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Abstract—We introduce a parallel implementation of the out-
of-core method for the multilevel fast multipole algorithm. This
implementation utilizes disk space for storing large data struc-
tures, and it provides solutions of large-scale problems involving
more than one billion unknowns within 2 TB memory.

I. INTRODUCTION

The multilevel fast multipole algorithm (MLFMA) solves
a system of equations formulated with the method of mo-
ments [1], ie, Z - ¢ = wv, iteratively with O(NLog N)
computational complexity [2], where N is the number of
unknowns. MLFMA partitions a matrix-vector multiplication
(MVM) as Z- xT; = ZNF - x; + ZFF - x;, where ZNF is the
near-field and Z pp is the far-field interaction matrices, and
x; is the evolving guess for the unknown vector in the i
iteration. Z yr has O(N) non-zero elements and is stored in
the memory, whereas Z pr is calculated on-the-fly for each
MVM in the iterative solution via aggregation, translation, and
disaggregation steps in a multilevel tree structure. Even though
Z pr is not stored in the memory at all, MLFMA stores the
far-field patterns of the basis (and testing) functions, which
requires O(N) memory, in order to use them in the iterative
solution.

For solving large-scale problems, MLFMA is parallelized
on distributed-memory computer architectures [3]. We use
the hierarchical partitioning strategy, which achieves good
load-balancing performance by partitioning both clusters and
field samples (as opposed to partitioning only one of them)
in all levels [4]. Despite the excellent performance of the
hierarchical partitioning strategy, the memory requirements
for storing the near-field interactions and the far-field pat-
terns grow immensely when extremely large geometries are
involved. Hence, the amount of total memory available in a
computer constitutes a limitation for solving large problems.
As a remedy, we propose the out-of-core method on MLFMA,
which uses the large data from disk [5], and this paper
discusses its parallel implementation on distributed-memory
computer architectures.

MLFMA involves pre-processing, setup, and iterative-
solution stages. Inputing and processing the geomety data and
the tree structure are performed in the pre-processing stage.
Near-field interactions, far-field patterns, and the translation
operators among the branches of the tree structure are cal-
culated and stored in the setup stage. Finally, the iterative
solution is performed.
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II. PARALLEL OUT-OF-CORE METHOD

The out-of-core MLFMA stores the near-field interactions
and the far-field patterns not in the core memory, but instead,
in the disk. Specifically, parallel processes write the out-of-
core data on disk(s) during the setup stage, then read them
back as needed from the disk(s) during each MVM [5]. The
I/O operations are performed on-the-fly through small buffers
and the space required for storing the whole portion of the
out-of-core data is never allocated in memory.

Hierarchical partitioning strategy distributes the basis func-
tions among processes in a load-balanced manner. Hence, each
process has its own portion of basis functions and their corre-
sponding near-field interactions. In the parallel implementation
of the out-of-core MLFMA, the processes use the out-of-core
data simultaneously from disk and independent from each
other without requiring any communications. When multiple-
node computer architectures are involved, each process uses
the disk space on the node it belongs to, as depicted in Fig. 1.
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Fig. 1. As an example, the out-of-core MLFMA is depicted on a two-node
computer cluster with 8 processes. In this case, each disk drive handles I/O
jobs of four processes simultaneously. A process P; names its own file F;
uniquely in order to access the file when needed. The arrows indicate I/0
operations.
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Once the processses store the out-of-core data on disks,
they read the data multiple times during the iterative solution.
In each MVM, the near-field interactions are read once for
the near-field mutiplication, i.e., ZnF - x;, and the far-field
patterns are read twice for the far-field multiplication, i.e.,
Zpr - x;, once for the aggregation and the second time for
the dissaggregation steps.

III. NUMERICAL RESULTS

To demonstrate the performance of the out-of-core im-
plementation, two scattering problems are solved, involving
a conducting sphere and a conducting NASA Almond. The
sphere has a diameter of 1000\ and the NASA Almond has a
length of 2104\, where A is the wavelength of the illuminating
plane wave in free space. The geometries are discretized with



0.1\ mesh size, yielding approximately 1.1 billion unknowns
for both problems. The combined-field integral equation with
a combination factor of 0.5 is used to formulate the problems.
The Bi-CGSTAB iterative solver is employed with a block-
diagonal preconditioner [2] for the iterative solution to satisfy
1% residual error. 64 processes are employed on a 16-node
cluster with a total memory of 2 TB. Each node is equipped
with a single solid-state disk for storing the out-of-core data.

TABLE I
CPU TIMES AND DATA AMOUNTS FOR THE SOLUTIONS

CPU Time (Hours) Data Amount (TB)
Total 1/0 Total Memory Disk
NASA Almond | 60.8 12.0 4.2 2.0 2.2
Sphere 71.3 10.7 4.0 1.9 2.1

Table I shows the CPU times along with the required
memory and disk spaces for the solutions. The total data
amount indicates the required memory space for solving
the same problem in core memory, i.e., without using the
out-of-core implementation. The out-of-core implementation
decreases the required memory by 52% and 53%, but the
I/O operations increase the overall CPU time by 12.0 and
10.7 hours, for the NASA Almond and sphere solutions,
respectively. In Table I, the total solution times include the
I/O times. With the same computer cluster, the largest sphere
we can solve in core memory has a radius of 340\ and
the problem involves approximately 540 million unknowns.
That evidence shows that the out-of-core implementation is
successful for decreasing the required memory space and
providing solutions of extremely large problems.

Figure 2 shows the radar cross section (RCS) of the NASA
Almond. The solution involves 1,126,503,936 unknowns. In-
volving two MVMs in each iteration, the iterative solution
requires 39 iterations. The MVMs are performed through
a 15-level tree structure, where the lowest three levels are
“distributed” and the highest five levels are “shared” in the
hierarchical partitioning scheme [4].

Figure 3 shows the RCS of the sphere. We observe that
the computational values agree well with the analytical Mie-
series solution. The computational RCS errors are 3.75%,
2.80%, and 0.94% in the 0°-30°, 0°-90°, and 0°-180° bistatic
angle sectors, respectively. The error calculation method is
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Fig. 2.  Bistatic co-polar RCS of the NASA Almond. The geometry is
illuminated at 30° from its sharp end on the azimuth plane with horizontal
polarization. 30° and 210° are the backscattering and forward-scattering
directions, respectively.
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Fig. 3. RCS of the sphere. The MLFMA solution involves 1,109,280,768 un-
knowns. 180° and 0° are the forward-scattering and backscattering directions,
respectively. The analytical solution is obtained with the Mie-series method.

provided in [6], where interested readers can compare their
results with corresponding full-wave solutions of large-scale
scattering problems including those presented in this paper.

IV. CONCLUSIONS

The out-of-core implementation of the parallel MLFMA
is presented. Scattering results of a sphere and a NASA
Almond with more than one billion unknowns are provided
and the solution performance is demonstrated. Results show
that the out-of-core method decreases the required memory
for solutions and enables large-scale solutions in a limited
memory, whereas it increases the required time by a reasonable
amount due to the relatively slow disk operations.
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