted output samples. The desired signal is rep-
resented by ����, where ������ � ��, �� � ���. Instead of directly
observing ����, we observe only a noise-corrupted version of ����, i.e.,
���� � ���������. As the noise model, we take ���� as a zero mean i.i.d.
random process, where ������ � �� , �� � ���. Although, we observe
only the noisy signal ���� and the clean signal ���� is not available, the
performance measure, including the loss function, is still taken with re-
spect to the desired clean signal ����. We consider the square error loss
function, however, our results can be generalized to several different
loss functions, such as those considered in [1].

If the desired signal ���� and the noise process ���� are assumed to
be random processes, the optimal predictor of ���� that minimizes the
mean-square error (MSE) between the desired signal and the predic-
tions is the conditional mean, ������������ �, ����� ������ � � � � ��� �
��� [2]. This predictor is optimal on the average over the ensemble of
outcomes (in MSE sense), however, calculation of the conditional mean
requires the statistics of the underlying signals. First, the underlying
signal ���� may not be well-modeled as a stochastic process. Second,
the desired signal ���� is not directly observable, hence it may not be
possible to estimate its statistics, if they existed in a meaningful sense.
Approaching this problem from an adaptive prediction perspective has
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a number of issues, since one usually needs the error between the pre-
dictions and the desired signal ���� for training, which is not available.
While blind adaptive prediction algorithms exist, such blind algorithms
usually exploit certain statistics of the underlying signal ����, such as
the kurtosis, to operate [2].

Hence, we refrain from making statistical assumptions on ���� and
desire uniformly good performance for any deterministic and arbitrary
signal ����, � � �. Since we do not employ a statistical framework
for ����, to define a performance measure, we investigate the predic-
tion problem in a competitive algorithm framework [1], [3]. In this
approach, we have a class of algorithms that we call the competition
class. The algorithms in the competition class are all thought of as
working in parallel to predict the next sample ����. Suppose there are
� such algorithms, producing predictions, 	�����, 	 � �� � � � ��. Then,
each algorithm has an implicit accumulated squared prediction error,

�

���

����� 	������

�. We note that we do not have access to this accu-
mulated loss since we are unable to observe the clean signal ����. Our
goal is to introduce a sequential algorithm, say 	�����, that observes only
past corrupted samples ����� � � � � ������, and whose accumulated loss
nearly achieves that of the best algorithm in this class, i.e.,
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uniformly for all 
 and ��� . Here, 
�

��
�� � as 
	 �. We stress
that 	����� does not observe ���� or have access to its prediction perfor-
mance with respect to ����. After making its prediction, 	�����, it will
only observe ����.

Such competitive framework for sequential prediction of determin-
istic sequences was investigated in [1] and [3] against a finite number
of predictors; in [4] against the class of fixed-order linear models; and
finally, in [5] and [6] against switching linear and certain nonlinear
models, respectively. However, in these past approaches [1], [4]–[6],
there is no consideration for noise. To make their predictions of ����
at time �, say 	����, these algorithms observe and make explicit use of
the clean sequence ������ � � � � ���� ���. After producing their predic-
tion and observing the clean desired signal ����, they use the predic-
tion error, e.g., 
���� � 	�����, to further train their parameters. Hence,
these results cannot be generalized to our case, since, here, we ob-
serve only the noise corrupted version of the desired signal ����. To
make predictions at time � on ����, say 	�����, we only have access to
������ � � � � ��� � ���. Further, after the prediction, 	�����, is produced,
we can only use the prediction error 
���� � 	������, albeit, our perfor-
mance metric is still with respect to the original desired signal ����, e.g.,

