
1922 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

Correspondence

Universal Randomized Switching

Suleyman S. Kozat and Andrew C. Singer

Abstract—In this paper, we consider a competitive approach to sequen-
tial decision problems, suitable for a variety of signal processing applica-
tions where at each of a succession of times, a selection must be made from
among a fixed set of strategies (or outcomes). For each such decision and
outcome pair, loss is incurred, and it is the time-accumulation of these losses
that is sought to be minimized. Rather than using a statistical performance
measure, our goal in this pursuit is to sequentially accumulate loss that is
no larger than that of the best loss that could be obtained through a par-
titioning of the sequence of observations into an arbitrary fixed number
of segments and independently selecting a different strategy for each seg-
ment. For this purpose, we introduce a randomized sequential algorithm
built upon that of Kozat and Singer that asymptotically achieves the per-
formance of a noncausal algorithm that would be able to choose the number
of segments and the best algorithm for each segment, based on observing
the whole observation process a priori. In addition to improving upon the
bounds of Kozat and Singer as well as Gyorgy et al., the results we pro-
vide hold for more general loss functions than the square-error loss studied
therein.

Index Terms—Prediction, quantization, randomized, sequential deci-
sions, switching, universal.

I. INTRODUCTION

In many signal processing applications that employ sequential deci-
sions, such as prediction and quantization, performance is often mea-
sured using an assumed statistical ensemble over the set of possible
outcomes, such as the mean-squared error, variance, or entropy. How-
ever, for this paper, we follow the individual sequence approach taken
in universal source-coding, where we choose not to place any statis-
tical distribution over the set of possible outcomes [1]. This gives rise
to the challenge of how to assess performance of our results. Following
the universal source coding literature [3], we simply create a “compe-
tition class” of algorithms. If this competition class is sufficiently rich,
then by measuring performance of any algorithm with respect to the
best member of this class, for each individual sequence of outcomes, if
we can approach this best-in-class performance, then we are satisfied
that our approach is, in this sense, a “good” approach. Note that the
competition class is introduced solely for the purpose of creating a per-
formance benchmark and we do not require our approach to actually
be drawn from this class. A common misconception of this approach
is that one could achieve the best-in-class performance by simply se-
lecting the best member of the competition class for each individual

Manuscript received January 29, 2008; accepted September 14, 2009. First
published November 20, 2009; current version published February 10, 2010.
This work is supported in part by TUBITAK Career Award, under Contract
108E195. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. William A. Sethares.

S. S. Kozat is with the Electrical and Electronics Engineering Department,
Koc University, 34450 Istanbul, Turkey (e-mail: skozat@ku.edu.tr).

A. C. Singer is with the Department of Electrical and Computer Engineering,
University of Illinois, Urbana, IL 61801 USA (e-mail: acsinger@illinois.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2037062

sequence a priori. This would require observation of the entire se-
quence of outcomes before the first decision is made. However, due to
the strict sequentiality of the algorithms we desire, we are not able to
this, and what is being “learned” in this approach is the cost of learning
the “best” member from this class sequentially. For certain estimation
and modeling problems, one does have the ability to see all of the data
in advance, and in such applications, could simply select the best from
the class. This form of batch estimation or learning is not possible for
the problems we consider here.

In this paper, the desired real-valued individual sequence is repre-
sented by ��������� and ���� is revealed sequentially. At each time �,
we observe outcomes of � different algorithms producing estimates
��� ���, � � �� � � � � �, of ����. Although these algorithms are not con-
strained to be sequential, we observe the outputs of these algorithms
sequentially, i.e., at time �, we only have access to ���� ���� � � � � ��� ����,
� � �� � � � ��. Based on these estimates, at each time �, each algorithm
suffers a loss ������� ��� ����, where ���� �� 	
��
�� ��� ��, � �
��,
� � �, is any bounded loss function. For any 	, the accumulated
loss of the �th algorithm up to time 	 is given by �

��� ������� ��� ����,
� � �� � � � ��. We define, for any 	, a partition of ��� � � � � 	� into

�

segments at times � � �� � �� � � � � �� � 	
� as ������ � ���� � � � � ���

such that ��� � � � � 	� can be represented as the concatenation of

��� � � � � �� � ������ � � � � �� � �� � � � ���� � � � � 	��

For notational simplicity, we take ���� and ���� � 	
�. We permit,
for any 	, at most
 	 	 � � switches among algorithms within the
competition class. For any
 transitions (or switches), i.e.,

 � seg-
ments, there exist ���

�
possible ways of choosing a switching pat-

tern ������ to partition ��� � � � � 	�. Since the number of switches can be
� 	
 	 	 � �, there exist a total of ���� � ���

���
���
�

possible
switching patterns to partition ��� � � � � 	�.

