# Equivalence Principle and Scattering from PEC Objects 

## Mert Hidayetoğlu

Ultrafast Optics \& Lasers Laboratory 16 January 2015

## From Sources to Fields: Integral Equations

Single-frequency sinsoidal time variation: $\boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{r}) e^{-i \omega t}\right\}$
Homogenious and isotropic medium: $(\boldsymbol{D}=\epsilon \boldsymbol{E}, \boldsymbol{B}=\mu \boldsymbol{H})$

Maxwell's Equations
$\nabla \times \boldsymbol{E}(\boldsymbol{r})=i \omega \mu \boldsymbol{H}(\boldsymbol{r})$
$\nabla \times \boldsymbol{H}(r)=-i \omega \varepsilon E(r)+J(r)$
$\nabla \cdot \boldsymbol{H}(\boldsymbol{r})=0$
$\nabla \cdot \boldsymbol{E}(\boldsymbol{r})=\rho(\boldsymbol{r}) / \varepsilon$
Electric-Field Integral Equation
$\boldsymbol{E}(\boldsymbol{r})=i \omega \mu \int_{V} d \boldsymbol{r}^{\prime} \overline{\boldsymbol{G}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \cdot \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)$
Magnetic-Field Integral Equation
Green's function of scalar Helmholtz equation in Cartesian coordinate system Green's Functions

$$
g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\frac{e^{i k\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

Dyadic Green's function


$$
\boldsymbol{H}(\boldsymbol{r})=\int_{V} d \boldsymbol{r}^{\prime} \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)
$$

$$
>_{\overline{\boldsymbol{G}}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\left[\overline{\boldsymbol{I}}+\frac{\nabla \nabla}{k^{2}}\right] g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)
$$



Electric-Field \& Magnetic-Field Integral Equations

## Maxwell's Equations with Magnetic Sources



Duality:

| $\boldsymbol{E}$ | $\rightarrow$ | $\boldsymbol{H}$ | $\boldsymbol{M}$ | $\rightarrow$ | $-\boldsymbol{J}$ |
| :---: | :--- | :---: | :---: | :--- | :--- |
| $\boldsymbol{H}$ | $\rightarrow$ | $\boldsymbol{E}$ | $\boldsymbol{J}$ | $\rightarrow$ | $-\boldsymbol{M}$ |
| $\boldsymbol{B}$ | $\rightarrow$ | $-\boldsymbol{B}$ | $\rho_{m}$ | $\rightarrow$ | $-\rho$ |
| $\boldsymbol{D}$ | $\rightarrow$ | $-\boldsymbol{D}$ | $\rho$ | $\rightarrow$ | $-\rho_{m}$ |

## Uniqueness Conditions

The solution will be unique in a volume enclosed by a surface $S$ if the boundary conditions are specified such that

1) tangential $E$ field is specified over the whole surface $S$, or
2) tangential H field is specified over the whole surface $S$, or
3) tangential $E$ field is specified over a part of $S$, and tangential H field is specified over the rest of S .

## Equivalence Principle

«When two source specifications give the same solution in a limited region of interest, the two problems are called equivalent.»

## Image Theory



## Huygen's Principle



Medium $2 \boldsymbol{E}_{2}, \boldsymbol{H}_{2} \boldsymbol{v}_{\boldsymbol{J}}^{\boldsymbol{n}}, \boldsymbol{M}_{s}$

$$
\widehat{\boldsymbol{n}} \times\left(\boldsymbol{E}_{1}-\boldsymbol{E}_{2}\right)=-\boldsymbol{M}_{s}
$$

$$
\widehat{\boldsymbol{n}} \times\left(\boldsymbol{H}_{1}-\boldsymbol{H}_{2}\right)=J_{S}
$$

## General Formulation of Surface Equivalence Principle

Two original problems:


## Equivalent Problem:

equivalent to a) external to $S$ equivalent to b) internal to $S$



## Equivalent Problem:

equivalent to b) external to $S$ equivalent to a) internal to $S$


## Scattering From Dielectric Objects




- Scattered fields are due to surface currents
- Fields should be Maxwellian
- $\boldsymbol{J}^{S}$ and $\boldsymbol{M}^{S}$ are the unknowns and can be solved with an integral equation