�

���� � 	������

�.
The framework investigated in this correspondence, i.e., additive

noise on an individual deterministic sequence, is introduced in [7]
for binary prediction. The results in [7] are extended to the filtering
problem in [8], where the underlying algorithm is allowed to use all
������ � � � � ����� (including ����) to make its decisions on ����. We are
inspired by [7] and [8] to extend the results presented in [3], [5], and
[6] to the noise-corrupted prediction problem. In the linear filtering
approach introduced in [8], knowledge of certain statistics of the noise
process are required. Here, we investigate deterministic real-valued
sequences and our setup is prediction, not filtering. Some initial and
partial results of this correspondence were introduced in [9] in the
linear prediction context. However, we note that the competition class
discussed in [9] is the “best” th-order linear predictor (for some )
tuned to the sequence ����, � � �. Hence, this “best” predictor is just
a particular predictor that is tuned to the noise corrupted signal ����,
not to ����. Here, we compete against all linear predictors that have the
form ��������� � ��, ��� � ���, ����� � �� � ��� � ��� � � � � ��� � �, where
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the linear weights ��� can be tuned even by observing the whole ����
and ����, � � �, beforehand. Furthermore, even in this restricted case
[9], only a probabilistic bound was given. We extend this result not
only to general linear predictors, but also provide both MSE results as
well as bounds on probability. In addition, we also study competition
against the class of a finite number of predictors as well as the class of
all switching linear predictors. When the competition class is a finite
class of predictors, we require only a bound on ���� to construct the
algorithm. When the competition class is the class of all �th-order
linear predictors, unlike [8], we require neither bounds on ����, ����,
���� nor the variance of ����. To construct the sequential algorithm for
switching �th-order linear predictors, we only require a bound on ����.
Our performance results are guaranteed to hold without any further
assumptions on ����. We only require that the noise process is i.i.d.
and that the variance of ���� exists.

The organization of the correspondence is as follows. We first inves-
tigate sequential prediction when the competition class contains a finite
number of algorithms. We then continue with �th-order linear predic-
tors, for a given �, and then investigate switching �th-order linear pre-
dictors. The correspondence concludes with simulations of these algo-
rithms in one-step-ahead prediction.

II. PREDICTION UNDER NOISE

For a real-valued and bounded data sequence, ����, � � �, ���� �
����� ���, �� � ���, we observe a noise-corrupted version of ����,
���� � ���� � ����, where ���� is a bounded real-valued i.i.d. zero mean
noise process such that ���� � ����� �� �, �� � ���. Hence, we have
������ � �� , where �� �� � �� . In this framework, we consider
following problems.1

A. Finite Competition Class

At each time �, we observe outcomes from	 different adaptive algo-
rithms, producing predictions ��� ���, 
 � �� 	 	 	 �	, of ����. Each ��� ���
is sequential such that ��� ��� only depends on ������ 	 	 	 � ���� ���, but
nothing from the future. The accumulated square-error of each algo-
rithm is given by �

���

���� � ��� ����

� (which is not observable). At
time �, our algorithm observes ���� �������� and ����� , and reveals its
prediction of ���� as ��������. Then, ���� is revealed, however, our per-
formance measure is with respect to ����, i.e., �

���

���� � ���������

�.
For this setup, we investigate an updated version of the sequential al-
gorithm introduced in [3] given as
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where  � ���� and ��	��� 
��	����
� is the clipped ��	��� into the

interval ����� �� �. Clearly, �������� does not observe ���� and only
has access to the past samples, ����� , and predictions ���	��������, � �
�� 	 	 	 �	, for all �. Here, �������� is a performance-based mixture of the
constituent algorithms. We note that, although �������� will be judged
with respect to ����, it is only allowed to use the performance of each

1All vectors are column vectors and represented by lowercase bold letters. For
a vector ���, ����� �� � is the � norm, ����� ��� is the � norm.
For a real number �, ��� is the absolute value and��� is the transpose of���. For a
symmetric matrix ��� � �� , � �����, � � �� � � � � � are the eigenvalues sorted
in a descended order, based on value. For a real number 	 � ��, �	� � 	 if
�	� � 
 , �	� � 
 if 	 � 
 and �	� � �
 if 	 � �
 , i.e., ���
is clipping into the ��
 �
 	 interval.