For the purpose of a comparison benchmark, for any 	, given any
partition ������ of ��� � � � � 	� into

 � segments, a constituent algo-
rithm can be selected from the class of � algorithms for each segment
independently. We represent this selection by the assignment ������ �

���� � � � � �����, �� � ��� � � � ���, e.g., if for region
, �� � �, then
for the
th segment ��� ��� is the selected output. For

 � segments,
this results ��� � ��� different mappings ������. Corresponding to
any pairing of a switching pattern ������ � ���� � � � � ��� and a mapping
������, we can construct a sequential algorithm with outputs given by
������ ���� ����. For each time �, this sequential algorithm will produce
the estimate

������ ���� ���� � ��� ���

if ���� 	 � 	 �� � �, � 	 	. For each 	, there exists a total of
���
���

���
�

��� � ��� such sequential switching algorithms using
all pairings of all switching patterns and algorithm mappings. We
define the accumulated sequential loss of the switching algorithm
������ ���� ���� as

��	� ������� �������
�
�

�

���

� ����� ������ ���� ����

�

���

���

� ��

���

� ������ ��� ���� �

1053-587X/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010 1923

We consider the class of all such switching algorithms
������ ���� ����, �������, �������, ��, as a performance benchmark
and seek a sequential algorithm that asymptotically achieves the
performance of even the best algorithm in this class, uniformly for
any ��������� and all �. Specifically, our goal is to find a sequential
algorithm whose output, say �� ���, is constructed using the past
samples of the desired signal ������ � � � � ��� � ��� and the outputs of
the � constituent algorithms, ���� ���� � � � � ��� ����, 	 � �� � � � � �, that,
when used for estimation of ���� achieves an accumulated sequential
loss, �

���
�������� �� �����, nearly as small as the accumulated loss of
any algorithm in the switching class for all �. Note that in defining the
accumulated loss of �� ���, we take an expectation over the loss, since
we allow randomized algorithms and the expectation is with respect
to this randomization. However, the results introduced here hold
uniformly for any deterministic ���������, under any bounded loss
function. In this sense, we seek a sequential algorithm, with output
�� ���, which does not depend on �, or any specific �, ������ or ������,
however, when applied to any ���������, will satisfy

�

�

�

���

 � ����� �� ��� � ���� ������� ������� �

����

�
(1)

for all � � 	, any fixed �, � � 	� � � � � � � �, all switching pat-
terns ������ and all assignments ������, where
������
������ � 	.
The desired algorithm is sequential in the sense that �� ��� can only de-
pend on ����� � � � � ��� � �� and the outputs of the � adaptive algo-
rithms, ���� ���� � � � � ��� ����, 	 � �� � � � � �, but nothing from the future
or present, ��� �, � � �, explicitly. However, we place no such con-
straints on the output of the constituent algorithms.

For this purpose, we introduce a randomized algorithm that is built
upon the sequential algorithm of [1, Th. 3]. At each time, the algorithm
randomly selects one of the � constituent algorithms based on certain
weights assigned to each constituent algorithm and repeats the outcome
of this selected algorithm as its own. The sequential algorithm of [1]
generates an outcome, however, as a convex combination of the out-
comes of the � constituent algorithms using similar weights to those
derived here. The results presented in [1] hold for bounded real-valued
observations under square-error loss, however, we permit more gen-
eral loss functions here. We introduce a randomized version of [1] for
certain signal processing problems where one is expected to choose a
particular strategy from a class of strategies at each time, instead of
producing a new outcome based on the outcomes of the constituent al-
gorithms. A well-studied problem that fits this framework is tracking
a finite class of finite-delay scalar quantizers [2], [4]. A fixed-rate fi-
nite-delay sequential scalar quantizer is defined as a quantizer-decoder
pair, where at each time, the observation process ���� is quantized, or
mapped, into a finite set of symbols. These symbols can then be stored
or noiselessly transmitted to a decoder for the reconstruction of the
original signal. Hence, one can take each quantizer-decoder pair as
a constituent estimation algorithm and use an algorithm such as the
one introduced here, with the coding scheme of [4], to track the best
scalar quantizer from a class with a finite number of quantizer-decoder
pairs [2], to achieve the performance of the best switching scalar quan-
tizer-decoder pair. Note that selecting the best quantizer with the cor-
responding quantization level at each time � and transmitting this infor-
mation to the decoder requires transmission of indexes of both the best
quantizer and the quantization level. Accordingly, one can determine
the corresponding weights assigned to each algorithm and send these
weights with the corresponding quantization level of each quantizer to
produce a weighted combination of these outputs using the method in-
troduced in [1] or a committee-based method [5]. However, such an
approach will require transmission of the quantization indexes for all

