Integral Equations in Electromagnetics

Mert Hidayetoğlu
Ultrafast Optics \& Lasers Laboratory
5 December 2014

Memory Complexity:

$$
O\left(N^{2}\right)+O(N)+O(N)=O\left(N^{2}\right)
$$

Computational Complexity:

Gaussian Elimination LU Decomposition	$\} O\left(N^{3}\right)$
Iterative Solution:	$O\left(N^{2}\right)$

Iterative Solver
Initial Guess: x_{0}
Substitute: $\overline{\boldsymbol{A}} \cdot \boldsymbol{x}-\boldsymbol{b}=\boldsymbol{r}_{0}$

$$
\boldsymbol{r}_{i-1} \rightarrow \text { Solver } \rightarrow \boldsymbol{x}_{i} \rightarrow \underset{O\left(N^{2}\right)}{\overline{\overline{\boldsymbol{A}} \cdot \boldsymbol{x}}-\boldsymbol{b} \rightarrow \boldsymbol{r}_{i}}
$$

Maxwell's Equations

$$
\begin{aligned}
& \nabla \times \boldsymbol{E}(\boldsymbol{r}, t)=-\frac{d}{d t} \boldsymbol{B}(\boldsymbol{r}, t) \\
& \nabla \times \boldsymbol{H}(\boldsymbol{r}, t)=\frac{d}{d t} \boldsymbol{D}(\boldsymbol{r}, t)+\boldsymbol{J}(\boldsymbol{r}, t)
\end{aligned}
$$

$\nabla \cdot \boldsymbol{J}(\boldsymbol{r}, t)=-\frac{d}{d t} \rho(\boldsymbol{r}, t) \longleftarrow$ Continuity Equation

decreasing charge at a point
creates a current divergence
$\nabla \cdot(\nabla \times \boldsymbol{E})=-\frac{d}{d t} \nabla \cdot \boldsymbol{B}=0 \Rightarrow \nabla \cdot \boldsymbol{B}=0$,
$\nabla \cdot(\nabla \times \boldsymbol{H})=\nabla \cdot\left(J+\frac{d \boldsymbol{D}}{d t}\right)=0$
$\frac{d \nabla \cdot \boldsymbol{D}}{d t}=-\nabla \cdot \boldsymbol{J}=\frac{d}{d t} \rho \Rightarrow \nabla \cdot \boldsymbol{D}=\rho$,
where $\boldsymbol{D}(\boldsymbol{r}, t=0)=\rho(\boldsymbol{r}, t=0)=\boldsymbol{B}(\boldsymbol{r}, t=0)=0$

$$
\begin{array}{ll}
\nabla \times \boldsymbol{E}(\boldsymbol{r}, t)=-\frac{d}{d t} \boldsymbol{B}(\boldsymbol{r}, t) & \longleftarrow \text { Faraday's Law } \\
\nabla \times \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{J}(\boldsymbol{r}, t)+\frac{d}{d t} \boldsymbol{D}(\boldsymbol{r}, t) & \longleftarrow \text { Ampere's Law } \\
\nabla \cdot \boldsymbol{B}(\boldsymbol{r}, t)=0 & \longleftarrow \text { Magnetic Flux Law } \\
\nabla \cdot \boldsymbol{D}(\boldsymbol{r}, t)=\rho(\boldsymbol{r}, t) & \longleftarrow \text { Gauss' Law }
\end{array}
$$

E: electric field intensity $\left(\frac{V}{m}\right)$
$\boldsymbol{H}:$ magnetic field intensity $\left(\frac{A}{m}\right)$
B: magnetic flux density $\left(\frac{W b}{m^{2}}\right)$
D: electric flux density $\left(\frac{C}{m^{2}}\right)$
J: Current density $\left(\frac{A}{m^{2}}\right)$
ρ : charge density $\left(\frac{C}{m^{3}}\right)$

Vector Identity:
$\nabla \cdot(\nabla \times \boldsymbol{A}) \equiv 0$
«The divergence of the curl
of any vector field is zero»
Continuity Equation from Maxwell's Eq.
$\nabla \cdot(\nabla \times \boldsymbol{H})=\nabla \cdot\left(\boldsymbol{J}+\frac{d}{d t} \boldsymbol{D}\right)=0$
$\Rightarrow \nabla \cdot \boldsymbol{J}=-\frac{d}{d t} \nabla \cdot \boldsymbol{D}=-\frac{d}{d t} \rho$

Time-Harmonic Maxwell's Equations

Single-frequency sinsoidal time variation: $\boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{r}) e^{-i \omega t}\right\}$

