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Electromagnetics Problem 
Method of Moments 

known 

unknown 

Memory Complexity: 
𝑂 𝑁2 + 𝑂 𝑁 + 𝑂 𝑁 = 𝑂 𝑁2  

 
Computational Complexity: 
  Gaussian Elimination 
  LU Decomposition  
  
 Iterative Solution: 

Fast solvers: 𝑂 𝑁3 → 𝑂 𝑁2 → 𝑂 𝑁1.5 → 𝑂(𝑁 log𝑁) 

𝑨 𝑁×𝑁 ⋅ 𝒙 = 𝒃 

𝑂 𝑁3  

𝑂 𝑁2  

Iterative Solver 
    Initial Guess: 𝒙0 
    Substitute: 𝑨 ⋅ 𝒙 − 𝒃 = 𝒓0 
 
𝒓𝑖−1 →  𝑆𝑜𝑙𝑣𝑒𝑟 → 𝒙𝑖 → 𝑨 ⋅ 𝒙 − 𝒃 → 𝒓𝑖  

 𝑂 𝑁2  



𝛻 × 𝑬 𝒓, 𝑡 = −
𝑑

𝑑𝑡
𝑩 𝒓, 𝑡  

𝛻 × 𝑯 𝒓, 𝑡 =
𝑑

𝑑𝑡
𝑫 𝒓, 𝑡 + 𝑱 𝒓, 𝑡  

 

𝛻 ⋅ 𝑱 𝒓, 𝑡 = −
𝑑

𝑑𝑡
𝜌(𝒓, 𝑡) 

Maxwell’s Equations 
𝑬: 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑉

𝑚
 

𝑯:𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐴
𝑚

 

𝑩:𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑙𝑢𝑥 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑊𝑏
𝑚2  

𝑫: 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑙𝑢𝑥 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝐶
𝑚2  

𝑱: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝐴
𝑚2  

𝜌: 𝑐𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝐶
𝑚3  

Vector Identity: 
𝛻 ⋅ 𝛻 × 𝑨 ≡ 0 
«The divergence of the curl 
of any vector field is zero» 

 
Continuity Equation from Maxwell’s Eq. 

𝛻 ⋅ 𝛻 × 𝑯 = 𝛻 ⋅ 𝑱 + 𝑑
𝑑𝑡
𝑫 = 0 

⇒ 𝛻 ⋅ 𝑱 = − 𝑑
𝑑𝑡
𝛻 ⋅ 𝑫 = − 𝑑

𝑑𝑡
𝜌 

𝛻 ⋅ 𝛻 × 𝑬 = −
𝑑

𝑑𝑡
𝛻 ⋅ 𝑩 = 0 ⇒ 𝛻 ⋅ 𝑩 = 0, 

 

𝛻 ⋅ 𝛻 × 𝑯 = 𝛻 ⋅ 𝑱 +
𝑑𝑫

𝑑𝑡
= 0 

𝑑𝛻 ⋅ 𝑫

𝑑𝑡
= −𝛻 ⋅ 𝑱 =

𝑑

𝑑𝑡
𝜌 ⇒ 𝛻 ⋅ 𝑫 = 𝜌, 

 
𝑤𝑒𝑟𝑒 𝑫 𝒓, 𝑡 = 0 = 𝜌 𝒓, 𝑡 = 0 = 𝑩 𝒓, 𝑡 = 0 = 0 

𝛻 × 𝑬 𝒓, 𝑡 = − 𝑑
𝑑𝑡
𝑩 𝒓, 𝑡  

𝛻 × 𝑯 𝒓, 𝑡 = 𝑱 𝒓, 𝑡 + 𝑑
𝑑𝑡
𝑫 𝒓, 𝑡  

𝛻 ⋅ 𝑩 𝒓, 𝑡 = 0 
𝛻 ⋅ 𝑫 𝒓, 𝑡 = 𝜌(𝒓, 𝑡) Gauss’ Law 

Ampere’s Law 

Faraday’s Law 

Magnetic Flux Law 

Continuity Equation 

. decreasing charge at a point 
creates a current divergence 



𝛻 × 𝑬 𝒓 = 𝑖𝜔𝑩 𝒓  
𝛻 × 𝑯 𝒓 = −𝑖𝜔𝑫 𝒓 + 𝑱(𝒓) 
𝛻 ⋅ 𝑩 𝒓 = 0 
𝛻 ⋅ 𝑫 𝒓 = 𝜌(𝒓) 