quantizers. It has been shown in [6] that using a randomized algorithm
such as the one introduced here, which randomly selects a quantizer
based on assigned weights and only transmits the corresponding quan-
tization level index, along with the weights, can achieve the perfor-
mance of the best switching quantizer. This method only needs a pre-
diction algorithm achieving a redundancy rate such as the one in (1).
We introduce such an algorithm with complexity only linear in data
length. Furthermore, it has been also demonstrated in [6] that with a
certain time allocation scheme, such an algorithm will only need to
send

�� bits (where � is the number of quantization levels) per
transmission to achieve the intended performance.

The problem formulation studied in this paper has been described
in the computational learning theory literature under the guise of
“tracking the best expert” [5], [7]–[9] and later in the signal processing
literature as universal switching algorithms [1]. As detailed in [1] and
[7], without any consideration to algorithmic complexity, this problem
can be readily solved using a naive algorithm [9] which combines,
at each time �, all ���

���
���
�

��� � ��� sequential switching
algorithms using a convex combination [10] (or using the Aggregating
Algorithm (AA) [11]) or by a randomized algorithm [7]. These uni-
versal algorithms will yield a regret of ����� ��
����� �
�������

[10] or �� �� � ��
���� � �
������� [7] respectively over the
best algorithm with the best transition times. Nevertheless, this naive
algorithm [7] needs to implement and track weights for an exponential
number of possible algorithms, which is not a plausible task.

In [7], the authors introduced two algorithms that store only �

weights, one for each constituent algorithm, and that have complexity
���� per sample. The excess loss of these algorithms over the
best switching algorithm is of the same order as that of the naive
algorithm, however, to achieve these performance bounds, certain
parameters, such as the switching rate of the underlying process, must
be optimized a priori. The algorithms introduced in [7] were later
used in [2] for tracking the best scalar quantizer. These algorithms
were then demonstrated to be an application of the AA to combine
(or derandomize) a continuum of certain elementary predictors in [9],
using a quasi-probabilistic interpretation. Using this point of view,
the author in [9] introduced extended versions of these algorithms
attaining the performance of the naive algorithm, that do not need any
a priori information. However, these new algorithms have complexity
that is ���� per sample and they are in the same spirit of [1], where
instead of using a convex combination, the outcomes of the constituent
algorithms are merged using the AA to produce a new outcome. The
approach taken in this paper builds on that of the naive algorithm in
[9] using the idea that an appropriately weighted average over all ele-
mentary predictors (as in [9]) asymptotically achieves the performance
of the best predictor in the class of all switching algorithms. The
main contribution of this paper is that this impractically complex, and
therefore infeasible, mixture can actually be efficiently implemented
and done so in a sequential manner. In the process of developing
bounds, we construct a prediction algorithm, with a time complexity
that is linear in the data length, that is sequential in that it does not
require knowledge of the present or future data, or the length of the
data or the times for optimal switching.

We begin by introducing the randomized universal algorithm and
the corresponding performance result in Section II. We then provide
the proof of the performance result. We conclude the paper with sim-
ulations of the algorithm for the problem of tracking the best scalar
quantizer.