## Scattering from PEC Objects

## Electric-Field Integral Equation (EFIE)

tangential $\rightarrow \hat{\boldsymbol{t}} \cdot \boldsymbol{E}(\boldsymbol{r})=0, \boldsymbol{r} \in S$
operator $\quad \hat{\boldsymbol{t}} \cdot\left(\boldsymbol{E}^{i n c}(\boldsymbol{r})+\boldsymbol{E}^{s c a}(\boldsymbol{r})\right)=0, \boldsymbol{r} \in S$
$i \omega \mu \hat{\boldsymbol{t}} \cdot \int_{S} d \boldsymbol{r}^{\prime} \overline{\boldsymbol{G}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \cdot \underbrace{\boldsymbol{J}_{S}\left(\boldsymbol{r}^{\prime}\right)}_{\text {unknown }}=-\hat{\boldsymbol{t}} \cdot \underbrace{\boldsymbol{E}^{\text {inc }}(\boldsymbol{r})}_{\text {known }}, \boldsymbol{r} \in S$

> Magnetic-Field Integral Equation (MFIE)
$\widehat{\boldsymbol{n}} \times \boldsymbol{H}(\boldsymbol{r})=\boldsymbol{J}_{s}(\boldsymbol{r}), \boldsymbol{r} \in S$
$\widehat{\boldsymbol{n}} \times\left(\boldsymbol{H}^{i n c}(\boldsymbol{r})+\boldsymbol{H}^{s c a}(\boldsymbol{r})\right)=\boldsymbol{J}_{S}(\boldsymbol{r}), \boldsymbol{r} \in S$
$\underbrace{\boldsymbol{J}_{S}(\boldsymbol{r})}_{\text {unknown }}-\widehat{\boldsymbol{n}} \times \int_{S} d \underbrace{\boldsymbol{r}^{\prime} \boldsymbol{J}_{S}\left(\boldsymbol{r}^{\prime}\right)}_{\text {unknown }} \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\widehat{\boldsymbol{n}} \times \underbrace{\boldsymbol{H}^{i n c}(\boldsymbol{r})}_{\text {known }}, \boldsymbol{r} \in S$

$$
\begin{aligned}
& \boldsymbol{E}=\boldsymbol{E}^{i n c}+\boldsymbol{E}^{s c a}\left(\boldsymbol{J}_{s}\right) \\
& \boldsymbol{H}=\boldsymbol{H}^{i n c}+\boldsymbol{H}^{s c a}\left(\boldsymbol{J}_{s}\right) \\
& \boldsymbol{E}^{s c a}(\boldsymbol{r})=i \omega \mu \int_{S} d \boldsymbol{r}^{\prime} \overline{\boldsymbol{G}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \cdot \boldsymbol{J}_{s}\left(\boldsymbol{r}^{\prime}\right) \\
& \boldsymbol{H}^{s c a}(\boldsymbol{r})=\int_{S} d \boldsymbol{r}^{\prime} \boldsymbol{J}_{S}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)
\end{aligned}
$$

Alternative representation with $T, K$, and $I$ operators:

$$
\begin{aligned}
& T\{\boldsymbol{X}\}(\boldsymbol{r})=i k \int_{S} d \boldsymbol{r}^{\prime}\left[\boldsymbol{X}\left(\boldsymbol{r}^{\prime}\right)+\frac{1}{k^{2}} \nabla^{\prime} \cdot \boldsymbol{X}\left(\boldsymbol{r}^{\prime}\right) \nabla\right] g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \\
& K\{\boldsymbol{X}\}(\boldsymbol{r})=\int_{S} d \boldsymbol{r}^{\boldsymbol{X}} \boldsymbol{X}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \\
& I\{\boldsymbol{X}\}(\boldsymbol{r})=\boldsymbol{X}(\boldsymbol{r})
\end{aligned}
$$

EFIE: $\eta \hat{\boldsymbol{t}} \cdot T\left\{J_{s}\right\}(\boldsymbol{r})=-\hat{\boldsymbol{t}} \cdot \boldsymbol{E}^{\text {inc }}(\boldsymbol{r}), \boldsymbol{r} \in S$ MFIE: $\boldsymbol{J}_{s}(\boldsymbol{r})-\widehat{\boldsymbol{n}} \times K\left\{\boldsymbol{J}_{s}\right\}(\boldsymbol{r})=\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{\text {inc }}(\boldsymbol{r}), \boldsymbol{r} \in S$