$\nabla \times \boldsymbol{E}(\boldsymbol{r})=i \omega \boldsymbol{B}(\boldsymbol{r})$	\longleftarrow Faraday's Law
$\nabla \times \boldsymbol{H}(\boldsymbol{r})=-i \omega \boldsymbol{D}(\boldsymbol{r})+\boldsymbol{J}(\boldsymbol{r})$	\longleftarrow Ampere's Law
$\nabla \cdot \boldsymbol{B}(\boldsymbol{r})=0$	\longleftarrow Magnetic Flux Law
$\nabla \cdot \boldsymbol{D}(\boldsymbol{r})=\rho(\boldsymbol{r})$	\longleftarrow Gauss' Law
$\nabla \cdot \boldsymbol{J}(\boldsymbol{r})=i \omega \rho(\boldsymbol{r}) \quad \longleftarrow$ Continuity Equation	

Time-derivative of Phasors

$$
\frac{d}{d t} \boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Re}\{\underbrace{-i \omega \boldsymbol{E}(\boldsymbol{r})}_{\text {phasor }} e^{-i \omega t}\}
$$

$\nabla \cdot \boldsymbol{J}(\boldsymbol{r})=i \omega \rho(\boldsymbol{r}) \quad$ Continuity Equation

Boundary Conditions

$$
\begin{aligned}
& \widehat{\boldsymbol{n}} \times\left(\boldsymbol{E}_{1}-\boldsymbol{E}_{2}\right)=0 \\
& \widehat{\boldsymbol{n}} \times\left(\boldsymbol{H}_{1}-\boldsymbol{H}_{2}\right)=\boldsymbol{J}_{s} \\
& \widehat{\boldsymbol{n}} \cdot\left(\boldsymbol{B}_{1}-\boldsymbol{B}_{2}\right)=0 \\
& \widehat{\boldsymbol{n}} \cdot\left(\boldsymbol{D}_{1}-\boldsymbol{D}_{2}\right)=\rho_{s}
\end{aligned}
$$

Sources Creating Fields: Potential Functions

Objective: Find the fields due to $\boldsymbol{J}(\boldsymbol{r})$ in a homogenious and isotropic medium.
electric

$\nabla \times \boldsymbol{E}=i \omega \mu \boldsymbol{H} \quad$ vector magnetic
$\nabla \times \boldsymbol{H}=-i \omega \epsilon \boldsymbol{E}+\boldsymbol{J}$

Identities
I) $\nabla \times \nabla \varphi \equiv 0$
II) $\nabla \cdot(\nabla \times A) \equiv 0$

Helmholtz Theorem

«A vector field is determined if both its divergence and its curl are specified everywhere.»

Reminder

∇ Del operator: $\nabla \varphi, \nabla \cdot \boldsymbol{A}, \nabla \times \boldsymbol{A}$
∇^{2} Laplacian operator: $\nabla^{2} \varphi=\nabla \cdot \nabla \varphi$
∇^{2} Vector Laplacian operator: $\nabla^{2} \boldsymbol{A}=\nabla \cdot(\nabla \cdot \boldsymbol{A})-\nabla \times(\nabla \times \boldsymbol{A})$

$$
\begin{aligned}
\nabla \times \boldsymbol{E}=i \omega \nabla \times \boldsymbol{A} \Rightarrow & \nabla \times(\boldsymbol{E}-i \omega \boldsymbol{A})=0 \\
& \Rightarrow \boldsymbol{E}-i \omega \boldsymbol{A}=-\nabla \varphi \longleftarrow \quad \text { scalar electric } \\
& \Rightarrow \boldsymbol{E}=i \omega \boldsymbol{A}-\nabla \varphi \quad \text { potential }
\end{aligned}
$$

$$
\mu \nabla \times \boldsymbol{H}=\nabla \times(\nabla \times \boldsymbol{A})
$$

$$
\mu(-i \omega \epsilon \boldsymbol{E}+\boldsymbol{J})=\nabla \cdot(\nabla \cdot \boldsymbol{A})-\nabla^{2} \boldsymbol{A}
$$

$$
-i \omega \mu \epsilon(i \omega \boldsymbol{A}-\nabla \varphi)+\mu \boldsymbol{J}=\nabla \cdot(\nabla \cdot \boldsymbol{A})-\nabla^{2} \boldsymbol{A}
$$

$$
\nabla^{2} \boldsymbol{A}+\omega^{2} \mu \epsilon \boldsymbol{A}-\nabla(\underbrace{\nabla \cdot \boldsymbol{A}}-i \omega \mu \epsilon \varphi)=-\mu \boldsymbol{J}
$$

$$
\begin{aligned}
& \underbrace{\nabla \cdot \boldsymbol{E}}_{\rho / \epsilon}=i \omega \underbrace{\nabla \cdot \boldsymbol{A}}_{i \omega \mu \epsilon \varphi}-\underbrace{\nabla \cdot \nabla}_{\nabla^{2}} \varphi \\
& \nabla^{2} \varphi+\omega^{2} \mu \epsilon \varphi=-\frac{\rho}{\epsilon}
\end{aligned}
$$