II. RANDOMIZED ALGORITHM

In this framework, the desired real-valued individual sequence
is represented by ���������. At each time �, we observe outcomes

1924 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

of � algorithms producing estimates ��� ���, � � �� � � � �� of ����.
We note that these constituent algorithms need not to be sequential.
However, we observe the outputs of these algorithms sequen-
tially, i.e., at time �, we have only access to ���� ���� � � � � ��� ����,
� � �� � � � ��. Based on these estimates, each algorithm suffers a
loss ������� ��� ����, � � �� � � � � �. For any �, the accumulated loss of
each algorithm is given by �

��� ������� ��� ����. For any �, we also
have ���

���
���
�

��� � ��� switching algorithms with outputs
������ ���� ����, for all � � 	� � � � � � � �, ������, and 			���. Each such
switching algorithm will suffer a loss ������� ������ ���� �����, and,
for any �, will have an accumulated sequential loss
��� ������� 			����.
We introduce a randomized sequential algorithm which has access to
������ � � � � ��� � ���, ���� ���� � � � � ��� ����, � � �� � � � ��, and selects,
at each time �, a constituent algorithm from the set of � constituent
algorithms and repeats the output of this selected algorithm as its own
to estimate ����. As an example, if the universal algorithm selects the
�th constituent algorithm at time �, then the output of the universal
algorithm is �� ��� � ������ at time �. The randomized algorithm, which
does not depend on a particular switching pattern, is given as follows:

Algorithm

Step 1: Fix constants
 and �, such that
� � �
��. At time � � �,
initialize weights �� ��� � ��� and auxiliary variables
��	� 	� �� � ���, � � �� � � � � �.

Step 2: At each time �
Step 2.1 Select one of the � constituent algorithms
randomly based on the following probabilities:
� ������� �
�
��
�� � �����, where �

��� ����� � �.
Step 2.2 Output �� ��� � ������.
Step 2.3 Update auxiliary variables.

For � � �� � � � � � � � and
� � �� � � � ��: ���� �� �� �

���� �� �� �����������
����
������� ��� �����.
For � � � and � � �� � � � ��:

���� �� �� �

���

	��

�

���
 ���

���� �� �� �� ���������
�

�� �

�
�� ��
� ������ ��� ������ �

Step 2.4 Update weights for each constituent
algorithm using auxiliary functions:

�� ��� �� �

�

	��

���� �� ��
�

���
�

�� ���� �� ��
�

Here, ���������
�
� ���������� � �����, where ��

�
�

�

�������
���� and ��������� � � � ���������. As given in

the proof of the following theorem, selecting different functions for
��������� will yield different algorithms with corresponding different
performance bounds as detailed in [1] and [12]. Hence, we use a
generic ��������� enabling a general implementation. We note that
the results we introduce for this algorithm hold for any real number
� � 	 as shown in the proof of the theorem and � does not need to be
optimized to yield the corresponding performance bounds. We further
point out that optimal selection of the parameter
 can be surpassed
using a doubling approach [6], [7], as explained after we introduce
the corresponding theorem. Hence, we observe that while combining
(or tracking) ���� different transition paths and ���� ��� different

assignments for each path, the randomized algorithm requires only
���� computations per output and stores ���� variables per sample.
We achieve this by compactly storing the transition path information
using the auxiliary variable ���� �� �� as illustrated in the proof of the
following theorem. For the universal algorithm with output �� ���, we
have the following result.

Theorem: Let ��������� represent the desired arbitrary real-valued
individual sequence. At each time �, outputs of � different constituent
algorithms, ��� ���, � � �� � � � � �, producing estimates of ���� are ob-
served. Given parameters
 and �, such that
� � �
��, the universal
algorithm with output �� ���, which does not depend on the number of
switches or switching patterns, when applied to ���������, satisfies, for
all �, �, � � 	� � � � � � � �, ������, 			���,

�

�

�

���

� � ����� �� ��� �

��� ������� 			����

�

�
�� ����������� ������

�

�

��

�
��

���

�
��

�

��

uniformly for any arbitrary deterministic ���������, under any bounded
loss function ���� �� � ���	 �	� ��, � �
��, � �
. Selecting

to minimize the right-hand side yields

�

�

�

���

� � ����� �� ��� �

��� ������� 			����

�

�
�� �� ����� � �� � �� ������

��

��
� � �

�
��

�

��
�

The theorem states that the performance of the randomized al-
gorithm is asymptotically as good as the performance of the best
switching algorithm (that can only be chosen in hindsight), and
the additional regret over the best switching algorithm is only
�� ��������. We point out that for the optimized value of
,
one needs to know � ahead of time, i.e., for the minimum regret,

� � ���� ����� � �� � �� �����������. However, this need
for a priori information can be easily surpassed as in [6] and [7] by
applying the randomized algorithm to known fixed-length intervals,
where the length of each interval is exponentially increased and the
algorithm resets itself at the start of each interval. For each interval, the
optimized value of the
 for that interval can be used. However, overall
with such a scheme, we do not need to known the total length �.