��	��� on ���� (not on ����) to calculate its mixture weights, while com-
bining the ��	���’s. For this algorithm, we have the following results.

Theorem 1: Let ���� be a real-valued and bounded sequence, ���� �
����� ���, �� � ���, ���� � ��������� be the observation sequence,
���� � ���� � �� �, �� � ���, be an i.i.d. noise process with zero
mean and ���� �������� are predictions of 	 adaptive algorithms. The
sequential algorithm �������� when applied to ����, � � �, satisfies, for
all �,
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and for any small � � �
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for any 
 � �� 	 	 	 �	, where the expectation in (4) and probability in
(5) are with respect to noise process. Here, � � �������� , � �
��� , � � � � �������� and ��� is the variance of ����.

Theorem 1 holds for any deterministic sequence���� without any sto-
chastic assumptions. It states that the performance of �������� is within
�
��
	���� of the best algorithm in the competition class that can
only be chosen in hindsight by observing ��� and ��� , for all �. The
upper bounds in (4) and (5) can be improved to ���� ��
	� (instead of
���� ��
	�) by using the Aggregating Algorithm of [1] instead of the
convex combination of (3).

Proof of Theorem 1: The main idea of the proof of Theorem 1 is to
transform the loss with respect to the clean signal 
����� ��� ����

� to the
loss with respect to the noisy signal 
����� ��� ����

�. For any sequential
algorithm ������, we observe that
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where in the second line, we observe that ���� is independent of the past
realizations ������ 	 	 	 � ���� ���, ���� and ������. Hence, the difference
between the accumulated loss of any sequential algorithm and any con-
stituent algorithm (that is clipped) can be written as
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where 
 � �� 	 	 	 �	. Thus, performance with respect to ���� can be
transformed into performance with respect to ���� in an expected sense.
However, when �������� is applied to ����, � � �, we have the following
result from [3]:
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for any � � �� � � � ��. Noting that clipping ��� ��� into ����� ���
will only improve the prediction performance of ��� ���, since
���� � ����� ��� � ����� ��� and using (8) in (7) yields
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This completes the first part of proof of Theorem 1.
To prove (5), for any sequential algorithm ������, including ��������,

we have
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We know from (8) that the first term in the right-hand side
of (9) is bounded by ��������, when ������ � ��������. For

�

���
�������� ��� � 	�� ����, we have the following. Since 	�� ��� �

����� ���, then �������� � ���� � ���, due to convex combination in
(2). Hence, ��	�� ��� � �������� � ��� for all �. Since, clipping only
improves the performance, this yields
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Since �

���
���� is sum of � i.i.d. noise samples bounded by �� , using

the Chernoff bound in (10) on �

���
���� yields the second part of the

result in Theorem 1. This completes the proof of Theorem 1.

B. Linear Prediction

Here, the competition class is the class of all th order fixed linear
predictors, i.e., ����


�� � ��, ��� � ��	, for some . The goal is then to
find a sequential algorithm which depends only on 
���� and achieves,
for all �, performance of the best linear predictor that is tuned to ����
and 
���, � � �. For any ��� and �, we define the accumulated loss of a
linear predictor as �

���
����������


���������������, for all��� � ��	,

for all ����, � � � and � � �. We included the additional term ������� for
regularization purposes and note that this modified loss is often called
the ridge-regression loss [10].

For this framework, we apply the sequential algorithm [4]
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� is a size  �  identity matrix, and � � ���. Clearly, �������� is
sequential such that it only employs 
���� to make its predictions on
����. In construction of ��������, we do not use ��, �� , �� or ��� .
We observe that �������� has a similar form to that of the well-known
recursive least squares algorithm (RLS) [2], with �� as the initial
value for the inverse correlation matrix and can be implemented
with similar computational complexity. For this algorithm, we have
the following result.