## Hypersingularity in MFIE and its Extraction

$$
\begin{aligned}
& \text { MFIE: } \boldsymbol{H}^{s c a}(\boldsymbol{r})=\int_{S} d \boldsymbol{r}^{\prime} \boldsymbol{J}_{S}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \\
& \qquad \\
& g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\frac{e^{i k\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}: \text { singular at } \boldsymbol{r}^{\prime}=\boldsymbol{r}
\end{aligned}
$$

Reminder
$\nabla^{\prime} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}=\frac{\boldsymbol{r}-\boldsymbol{r}^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}}$
$\nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ has a higher-order singularity than $g$ itself

$$
\boldsymbol{H}^{s c a}(\boldsymbol{r})=\underbrace{\lim _{S_{\epsilon} \rightarrow 0} \int_{S-S_{\epsilon}} d \boldsymbol{r}^{\prime} \boldsymbol{J}_{S}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)}_{\text {principle value: } \boldsymbol{H}_{P V}^{s c a}}+\underbrace{\lim _{S_{\epsilon} \rightarrow 0} \int_{S_{\epsilon}} d \boldsymbol{r}^{\prime} \boldsymbol{J}_{s}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)}_{\text {limit value: } \boldsymbol{H}_{\text {lim }}^{s c a}}
$$

assuming that the current is continous に
As $\boldsymbol{r}$ approaches $S_{\epsilon}, g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \cong \frac{1}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}$

$$
\boldsymbol{H}_{l i m}^{s c a}(\boldsymbol{r})=\lim _{\boldsymbol{r} \rightarrow \boldsymbol{r}_{0}} \lim _{S_{\epsilon} \rightarrow 0} \int_{S_{\epsilon}} d \boldsymbol{r}^{\prime} \boldsymbol{J}_{S}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\frac{\boldsymbol{J}_{S}\left(\boldsymbol{r}_{0}\right)}{4 \pi} \times \int_{S_{\epsilon}} d \boldsymbol{r}^{\prime} \frac{\boldsymbol{r}-\boldsymbol{r}^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}}
$$

$$
\boldsymbol{H}_{l i m}^{s c a}(0,0, z)=\frac{J_{s}\left(r_{0}\right)}{4 \pi} \times \hat{\mathbf{Z}} \int_{0}^{2 \pi} d \varphi^{\prime} \int_{0}^{\epsilon} d \rho^{\prime} \rho^{\prime} \frac{z}{\sqrt{\left(\rho^{\prime}\right)^{2}+z^{2}}}
$$

$$
\boldsymbol{H}_{\lim }(0,0, Z)=\frac{4 \pi}{4 \pi} \times \mathbf{z} J_{0} a \varphi J_{0} a \rho \rho \sqrt{{\sqrt{\left(\rho_{s}^{\prime}\right)^{2}+z^{2}}}^{3}}
$$

$$
=\frac{J_{s}\left(r_{0}\right)}{4 \pi} \times \hat{\mathbf{z}} \int_{0}^{2 \pi} d \varphi^{\prime} \int_{0}^{\epsilon} d \rho^{\prime} \rho^{\prime} \frac{{ }_{z}}{\sqrt{\left(\rho^{\prime}\right)^{2}+z^{2}}}
$$

$$
\left.=\frac{J_{s}\left(r_{0}\right)}{2} \times \hat{\mathbf{z}} \frac{z}{\sqrt{\left(\rho^{\prime}\right)^{2}+z^{3}}}\right)_{\rho^{\prime}=0}^{\rho^{\prime}=\epsilon}=\frac{J_{s}\left(r_{0}\right)}{2 \pi} \times \hat{\mathbf{z}}\left(\frac{z}{\sqrt{\varepsilon^{2}+z^{2}}}-\frac{z}{|z|}\right)
$$

$$
\boldsymbol{H}_{l i m}^{s c a}(0,0, z)=\lim _{z \rightarrow 0} \frac{J_{s}\left(r_{0}\right)}{2} \times \hat{\mathbf{z}}\left(\frac{z}{\sqrt{\varepsilon^{2}+z^{2}}}-\frac{z}{|z|}\right)=\frac{J_{s}\left(r_{0}\right)}{2} \times \hat{\mathbf{z}}
$$

$$
\text { In general, } \quad \boldsymbol{H}_{\text {lim }}^{s c a}\left(\boldsymbol{r}_{0}\right)=\frac{\boldsymbol{J}_{s}\left(\boldsymbol{r}_{0}\right)}{2} \times \widehat{\boldsymbol{n}}
$$

$$
\text { More generally, } \boldsymbol{H}_{\text {lim }}^{s c a}\left(\boldsymbol{r}_{0}\right)=\frac{\Omega_{i}\left(\boldsymbol{r}_{0}\right)}{4 \pi} \boldsymbol{J}_{s}\left(\boldsymbol{r}_{0}\right) \times \widehat{\boldsymbol{n}}\left(\boldsymbol{r}_{0}\right)
$$