Proof of the Theorem: The proof of the theorem follows similar
lines as those of the proof of Theorem 3 of [1]. Hence, we only present
significant differences. Given a transition pattern ������ with � transi-
tions and a mapping of constituent algorithms to each segment 			���,
we define a function of the accumulated loss of the algorithm corre-
sponding to this pair as � �������� 			����

�
�
����

��� ������� 			�����,

where
 � 	. Clearly, � �������� 			���� reflects the performance of the
pair �������� 			���� on ��������� over a period of � samples. We then
define a weighted sum of all such functions corresponding to all pairs
�������� 			����, � � 	� � � � � � � �, as

����
�
�

��� ����

� �������� 			����
�� ��

��� ������� 			����� (2)

where the � �������� 			����’s are weights to be selected as follows. The
weighting for each pair, � �������� 			����, is constructed as a mixture of
two terms, i.e., � �������� 			���� � �������������			����. The first term,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010 1925

����������, assigns weight to the corresponding switching pattern ������
and the second term, ����������, assigns weight to ������. We select
the first term ���������� as the weight assigned to the binary sequence
generated from ������ using ideas from universal source coding literature.
From ������, we first generate a binary sequence of length �, by assigning
the value 1 when there is a “switch” and the value 0 when there is “no
switch.” Hence, the binary sequence generated from ������ has � ones and
� � � zeros. Given this binary sequence, we then use any of the three
different weight assignments for ���������� introduced in [3] and [12].
It can be shown that all these three weight assignments ���������� are
sequentially computable and individually satisfy the following bounds:

� �������������� �
�� � �

�
������� ����� (3)

� �������������� � �� � �� ����� � ���� � �� � � ��
�

�
(4)

� �������������� � �� � �� � ���� �������

� �� � �� ��
� � �

�
� �� � (5)

for all � 	 	 and any ������, where ������������ is from [3], ������������

and ������������ are from [12]. We will implement our algorithm gener-
ically such that any of these three weight assignments can be used in the
implementation in place of ����������
 ������������,

 �� �� �. For
the presentation of the theorem, the bound in (4) is used. The second
term is selected as ����������
 ������ ��� , since for � � � seg-
ments, one can choose ������ among ������� different assignments.
We assign each such assignment an equal weight, i.e., ������ ���.
It can be shown that

��� ����
� �������� �������
 � [3]. We observe

that from (2)

� �� �
���� � ����� ������� ������� � �� �� �������� �������� �

As seen, the logarithm of the total sum, ���
����, is as small as the total
(�-weighted) error corresponding to any ������ and ������ pairing, plus the
regret term ���� �������� ��������. However, using any of the bounds from
(3), (4), or (5), as an example the one from (4), we have

� �� �
���� � ����� ������� ������� � �� � �� �����

� ���� � �� � � ��
�

�
� �� � �� ������ (6)

Hence, it remains to show sequential universal algorithm that has an
exponentiated error as small as
���.

To accomplish this, we will first demonstrate that
��� can be calcu-
lated recursively using the transition diagram introduced in [3], which
was later used in a prediction context in [1]. To calculate
���, we
need to sum � �������� ������� through every pairing �������� �������, for �

	�

 � �� �. However, we observe that most of these switching paths
share common features that can be used to combine the reconstruction
error of many paths together. One way of characterizing switching pat-
terns is to look at the most recent transition time, e.g., for a path ������
with � transitions, �
 	�

 � � � �, the last transition time is �� . At
time �
 �, for all the paths that have the most recent transition time
��
 � and using ��� ��� from �
 � to �
 �, we combine their ex-
ponentiated error with the corresponding weights and define auxiliary
variables

��� �� ��
�

��� ����

� �������� ������� ��� ������� ������� �������� (7)

Fig. 1. Transition diagram for � � �. On each box, the number on the top
of the box is the time of the last transition. Each box stores � auxiliary vari-
ables, ���� �� ��, � � �� � � � ��, each corresponding to a particular constituent
algorithm.

where ������� and ������� are the paths and assignments such that the last
transition time for ������� is � and in the last segment ��� ��� is used, i.e.,
����
 �. At time �
 �, � can take � possible values �
 ��

 � �

and �
 ��

 ��. Hence, at each �, we have �� auxiliary variables
as shown on Fig. 1.