Theorem 2: Let ���� be a real valued sequence, ���� � ����� ���,
�� � ���, 
��� � ����  ���� be the observation sequence and ���� �
���� � �� �, �� � ��� be an i.i.d. noise process with zero mean. For
any � � �, the sequential algorithm �������� of (11), when applied to

���, satisfies, for all �,
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and for any small � � �
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for all ��� , all ��� � ��	, where 


�� � �� � �
�� � ��� � � � � 
�� �
��� and ��� is the variance of ����. Here, � � �������� , � �
� ��������  ���

���� and � � � � �������� , where �� �
�����	�������� � ���	�
��.

Theorem 2 states that the performance of ��������, when applied to

���, is asymptotically as good as the performance of any th-order
linear predictor including the best ��� that is tuned to the underlying
signal in advance. For example, for any �, the optimal predictor that
minimizes ���� � ��������� � �
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�� � ����  ��������

is given by
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This optimal linear predictor can only be calculated in hindsight by ob-
serving all ��� and also requires ��� . The performance of this optimal
linear predictor, � �

���
����� ������


�� � ����  ��������, is asymp-

totically achieved by an algorithm that is sequential, with no knowledge
of �, ��� or ��� .
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Fig. 1. Description of the sequential algorithm of Theorem 3, i.e., �� ���.

Proof of Theorem 2: Since �������� and ��������� � ��, (for a fixed
���), are sequential and only depend on ������ � � � � �������, we can still
use the identity (6), so that
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However, when applied to ����, we have the following result for ��������
from [4]:
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uniformly for all ��� , �, � � ��. Using (16) in (10) yields
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This completes the first part of Theorem 2.
For the second part of the proof, since both �������� and������������

��������� � ��, for fixed ���, are sequential, using (9)
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Since the second part of (18) is bounded by (16)
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For ������������������������, we observe that �������������� � ������
� .
For ��������, we use a bound from [9] such that ���������� �
	�
�

������������� ��� , where ���������� � ��� is the smallest

eigenvalue of ������� � ��. Hence, setting �� � �������������� �
��������, yields ������������������������ � � ������
� 	 	�
�

���� .
Using Chernoff bound on �

���
��� yields the second part of

Theorem 2.

C. Switching Linear Prediction

Unlike the framework of Theorem 1, we now allow the 	th-order
predictors in the competition class to switch their parameters in time.
We define the class of switching linear predictors as follows [5]. For
any �, a partition of ��� � � � � �� into � 	 � segment is represented by
switching instants ������ � ���� � � � � ���, � � �� � �� � � � �� �� �
� 	 �, such that �� � � � � � can be represented as a concatenation of
��� � � � � �� � ��� � � � � �� � ������ � � � � �� � �� � � � ���� � � � � ��� For
notational simplicity, we take �� � � and ���� � � 	 �. Obviously,
the number of switchings allowed is bounded by �, i.e., � � �. An
algorithm in the class of switching linear predictors assigns a different
linear predictor���	 � ��, to each region independently, � � �� � � � � �	
�. The pair ������ and ������ � � � � ������� forms a competing algorithm, for
all � � �� � � � � � � �, ���	 � ��, � � �� � � � � � 	 � and all �� � � � � �
�� . Clearly, for any �, one can choose from an exponential number of
switching patterns and an infinite continuum of linear predictors for
each segment. An algorithm in the competition class then produces
predictions of ���� as ����� ��� ����

	 ����� � �� for �	�� � � � �	,
� � �� � � � � � 	 �.

For this problem, we investigate ��������, which is a modified ver-
sion of a sequential algorithm from [5] described in Fig. 1. Clearly,
�������� requires only ����� to produce its predictions. For the algorithm
in Fig. 1, ����
����� is the linear model from (12), trained on data samples
����� � � � � ������, where � � �� � � � � ���. We observe that �������� is in
a certain sense a combined version of �������� and ��������. At each time
�, to produce its prediction, �������� combines predictions of � � � al-
gorithms, i.e., �����


 ��� �������� ��
�

, � � �� � � � � ���, each weighted
by �
���, � � �� � � � � � � �. Each �
��� measures the relative perfor-
mance of �����


 ��� ������� � ��
�

, similar to (3). For this algorithm, we
have the following result.