Lorentz Gauge: $\nabla \cdot \boldsymbol{A}=i \omega \mu \epsilon \varphi$
(Coulomb Gauge in static case: $\nabla \cdot \boldsymbol{A}=0$)

$$
\nabla^{2} \boldsymbol{A}+\omega^{2} \mu \epsilon \boldsymbol{A}=-\mu \boldsymbol{J}
$$

Green's Function of Helmholtz Equation

Objective: Solve $\nabla^{2} \psi(\boldsymbol{r})+k^{2} \psi(\boldsymbol{r})=-\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$ everywhere except at \boldsymbol{r}^{\prime}.
$\boldsymbol{r}^{\prime}=\mathbf{0} \Rightarrow \psi(\boldsymbol{r})=\psi(x, y, z)=\psi(r, \theta, \varphi)=\psi(r)$: spherical symmetry around origin.

$$
\begin{aligned}
& \nabla^{2} \psi=\frac{1 d^{2}}{r d r^{2}}(r \psi) \Rightarrow \frac{d^{2}}{d r^{2}}(r \psi)+k^{2}(r \psi)=0 \Rightarrow \text { general solution: } \psi=\frac{c_{1}}{r} \underbrace{e^{i k r}}_{r}+\frac{c_{2}}{r} \underbrace{e^{-i k r}} \\
& \text { Physically: } c_{2}=0 \Rightarrow \psi=\frac{c_{1}}{r} e^{i k r} \\
& \text { Particular solution involving a point source at the origin: substitute } \psi
\end{aligned}
$$ into the non-homogeneous Helmhotz Equation and integrate boths sides:

$\int_{V} \nabla^{2} \psi(\boldsymbol{r}) d \boldsymbol{r}+k^{2} \int_{V} \psi(\boldsymbol{r}) d \boldsymbol{r}=-\int_{V} \delta(\boldsymbol{r}) d \boldsymbol{r}$
$\oint_{S} \nabla \psi \cdot d \boldsymbol{S}+4 \pi k^{2} \int_{0}^{r} r^{\prime 2} \psi d r^{\prime}=-1$

$-4 \pi r^{2} c_{1}\left(\frac{e^{i k r}}{r^{2}}-i k \frac{e^{i k r}}{r}\right)+4 \pi k^{2} c_{1}\left(\frac{r e^{i k r}}{i k}+\frac{e^{i k r}-1}{k^{2}}\right)=-1$
Gauss' Divergence Law: $r \rightarrow 0 \Rightarrow c_{1}=\frac{1}{4 \pi}$

$$
\int_{V} \nabla \cdot \boldsymbol{A} d V=\oint_{S} \boldsymbol{A} \cdot d \boldsymbol{S}
$$

Solution: $c_{1}=\frac{1}{4 \pi} \Rightarrow \psi(r)=\frac{e^{i k r}}{4 \pi r} \Rightarrow \psi(r)=\frac{e^{i k|r|}}{4 \pi|r|}$
For any point source located at $\boldsymbol{r}^{\prime}, \psi(\boldsymbol{r})=\frac{e^{i k\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}=g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \leftarrow$ Green's function $\nabla^{2} \varphi+k^{2} \varphi=-\frac{1}{\epsilon} \rho$ Helmholtz's Equation for Scalar Electric Potential
$\rho(\boldsymbol{r})=\rho_{0} \delta\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) \Rightarrow \varphi(\boldsymbol{r})=\frac{1}{\epsilon} \rho_{0} \frac{e^{i k\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}=\frac{1}{\epsilon} \rho_{0} g\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)=\frac{1}{\epsilon} \int_{V} \underbrace{\rho_{0} \delta\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}_{0}\right)}_{\rho(\boldsymbol{r})} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) d \boldsymbol{r}^{\prime}$