We observe that when �
 ��

 � � � �,
��� �� �� can only be
generated from the paths that also have the last transition time �, i.e.,
no transition at time � coming from � � �. Hence, it is enough to
update
�� � �� �� �� to get
��� �� �� when �
 ��

 � � � �. From

�� � �� �� �� to
��� �� ��, we need to first adjust the path weights
������

�
������ in (7) since the length of the paths are increased by 1.

Then, we need to account for the loss we acquired at �
 � using
��� ���. Combining these two effects yields

��� �� ��

�� � �� �� ����������� ��� ���� ������ ��� �����

�
 ��

 � � � �, �
 ��

 ��, where we define ��������� as the
weight adjustment to scale path weights ����������. The exact forms of
��������� to give different weight assignments of (3), (4), or (5) are
given in [1] and [3].

However, if there is a new transition at time � � �, i.e., �
 �,
to a new algorithm other than �, then this switch can come from any
�
 ��

 � �� � and �
 ��

 ��, such that � �
 �. Hence

��� �� ��

���

���

	

���
 ���

����� �� �� ���������
�

���

� ��� ���� ������ ��� �����

where ��������� � ���������
 �, since each algorithm � �
 �

has equal weight of ����� ��. Hence, the update of
��� �� �� for all
�
 ��

 � � is given.

1926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

Fig. 2. (a) Normalized mean-square prediction error: universal algorithm “uni”; fixed-share [7] “fixed-share”; variable-share [7] “variable-share”; the best offline
switching scalar quantizer with 50 segments. (b) Index of the scalar quantizer selected by the universal algorithm, blue stars, with the switching pattern on the top.

We observe from Fig. 1 that at each time � � �, from each ��� �

�� �� ��, we have � possible transitions, i.e., either stay in the current
algorithm or switch to another algorithm. Hence, we can write

���� �

���

���

�

���

���� �� ��

�

���

���

�

���

��� � �� �� ��

� ��������� ��	 ���	 �
����

� ����� ����������

�

�

����� ���

�

�� �
��	 ���	 �
����

������ (8)

which is the recursive update for ���� from � � � to �.
We next show that the randomized algorithm has an exponentiated

total error as large as ����. By definition

���� �

�

���

����

���� ��
(9)

which yields

�
 ������ �

�

���

�

����

���� ��
� (10)

However, for each term in (9), we use (8) to get

����

���� ��
�

���

���

�

���
� ���� ��� �� ��
��� �� ��

���

���

�

	��
� ���� ��� �� ��

(11)

where

��� �� ��
�
� ��������� ��	 ���	 �
����

� �����

����������

�

����� ���

�

�� �
��	 ���	 �
����

������ �

However, this yields

����

���� ��
�

���

���

�

���

� ���� ��� �� ��
���

���

�

	��
� ���� ��� �� ��

��� �� ��� (12)

We observe that in the right-hand side of (12), without the exponential
terms, we have

���

���

�

���

� ���� ��� �� ��
���

���

�

	��
� ���� ��� �� ��

��������������

���������

�

����� ���

�

�� �
��� � � (13)

since each term sums up to 1. We point out that by Hoeffding’s
inequality, ����	����� � ��	������ � ���������, for bounded
random variables � such that � � ��� ��, � � ��� and � � ��.
Using this identity in the right-hand side of (12), due to (13), yields

����

���� ��
���	 ��

���

���

�

���

������� ��

�����������	 �
����

� ��������������

�
�

���

�

����� ���

	 �
����

� ���� �
����

�

(14)

where

������� ��
�
�

� ���� ��� �� ��
���

���

	

	��
� ���� ��� �� ��

and � is an upper bound on the instantaneous loss. By definition of the
weights of the universal randomized algorithm, we have

� 	
����
� ��� �

��

���

�

���

������� �� ���������	 �
����

� ����

����������
�

���
����� ���

	 �
����

����� �

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010 1927

This yields, by (14)

��������� �� � ��������������� �	 ���	�
 ���
���		�

Finally, by (9)

���� � ��������

�

���

������� �	 ���	�
 ����
���		

and using (6), we get

�

�

���

� ����� �	 ��� �
��� ������� ������	
 ��
 �	
�
��	

�

�

�
�
��
 �	
 � �

�

�

 ��
 �	

�
��	

�

��
�

�

for any ������ and ������, � � �� � � � � � � �. This completes the proof of
the theorem.