Time-Harmonic Maxwell’s Equations 
 Single-frequency sinsoidal time variation: 𝑬 𝒓, 𝑡 = 𝑅𝑒*𝑬 𝒓 𝑒−𝑖𝜔𝑡+ 

𝛻 ⋅ 𝑱 𝒓 = 𝑖𝜔𝜌(𝒓) Continuity Equation 

Gauss’ Law 

Ampere’s Law 

Faraday’s Law 

Magnetic Flux Law 

Medium 1 
Medium 2 

. 

𝒏  

𝑱𝑠 

. . 
. . 𝜌𝑠 

𝑬1, 𝑯1, 𝑫1, 𝑩1 

𝑬2, 𝑯2, 𝑫2, 𝑩2 

Boundary Conditions 
 
𝒏 × 𝑬1 − 𝑬2 = 0 
𝒏 × 𝑯1 −𝑯2 = 𝑱𝑠 
𝒏 ⋅ 𝑩1 − 𝑩2 = 0 
𝒏 ⋅ 𝑫1 − 𝑫2 = 𝜌𝑠 

Time-derivative of Phasors 
𝑑

𝑑𝑡
𝑬 𝒓, 𝑡 = 𝑅𝑒*−𝑖𝜔𝑬 𝒓 𝑒−𝑖𝜔𝑡+ 

phasor 



Sources Creating Fields: Potential Functions 
 Objective: Find the fields due to 𝑱 𝒓  in a homogenious and isotropic medium. 

(𝑫 = 𝜖𝑬, 𝑩 = 𝜇𝑯) 
 
𝛻 × 𝑬 = 𝑖𝜔𝜇𝑯 
𝛻 × 𝑯 = −𝑖𝜔𝜖𝑬 + 𝑱 
 
𝛻 ⋅ 𝜇𝑯 = 0 ⇒ 𝜇𝑯 = 𝛻 × 𝑨 
 
𝛻 × 𝑬 = 𝑖𝜔𝛻 × 𝑨 ⇒ 𝛻 × 𝑬 − 𝑖𝜔𝑨 = 0 
  ⇒ 𝑬− 𝑖𝜔𝑨 = −𝛻𝜑 
  ⇒ 𝑬 = 𝑖𝜔𝑨 − 𝛻𝜑 
 
𝜇𝛻 × 𝑯 = 𝛻 × (𝛻 × 𝑨)   𝛻 ⋅ 𝑬 = 𝑖𝜔𝛻 ⋅ 𝑨 − 𝛻 ⋅ 𝛻𝜑 
𝜇 −𝑖𝜔𝜖𝑬 + 𝑱 = 𝛻 ⋅ 𝛻 ⋅ 𝑨 − 𝛻2𝑨 
−𝑖𝜔𝜇𝜖 𝑖𝜔𝑨 − 𝛻𝜑 + 𝜇𝑱 = 𝛻 ⋅ 𝛻 ⋅ 𝑨 − 𝛻2𝑨 

𝛻2𝑨 + 𝜔2𝜇𝜖𝑨 − 𝛻 𝛻 ⋅ 𝑨 − 𝑖𝜔𝜇𝜖𝜑 = −𝜇𝑱  𝛻2𝜑 + 𝜔2𝜇𝜖𝜑 = −
𝜌

𝜖
 

 
 