Solid Angle
Differential: $\sin \theta d \theta d \varphi$
Total: $\int_{0}^{2 \pi} \int_{0}^{\pi} d \varphi \sin \theta d \theta=4 \pi$

cone

Hypersingularity in MFIE and its Extraction
BAC-CAB Rule

$$
a \times(b \times c)=b(a \cdot c)-c(a \cdot b)
$$

- MFIE works on closed surfaces, not open surfaces.
- If $\boldsymbol{J}_{S}(\boldsymbol{r})$ is planar, and if $\boldsymbol{r}$ is on that plane, then the tangential components of $\boldsymbol{H}_{P V}^{s c a}(\boldsymbol{r})$ are zero.

$-\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{i n c}(\boldsymbol{r})=-\frac{\Omega_{0}}{4 \pi} \boldsymbol{J}_{S}(\boldsymbol{r})+\widehat{\boldsymbol{n}} \times \int_{S_{P V}} d \boldsymbol{r}^{\prime} \boldsymbol{J}_{S}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$
MFIE:
$\boldsymbol{J}_{S}(\boldsymbol{r})-\widehat{\boldsymbol{n}} \times K\left\{\boldsymbol{J}_{s}\right\}(\boldsymbol{r})=\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{\text {inc }}(\boldsymbol{r}), \boldsymbol{r} \in S$
 singularity extraction
$\frac{\Omega_{o}}{4 \pi} \boldsymbol{J}_{S}(\boldsymbol{r})-\widehat{\boldsymbol{n}} \times K_{P V}\left\{\boldsymbol{J}_{S}\right\}(\boldsymbol{r})=\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{i n c}(\boldsymbol{r}), \boldsymbol{r} \in S$

$$
\begin{aligned}
& \boldsymbol{J}_{S}(\boldsymbol{r})=\widehat{\boldsymbol{n}} \times \boldsymbol{H}(\boldsymbol{r})=\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{s c a}(\boldsymbol{r})+\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{i n c}(\boldsymbol{r}) \\
& =\widehat{\boldsymbol{n}} \times \boldsymbol{H}_{l i m}^{s c a}(\boldsymbol{r})+\widehat{\boldsymbol{n}} \times \boldsymbol{H}_{P V}^{s c a}(\boldsymbol{r})+\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{\text {inc }}(\boldsymbol{r}) \\
& =\underbrace{\widehat{\boldsymbol{n}} \times\left(\frac{\Omega_{i}}{4 \pi} \boldsymbol{J}_{s}(\boldsymbol{r}) \times \widehat{\boldsymbol{n}}\right)}+\widehat{\boldsymbol{n}} \times \boldsymbol{H}_{P V}^{s c a}(\boldsymbol{r})+\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{i n c}(\boldsymbol{r}) \\
& \underbrace{}_{\Omega_{i} J_{S}(\widehat{\boldsymbol{n}} \cdot \widehat{\boldsymbol{n}})-\widehat{\widehat{\boldsymbol{n}}} \underbrace{\left.\widehat{\boldsymbol{n}} \cdot \boldsymbol{J}_{S}\right)}_{0}=\frac{\Omega_{i}}{4 \pi} \boldsymbol{J}_{s}} \\
& -\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{i n c}(\boldsymbol{r})=\underbrace{\left(\frac{\Omega_{i}}{4 \pi}-1\right)} \boldsymbol{J}_{s}(\boldsymbol{r})+\widehat{\boldsymbol{n}} \times \boldsymbol{H}_{P V}^{s c a}(\boldsymbol{r}) \\
& -\widehat{\boldsymbol{n}} \times \boldsymbol{H}^{i n c}(\boldsymbol{r})=-\frac{\Omega_{o}}{4 \pi} \boldsymbol{J}_{s}(\boldsymbol{r})+\widehat{\boldsymbol{n}} \times \boldsymbol{H}_{P V}^{s c a}(\boldsymbol{r})
\end{aligned}
$$