III. SIMULATIONS AND CONCLUSION

We illustrate the performance of the introduced algorithm when
it is applied to the problem of tracking the best scalar quantizer.
Here, speech signals, each containing recording of a digit uttered by
different speakers, are randomly selected from TIMIT1 database. Each
speech file is decimated appropriately after antialiasing filtering is
applied. Then, different permutations of speech files are concatenated
to get 10-digit numbers with a specific pattern, i.e., ����������,
where �� �� �� � are different speech files. We then randomly generated
8-level quantizers as our constituent algorithms and plot in Fig. 1
the accumulated and normalized mean-squared error as a function
of the number of quantizers, i.e., �, included in the constituent set,
when the results are averaged over 200 different permutations. At
each time �, the square prediction of a scalar quantizer, say �� ,
� � �� � � � � �, is the closest point to ���� in �� in the Euclidean norm,
i.e., ����� � �����
��� ����� � �	� and the prediction error is given
as ����� � �����	�. We simulate four different algorithms including:
the universal randomized algorithm “uni”; the fixed-share algorithm
“fixed-share” [7]; the variable-share algorithm “variable-share”; and
the best offline switching scalar quantizer with 50 equally spaced
segments, in Fig. 2(a). For all algorithms, the learning rate is set
to � � �. For fixed-share and variable-share algorithms, we use a
switching rate parameter of 1/160, which is the switching rate to
achieve the optimal guaranteed performance bounds. We also plot
in Fig. 2(b), the selected quantizer by the randomized algorithm and
the switching pattern ���������� on the top. We observe that, for
these simulations, the randomized algorithm correctly captures the
switching instants and has superior performance among the online
algorithms in a mean-squared error sense.

In this paper, we presented a randomized algorithm that asymptoti-
cally performs as well as the best algorithm that can partition an obser-
vation sequence into an arbitrary number of segments and fit in each
segment the best algorithm from a finite set of algorithms by observing
the whole process a priori. The algorithm introduced chooses one of

1TIMIT Acoustic-Phonetic Continuous Speech Corpus, Linguistic Data Con-
sortium, Philadelphia, 1993.

the constituent algorithms in this finite set based on assigned proba-
bilities and replicates the outcome of the selected algorithm. The uni-
versal algorithm is a modified version of one of the algorithms intro-
duced in [1] for this problem setup and is shown to have an excess loss
of only �� �
��	��	 over the best switching algorithm, with com-
plexity only linear in data length per sample.

REFERENCES

[1] S. S. Kozat and A. C. Singer, “Universal switching linear least squares
prediction,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 189–204,
Jan. 2008.

[2] A. Gyorgy, T. Linder, and G. Lugosi, “Tracking the best quantizer,”
IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1604–1625, Apr. 2008.

[3] F. M. J. Willems, “Coding for a binary independent piecewise-identi-
cally-distributed source,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pt. 2,
pp. 2210–2217, Nov. 1996.

[4] N. Merhav, “On the minimum description length principle for sources
with piecewise constant parameters,” IEEE Trans. Inf. Theory, vol. 39,
no. 6, pp. 1962–1967, Nov. 1993.

[5] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
Inf. Comput., vol. 108, no. 2, pp. 212–261, 1994.

[6] T. Linder and G. Lugosi, “A zero-delay sequential scheme for lossy
coding of individual sequences,” IEEE Trans. Inf. Theory, vol. 46, no.
6, pp. 190–207, Sep. 2001.

[7] M. Herbster and M. K. Warmuth, “Tracking the best expert,” in Proc.
Int. Conf. Machine Learning, 1995, pp. 286–294.

[8] M. Herbster and M. K. Warmuth, “Tracking the best linear predictor,”
J. Mach. Learn. Res., pp. 281–309, 2001.

[9] V. Vovk, “Derandomizing stochastic prediction strategies,” Mach.
Learn., vol. 35, pp. 247–282, 1999.

[10] A. C. Singer and M. Feder, “Universal linear prediction by model
order weighting,” IEEE Trans. Signal Process., vol. 47, no. 10, pp.
2685–2699, Oct. 1999.

[11] V. Vovk, “Aggregating strategies,” in Proc. COLT, 1990, pp. 371–383.
[12] G. I. Shamir and N. Merhav, “Low-complexity sequential lossless

coding for piecewise-stationary memoryless sources,” IEEE Trans.
Inf. Theory, vol. 45, no. 5, pp. 1498–1519, Jul. 1999.