     𝛻2𝐴𝑥 + 𝑘2𝐴𝑥 = −𝜇𝐽𝑥 
 𝛻2𝑨 + 𝜔2𝜇𝜖𝑨 = −𝜇𝑱   𝛻2𝐴𝑦 + 𝑘2𝐴𝑦 = −𝜇𝐽𝑦 
        𝛻2𝐴𝑧 + 𝑘2𝐴𝑧 = −𝜇𝐽𝑧 

     𝛻2𝜑 + 𝑘2𝜑 = −
1

𝜖
𝜌 

Identities 
I) 𝛻 × 𝛻𝜑 ≡ 0 
II) 𝛻 ⋅ 𝛻 × 𝑨 ≡ 0 

vector magnetic 
potential 

scalar electric 
potential 

Reminder 
𝛻 Del operator: 𝛻𝜑, 𝛻 ⋅ 𝑨, 𝛻 × 𝑨 
𝛻2 Laplacian operator: 𝛻2𝜑 = 𝛻 ⋅ 𝛻𝜑 
𝛻2 Vector Laplacian operator: 𝛻2𝑨 = 𝛻 ⋅ 𝛻 ⋅ 𝑨 − 𝛻 × (𝛻 × 𝑨) 

𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝐺𝑎𝑢𝑔𝑒:  𝛻 ⋅ 𝑨 = 𝑖𝜔𝜇𝜖𝜑 
(𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝐺𝑎𝑢𝑔𝑒 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑐 𝑐𝑎𝑠𝑒:  𝛻 ⋅ 𝑨 = 0) 

Helmholtz Theorem 
«A vector field is determined if 
both its divergence and its curl are 
specified everywhere.» 

𝜌 𝜖                𝑖𝜔𝜇𝜖𝜑         𝛻2 

𝑁𝑜𝑛 − 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 
𝐻𝑒𝑙𝑚𝑜𝑙𝑡𝑧′𝑠 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

electric 
permittivity magnetic  permeability 

𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟:  𝑘 = 𝜔 𝜇𝜖 



Green’s Function of Helmholtz Equation 
 Objective: Solve 𝛻2ψ(𝒓) + 𝑘2ψ(𝒓) = −𝛿(𝒓 − 𝒓′) everywhere except at 𝒓′.  

𝒓′ = 𝟎 ⇒ 𝜓 𝒓 = 𝜓 𝑥, 𝑦, 𝑧 = 𝜓 𝑟, 𝜃, 𝜑 = 𝜓 𝑟 ∶ 𝑠𝑝𝑒𝑟𝑖𝑐𝑎𝑙 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑎𝑟𝑜𝑢𝑛𝑑 𝑜𝑟𝑖𝑔𝑖𝑛. 
 

𝛻2𝜓 = 1
𝑟
𝑑2

𝑑𝑟2
𝑟𝜓 ⇒ 𝑑2

𝑑𝑟2
𝑟𝜓 + 𝑘2 𝑟𝜓 = 0 ⇒ 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛:  𝜓 =

𝑐1
𝑟
𝑒𝑖𝑘𝑟 +

𝑐2
𝑟
𝑒−𝑖𝑘𝑟 

𝑃𝑦𝑠𝑖𝑐𝑎𝑙𝑙𝑦:  𝑐2 = 0 ⇒ 𝜓 =
𝑐1
𝑟
𝑒𝑖𝑘𝑟  

 
 
 
 
 
 
 
 
 
 
 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑐1 =
1
4𝜋

⇒ ψ r = 𝑒𝑖𝑘𝑟

4𝜋𝑟
⇒ ψ 𝒓 = 𝑒𝑖𝑘 𝒓

4𝜋 𝒓
 

𝐹𝑜𝑟 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝒓′, ψ 𝒓 = 𝑒𝑖𝑘 𝒓−𝒓′

4𝜋 𝒓−𝒓′
= 𝑔 𝒓, 𝒓′  

𝛻2𝜑 + 𝑘2𝜑 = −
1

𝜖
𝜌  𝐻𝑒𝑙𝑚𝑜𝑙𝑡𝑧′𝑠 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑆𝑐𝑎𝑙𝑎𝑟 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

