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Abstract—We report solutions of several large-scale electro-
magnetic scattering problems involving more than one billion
unknowns. Full-wave solutions are provided using the parallel
multilevel fast multipole algorithm (MLFMA). An out-of-core
method is implemented for reducing the memory requirements of
MLFMA solutions. Additionally, fast and approximate solutions
using physical optics are provided.

I. INTRODUCTION

The multilevel fast multipole algorithm (MLFMA) is used
for efficiently obtaining full-wave solutions of electromagnet-
ics problems involving arbitrary geometries. The algorithm has
O(N logN) time and memory complexity, where N is the
number of unknowns [1]. As an alternative, physical optics
(PO) can be used for approximate calculations of scattering
from electrically-large objects with O(N) complexity.

In order to solve large-scale problems, we use MLFMA on
distributed-memory architectures with the hierarchical parti-
tioning strategy [2], which provides an excellent parallelization
efficiency. Nevertheless, memory requirement for storing some
data structures grows immensely when very large geometries
are involved. As a remedy, an out-of-core method is imple-
mented for utilizing the disk space to store the large data
structures [3].

II. OUT-OF-CORE AND PARALLEL MLFMA

The out-of-core implementation writes the near-field inter-
actions in the impedance matrix and the far-field patterns of
the basis functions on disk, then it reads them in each matrix-
vector multiplication in the iterative solution.

Fig. 1. The out-of-core MLFMA is employed on a four-node computer cluster
with 16 processes. Assuming there is a single disk drive in each node, each
disk drive handles the I/O jobs of four processes simultaneously. A process
is shown with Pi, where i ∈ {0, 1, 2, ..., 15} is the process ID, and a file is
shown with Fi. Each process owns a distinct file, i.e. Pi owns Fi, and it names
its file with a unique name in order to find the file whenever it is needed.

In the parallel implementation, each process has its own
portion of the basis functions and the processes write their
out-of-core data simultaneously. An implementation example
involving a four-node cluster and 16 processes is depicted in
Fig. 1.

III. PHYSICAL OPTICS

We expand the PO current on Rao-Wilton-Glisson functions
and find the current coefficients by solving xPO in the system
of equations

ZPOxPO = vPO. (1)

A matrix element ZPO
mn is the interaction between the nth

tesing and the mth basis functions, i.e.,

ZPO
mn =

∫
Sm

dr tm(r) · bn(r), (2)

and a right-hand-side vector element vPO
m is the mth testing

of the PO current, i.e.,

vPO
m =

∫
Sm

dr tm(r) · 2n̂×Hinc(r), (3)

where tm and bn are the mth testing function and the nth basis
function, respectively, Sm is the domain of tm, and Hinc is
the incident magnetic field with its associated normal vector
n̂ of the surface Sm. We set vPO

m =0 if Sm is not illuminated
directly by the source.

Each testing function overlaps with at most five basis
functions and therefore ZPO is a sparse matrix with O(N)
non-zero elements and we solve the system iteratively.

IV. NUMERICAL RESULTS

Several scattering problems involving extremely-large con-
ducting geometries are solved with 64 processes in a 16-node
computer cluster with 2 TB memory. Each node is equipped
with a solid-state disk drive for storing the out-of-core data.
The geometries involve a sphere, a NASA Almond, and a
stealth airborne target Flamme [4] geometries with the radius
of 500λ and the length of 2104λ and 2402λ, respectively,
where λ is the wavelength of the illuminating plane wave in
free space. The geometries are discretized with the mesh size
0.09λ and the Bi-CGSTAB solver is employed along with
a block-diagonal preconditioner for satisfying 1% residual
error in the iterative solutions. The Almond and Flamme
geometries are illuminated at 30◦ from their sharp ends on
the azimuth plane with horizontal polarization, where 30◦ and
210◦ are their backscattering and forward-scattering angles,
respectively.

Table I shows the CPU times and the memory requirements
of the MLFMA solutions. The required disk space for employ-
ing the proposed out-of-core method is denoted in the table.



Fig. 2. RCS of the Flamme. The solution involves 1,338,909,696 unknowns. Co-polar and cross-polar RCS values are denoted with HH and VH labels.

TABLE I
SOLUTION TIMES AND MEMORY REQUIREMENTS

Sphere Almond Flamme
CPU Time (hours) 57.0 46.7 57.7
Memory (terabyte) 1.2 1.9 2.0

Disk (terabyte) 2.1 2.2 2.7

The iterative solver performs 37, 39, and 38 iterations for the
sphere, Almond and Flamme solutions, respectively. Taking
less than one hour, the PO solutions are very fast compared
to the MLFMA solutions, but the radar-cross-section (RCS)
results are approximate as seen in Figs. 3 and 4.

Fig. 3. RCS of the sphere in dB. The solution involves 1,109,280,768
unknowns. The computational RCS errors are 0.65%, 1.21%, and 2.63% in
the 0◦–30◦, 0◦–90◦ and 0◦–180◦ bistatic angle sectors, respectively, where
analytical Mie series solution is taken as reference.

Figure 3 shows the RCS of the sphere in dB and Fig. 4
shows the RCS of the NASA Almond in dBms. We observe
that the PO results are in good agreement with the full-
wave results near the backscattering and the specular-reflection
angles, but they are approximate in general. The calculation
method of the RCS error in Fig. 3 is provided in [5], where
interested readers can compare their results with the full-wave
solutions of the sphere and the NASA Almond problems.

Figure 2 shows the full-wave RCS results of the Flamme.
The solution involves approximately 1.3 billion unknowns
and it is the largest solution that we can solve within 2 TB
memory. Without the out-of-core implementation, the largest
Flamme that we could solve within 3 TB of memory has
a length of 1640λ and the problem involves approximately
540 million unknowns. This evidence shows that the out-of-
core implementation is successful in decreasing the required
memory and providing extremely-large MLFMA solutions.

V. CONCLUSIONS

MLFMA solutions of large-scale problems, involving more
than 1.1 billion unknowns, are reported. A parallel out-of-
core implementation is used for reducing the MLFMA mem-
ory. We observe that PO results are in agreement with the
corresponding full-wave results around the forward-scattering
and specular-reflection angles. Therefore, it is a powerful tool
for RCS calculations of electrically-large geometries when
corresponding full-wave solutions are not available.

Fig. 4. Bistatic RCS of the NASA Almond. The MLFMA solution is plotted
with the grey line as the reference, whereas the PO solution is plotted with
the red line. We observe that the PO results are in good agreement with
the MLFMA results around the forward-scattering (210◦) angle and in the
plateau near the specular-reflection (150◦) angle, whereas it is approximate in
other angles including the backscattering (30◦) angle. The solutions involve
1,126,503,936 unknowns. The PO solution takes 51 minutes and it performs
13 CGS iterations in order to solve the system of equation displayed in (1)
with 10−6 residual error.
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