Theorem 3: Let ���� be a real valued sequence, ���� � ��
�� 
��,

� � ��, ���� � ���� 	 ��� be the observation sequence and ��� �
��
� � 
� �, 
� � �� be an i.i.d. noise process with zero mean. For
all �, �������� in Fig. 1 satisfies

�

�

���

����� � ���������
�

�

���

	��

� ��

���

����� �����
	 ������ ���� 	 �����	�

�

� (19)
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Fig. 2. Prediction results for the closing price of the Iroquois stock. NE-MSE for fifth-order linear model, fifteenth-order linear model and �� ��� “uni”. (a) All
algorithms observe only ����. (b) Linear models observe the clean signal ���� and �� ��� observes only ����.

� ��� � ����

� ����� �� � ���

���� � �� ����� ����� (20)

and for any small � � 	


�

�

���

�	�
� �	����
�
�

�

���

���

� ��

���

�	�
 �����
� ����
� ��� � �������

�

�

� ��� � ����

�

����� ��

�
� ���

����� ��
�����

�
��

�

�

� �� � ��������� (21)

for any �, ���� � ���
� , � � �� � � � � � � �, � � �� � � � � � � � and any


� � � � � � 
� . Here,  � �������	 , � � ������ �������� � ���
and 	 � � � ����	��	 , where ��	 is the variance of ��
.

Proof of Theorem 3: For any � and �, the partitioning of �� � � � � �
into � � � segments, i.e., �
�� � � � � 
�� and assigning each segment a
constant vector ����, � � �� � � � � � � � defines a predictor in the com-
petition class. Here, the competition class is all such predictors for all
� � �� � � � � ��� and���� � ���

� , � � �� � � � � ���. Although, �	����
 is
strongly sequential, i.e., it does not depend on �, � or switching times,
an algorithm in the competition class, �	


 �
, has access to �, � and
�
�� � � � � 
�� for all �. However, for any algorithm �	


 �
 in this com-
petition class, we can still write

� �	�
 � �	����
�
� � �	�
 � �	


 �
��

� � ���
 � �	����
�
� � ���
� �	


 �
��

since, still, ����
�	


 �
 � 	 for all 
, i.e., ��
 has no correlation
with �	


 �
. Hence

�

�

���

�	�
� �	����
�
� � �	�
 � �	


 �
��

� �

�

���

���
� �	����
�
� � ���
 � �	


 �
�� � (22)

Since clipping predictions ����

 �
 � �����
 � � in each branch only im-

proves prediction, we have the following result for �	����
 from [5]:

�

���

���
 � �	����
�
� �

���

���

� ��

�

�	�
 �����
� ����
� ��� � �������

�

�

� ��� � ����

� ����� � ���

���� � �� ����� ������

Hence, applying the above equation in (22) gives the first part of The-
orem 3.

For the second part of Theorem 3, similar to (9), we have
�

���

�	�
 � �	����
�
� �

�

���

�	�
 � �	


 �
��

�

�

���

���
 � �	����
�
� �

�

���

���
 � �	


 �
��

� �

	

���

��
��	����
� �	


 �
��

Hence, to get the result in Theorem 3, we need to bound
��	����
 � �	


 �
�. Since, �	


 �
 is equal to ����

� ����
 � � for
one ����, � � �� � � � � � � �, then �����

� ����
 � �� � ���� ��������� .
Moreover, ��	����
� � �� due to clipping to ����� ��. Hence,
����	����
 � �	


 �
�� � ��� � ���� ���������� . This completes the
proof of Theorem 3.