𝜌 𝒓 = 𝜌0𝛿(𝒓 − 𝒓0) ⇒ 𝜑 𝒓 =
1

𝜖
𝜌0

𝑒𝑖𝑘 𝒓−𝒓0

4𝜋 𝒓−𝒓0
=
1

𝜖
𝜌0𝑔 𝒓, 𝒓0 =

1

𝜖
 𝜌0𝛿 𝒓′ − 𝒓0 𝑔 𝒓, 𝒓′ 𝑑𝒓′

𝑉

 

outgoing 
wave 

incoming 
wave 

. 

Green’s function 

𝜌 𝒓  

𝑃𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑡 𝑡𝑒 𝑜𝑟𝑖𝑔𝑖𝑛: substitute 𝜓 
into the non-homogeneous Helmhotz Equation and integrate boths sides: 

 𝛻2𝜓(𝒓)𝑑𝒓
𝑉

+ 𝑘2 𝜓(𝒓)𝑑𝒓
𝑉

= − 𝛿(𝒓)𝑑𝒓
𝑉

 

 𝛻𝜓 ⋅ 𝑑𝑺
𝑆

+ 4𝜋𝑘2 𝑟′
2
𝜓𝑑𝑟′

𝑟

0

= −1 

−4𝜋𝑟2𝑐1
𝑒𝑖𝑘𝑟

𝑟2
−𝑖𝑘

𝑒𝑖𝑘𝑟

𝑟
+ 4𝜋𝑘2𝑐1

𝑟𝑒𝑖𝑘𝑟

𝑖𝑘
+ 𝑒𝑖𝑘𝑟−1

𝑘2
= −1 

𝑟 → 0 ⇒ 𝑐1 =
1

4𝜋
 

𝑟 

𝑆 

𝑉 

Gauss’ Divergence Law: 

 𝛻 ⋅ 𝑨𝑑𝑉
𝑉

=  𝑨 ⋅ 𝑑𝑺
𝑆

 

. 

𝒓′ 

𝒓 

𝒓 − 𝒓′ source 
observation 𝛿(𝒓 − 𝒓′) 



Volume Integral Equations 

𝑨 𝒓 = 𝜇 𝑑𝒓′𝑱(𝒓′)𝑒
𝑖𝑘 𝒓−𝒓′

4𝜋 𝒓−𝒓′
𝑉

 

𝜑 𝒓 =
1

𝜖
 𝑑𝒓′𝜌(𝒓′)𝑒

𝑖𝑘 𝒓−𝒓′

4𝜋 𝒓−𝒓′
𝑉

 

 

𝑬 𝒓 = 𝑖𝜔𝑨 𝒓 − 𝛻𝜑 𝒓 = 𝑖𝜔𝜇 𝑑𝒓′𝑔 𝒓, 𝒓′ 𝑱 𝒓′

𝑉

−
𝛻

𝜖
 𝑑𝒓′𝑔(𝒓, 𝒓′)𝜌(𝒓′)
𝑉

 

= 𝑖𝜔𝜇 𝑑𝒓′𝑔 𝒓, 𝒓′ 𝑱 𝒓′

𝑉

−
𝛻

𝑖𝜔𝜖
 𝑑𝒓′𝑔 𝒓, 𝒓′ 𝛻′ ⋅ 𝑱 𝒓′

𝑉

 

  𝑑𝒓′𝑔 𝒓, 𝒓′ 𝛻′ ⋅ 𝑱 𝒓′
𝑉

=  𝑑𝒓′𝛻 ⋅ 𝑔 𝒓, 𝒓′ 𝑱 𝒓′
𝑉

−  𝑑𝒓′𝛻′𝑔 𝒓, 𝒓′ ⋅ 𝑱 𝒓′
𝑉

 

 =  𝑑𝑺 ⋅ 𝑔 𝒓, 𝒓′ 𝑱(𝒓′) 
𝑆

+  𝑑𝒓′𝛻𝑔 𝒓, 𝒓′ ⋅ 𝑱 𝒓′
𝑉

 