Volume Integral Equations

$$
\begin{aligned}
& \boldsymbol{A}(\boldsymbol{r})=\mu \int_{V} d \boldsymbol{r}^{\prime} J\left(\boldsymbol{r}^{\prime}\right) \frac{e^{i k\left|r-r^{\prime}\right|}}{4 \pi\left|r-\boldsymbol{r}^{\prime}\right|} \\
& \varphi(\boldsymbol{r})=\frac{1}{\epsilon} \int_{V} d \boldsymbol{r}^{\prime} \rho\left(\boldsymbol{r}^{\prime}\right) \frac{e^{i k\left(r-r^{\prime} \mid\right.}}{4 \pi\left|r-\boldsymbol{r}^{\prime}\right|}
\end{aligned}
$$

$$
\boldsymbol{E}(\boldsymbol{r})=i \omega \boldsymbol{A}(\boldsymbol{r})-\nabla \varphi(\boldsymbol{r})=i \omega \mu \int_{V} d \boldsymbol{r}^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)-\frac{\nabla}{\epsilon} \int_{V} d \boldsymbol{r}^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \rho\left(\boldsymbol{r}^{\prime}\right)
$$

$$
=i \omega \mu \int_{V} d \boldsymbol{r}^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)-\frac{\nabla}{i \omega \epsilon} \int_{V} d \boldsymbol{r}^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \nabla^{\prime} \cdot \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)
$$

$$
\int_{V} d \boldsymbol{r}^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \nabla^{\prime} \cdot \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)=\int_{V} d \boldsymbol{r}^{\prime} \nabla \cdot g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) J\left(\boldsymbol{r}^{\prime}\right)-\int_{V} d \boldsymbol{r}^{\prime} \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \cdot \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)
$$

$$
=\underbrace{\oint_{S} d \boldsymbol{S} \cdot g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)}_{0}+\int_{V} d \boldsymbol{r}^{\prime} \nabla g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \cdot \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)
$$

$$
=i \omega \mu \int_{V} d \boldsymbol{r}^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)+\frac{\nabla}{i \omega \epsilon} \int_{V} d \boldsymbol{r}^{\prime} \nabla g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \cdot \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)
$$

$$
\boldsymbol{E}(\boldsymbol{r})=i \omega \mu\left[\overline{\mathbb{I}}+\frac{\nabla \nabla}{k^{2}}\right] \cdot \int_{V} d \boldsymbol{r}^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)=i \omega \mu \int_{V} d \boldsymbol{r}^{\prime} \overline{\boldsymbol{G}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \cdot \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)
$$

Continuity Equation:

$$
\nabla \cdot \boldsymbol{J}(\boldsymbol{r})=i \omega \rho(\boldsymbol{r})
$$

Space Derivative:
$\nabla \cdot(g \boldsymbol{J})=\nabla g \cdot \boldsymbol{J}+g \nabla \cdot \boldsymbol{J}$ Gauss' Divergence Law:
$\int_{V} \nabla \cdot(g J)=\oint_{S} g J$
Identity:
$\nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=-\nabla g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$
$\overline{\bar{I}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Outer Product:
$\boldsymbol{a} \boldsymbol{b}=\left[\begin{array}{lll}a_{x} b_{x} & a_{x} b_{y} & a_{x} b_{z} \\ a_{y} b_{x} & a_{y} b_{y} & a_{y} b_{z} \\ a_{z} b_{x} & a_{z} b_{y} & a_{z} b_{z}\end{array}\right]$
Dyadic Green's Function:
$\overline{\boldsymbol{G}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\left[\overline{\boldsymbol{I}}+\frac{\nabla \nabla}{k^{2}}\right] g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$
$\boldsymbol{H}(\boldsymbol{r})=\frac{1}{\mu} \nabla \times \boldsymbol{A}(\boldsymbol{r})=\nabla \times \int_{V} d \boldsymbol{r}^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)=\int_{V} d \boldsymbol{r}^{\prime} \nabla g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \times \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)=\int_{V} d \boldsymbol{r}^{\prime} \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$

From Sources to Fields: Integral Equations

Electric - Field Integral Equation
$\boldsymbol{E}(\boldsymbol{r})=i \omega \mu \int_{V} d \boldsymbol{r}^{\prime} \overline{\boldsymbol{G}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \cdot \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)$
Magnetic - Field Integral Equation
$\boldsymbol{H}(\boldsymbol{r})=\int_{V} d \boldsymbol{r}^{\prime} \boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) \times \nabla^{\prime} g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$

Green's Functions
$g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\frac{e^{i k\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}$
$\overline{\boldsymbol{G}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\left[\overline{\boldsymbol{I}}+\frac{\nabla \nabla}{k^{2}}\right] g\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$