III. SIMULATIONS

In this section, we demonstrate the performance of each of the algo-
rithms developed, in several different scenarios. As the first example,
we apply our algorithms to historical data from the New York Stock
Exchange. We predict the closing market price of the Iroquois stock,
which is chosen because of its volatility. However, at each day, we
only observe a noise-corrupted version of the desired signal, 	�
, i.e.,
��
 � 	�
���
, where ��
 is i.i.d. and distributed uniformly between
��	���� 	���. This added i.i.d. noise models the underlying intrinsic
price fluctuations that are independent from the past observations. As
the competing prediction algorithms, we use fifth-order (one week)
and fifteenth-order (three weeks) linear models, where each model is
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Fig. 3. Prediction result for a third-order AR process. The normalized MSE of
�� ��� and the batch predictor of (15).

trained using the RLS algorithm with an effective window size of 30
days. These predictors are denoted as ������ and ������ respectively. Ini-
tially, these linear predictors solely work on the noisy stock prices ����.
The output of these predictors are then combined to form ��������, using
(3) to predict ����. Although all algorithms, ������, ������ and ��������,
only observe ����, their performances are judge with respect to the
clean signal ����. In Fig. 2(a), we plot the normalized accumulated MSE
(NA-MSE) of these predictors, for 500 independent realization of the
noise ����. We observe that �������� follows ������ in the start and favors
������ later on, hence performs as good as the best algorithm that can
only be chosen in hindsight. In Fig. 2(b), we simulate the same algo-
rithms, however, ������ and ������ now observe and train on the clean
signal ����. Here, �������� still receives predictions from ������ and ������,
however, trains on ���� as in (2). The losses of ������, ������ and ��������
are still with respect to ����. Even in this case, �������� is able to per-
form a successful mixture based on judging the linear algorithms with
respect to ����.

As the next set of experiments, we apply a third-order predictor
�������� from (11) to predict a sample function from the third-order au-
toregressive (AR) process, ���� � �����������������	�
�������

�� 
 ����, where ���� is a Gaussian i.i.d. process with variance 0.1.
We observe a noise-corrupted version of the desired signal ����, i.e.,
���� � ���� 
 ����, where ���� is i.i.d. and distributed uniformly be-
tween ������ ����. In Fig. 3, we plot NA-MSE for �������� for a single
sample function of this third-order process and the batch predictor from
(15) with a total of 100 sample functions of the noise process ����. Al-
though �������� relies only on the noisy observations, it is able to achieve
the performance of the best batch predictor for increasing data lengths.
Finally, we apply �������� to a process that switches between different
second-order AR processes for every 500 samples. Here, the process
switches between ���� � ������ � �� 
 ������ � 	� 
 ���� and
���� � ����������������	�
����, where ���� is i.i.d. Gaussian zero
mean noise, with variance 0.1 and ���� is i.i.d. uniformly distributed be-
tween ������ ����. For ��������, third-order models��������� are used in
Fig. 1. In Fig. 4, we plot the NA-MSE of �������� and that of the batch
predictor. Here, the batch predictor knows a priori the switching pat-
tern and uses (15) to select the best batch predictor independently in
each segment by observing ����. However, �������� observes only the
noisy version ���� and has no knowledge of the switching pattern, the

Fig. 4. Prediction result for a second-order AR process that changes its parame-
ters every 500 samples. The normalized MSE of �� ��� and the batch predictors
from (15) that are tuned for each segment independently.

number of switchings or the length of the data. For this simulation,
�������� asymptotically achieves the performance of the batch algorithm
and the difference between the two algorithms cannot be larger than the
regret in Theorem 3.

IV. CONCLUSION

In this correspondence, we investigated sequential prediction of real-
valued and bounded individual sequences that are corrupted by additive
noise. Here, we introduced algorithms that are able to asymptotically
achieve the performance of the best algorithm from a large class of
competing algorithms that can only be chosen by observing the clean
signal in hindsight. Our results are guaranteed to hold for any arbitrary,
deterministic and bounded signal without any stochastic assumptions
on the desired signal. We only assume that the noise is a zero mean,
i.i.d. and bounded process.
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