 

= 𝑖𝜔𝜇 𝑑𝒓′𝑔 𝒓, 𝒓′ 𝑱 𝒓′

𝑉

+
𝛻

𝑖𝜔𝜖
 𝑑𝒓′𝛻𝑔 𝒓, 𝒓′ ⋅ 𝑱 𝒓′

𝑉

 

 
 
 

𝑬 𝒓 = 𝑖𝜔𝜇 𝑰 +
𝛻𝛻

𝑘2
⋅  𝑑𝒓′𝑔 𝒓, 𝒓′ 𝑱 𝒓′

𝑉

= 𝑖𝜔𝜇 𝑑𝒓′𝑮 𝒓, 𝒓′ ⋅ 𝑱 𝒓′

𝑉

 

 

𝑯 𝒓 =
1

𝜇
𝛻 × 𝑨(𝒓) = 𝛻 × 𝑑𝒓′𝑔 𝒓, 𝒓′ 𝑱 𝒓′

𝑉

=  𝑑𝒓′𝛻𝑔 𝒓, 𝒓′ × 𝑱 𝒓′ =
𝑉

 𝑑𝒓′𝑱 𝒓′ × 𝛻′𝑔 𝒓, 𝒓′

𝑉

 

Continuity Equation: 
𝛻 ⋅ 𝑱 𝒓 = 𝑖𝜔𝜌 𝒓  
Space Derivative: 
𝛻 ⋅ 𝑔𝑱 = 𝛻𝑔 ⋅ 𝑱 + 𝑔𝛻 ⋅ 𝑱 
Gauss’ Divergence Law: 

 𝛻 ⋅ 𝑔𝑱 =  𝑔𝑱
𝑆𝑉

 

Identity: 
𝛻′𝑔 𝒓, 𝒓′ = −𝛻𝑔(𝒓, 𝒓′) 

dyadic Green’s function 

Unit Dyad: 

𝑰 =
1 0 0
0 1 0
0 0 1

 

Outer Product: 

𝒂𝒃 =

𝑎𝑥𝑏𝑥 𝑎𝑥𝑏𝑦 𝑎𝑥𝑏𝑧
𝑎𝑦𝑏𝑥 𝑎𝑦𝑏𝑦 𝑎𝑦𝑏𝑧
𝑎𝑧𝑏𝑥 𝑎𝑧𝑏𝑦 𝑎𝑧𝑏𝑧

 

Dyadic Green’s Function: 

𝑮 𝒓, 𝒓′ = 𝑰 +
𝛻𝛻

𝑘2
𝑔(𝒓, 𝒓′) 

unit dyad outer product 

𝒓′ 

𝒓 

𝒓 − 𝒓′ 

source 

observation 

0 



 
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 − 𝐹𝑖𝑒𝑙𝑑 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝑬 𝒓 = 𝑖𝜔𝜇 𝑑𝒓′𝑮 𝒓, 𝒓′ ⋅ 𝑱 𝒓′

𝑉

 

 
𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 − 𝐹𝑖𝑒𝑙𝑑 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝑯 𝒓 =  𝑑𝒓′𝑱 𝒓′ × 𝛻′𝑔 𝒓, 𝒓′

𝑉

 

 
 

From Sources to Fields: Integral Equations 

Green’s Functions 

𝑔 𝒓, 𝒓′ =
𝑒𝑖𝑘 𝒓−𝒓′

4𝜋 𝒓 − 𝒓′
 

 

𝑮 𝒓, 𝒓′ = 𝑰 +
𝛻𝛻

𝑘2
𝑔 𝒓, 𝒓′  

Source: 𝑱 Fields: 𝑬,𝑯 

Potential Functions: 
𝑨,φ 

Electric-Field & Magnetic-Field 
Integral Equations 

𝒓′ 

𝒓 

𝒓 − 𝒓′ 

source 

observation 


