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Abstract

A new analytic method for the existence and determination of stabilizing gains for linear, time-

invariant, single input, single output systems is derived. This method only requires a test of the

sign pattern of a rational function at the real roots of a polynomial. An easily checkable necessary

and su�cient condition for a polynomial to be a convex direction for a Hurwitz stable polynomial

is obtained as a consequence of the main result.

1 Introduction

We consider the following old problem of control:

Given coprime polynomials p(s); q(s) with real coe�cients, determine conditions under
which a real number � exists such that �(s; �) = q(s) + �p(s) has degree in s equal to the
degree of q and is Hurwitz stable, i.e., has all its roots in the open left half complex plane.
Determine the set of all such � if one exists.

Let us denote the set of real numbers by R, the set of all Hurwitz stable polynomials by
H and the degree in s of a nonzero polynomial p by deg p. If we de�ne

A(p; q) := f� 2 R : �(s; �) = q(s) + �p(s) 2 H ; deg � = deg qg;

then the problem is to determine under what conditions A(p; q) 6= ; and to give a description
of A(p; q) if it is not empty.

There are several classical solutions to this problem. Evans root-locus method and Nyquist
stability criterion are among the most widely used graphical solutions. The method of
Hurwitz determinants and Neimark D-decomposition can be considered as non-graphical
solutions.

1Supported by the Alexander von Humboldt Stiftung, Germany.
2This author would like to thank the Institut f�ur Dynamische Systeme, Universit�at Bremen for its support

during the writing of this paper.

1



Let n := deg q and m := deg p and let qn and pm denote the coe�cients of sn and sm in
q(s) and p(s), respectively. Since

n � m; (1)

is an obvious necessary condition for A(p; q) 6= ;, we assume (1) in what follows. It is also
clear that in the cases where n = m, deg �(s; �0) < n for �0 := �qn=pm so that �0 is not an
element of A(p; q). We hence also assume below in this section that this point is excluded
from the descriptions of A(p; q) whenever n = m.

(i)Evans root-locus method [2]: The equation �(s; �) = 0 implicitly de�nes a complex
multiple-valued function � 7! s(�). Evans root-locus is a plot of the values of this function
in the complex plane parameterized by � 2 (�1;1). Evans derived certain rules by which
the root-locus can be mechanically constructed provided the roots of q(s) and p(s) are known.
This has been mainly responsible for the popularity of the root-locus method in relation to
the above problem until the present day of high-speed computation. Now the root-locus is
plotted by a repetitive application of fast root �nding algorithms [4]. Once the complete
plot is determined, the set A(p; q) is the set of values of � for which all values of the function
� 7! s(�) are in the open left half complex plane.

(ii)Nyquist stability criterion [9]: Let R[s] denote the set of real polynomials in s. Given
p; q 2 R[s] with q(j!) 6= 0 for any ! 2 R, let

p(j!)

q(j!)
= ~H(!) + j ~G(!); (2)

where ~H(!) := Re fp(j!)=q(j!)g and ~G(!) := Im fp(j!)=q(j!)g. The plot of ~H(!) versus
~G(!) in rectangular coordinates as ! increases from 0 to1 is called the Nyquist plot (or the
frequency response plot) of p(s)=q(s). The Nyquist stability criterion can be formulated as
follows ([7], xV.2): Let q(j!) 6= 0 for ! 2 [0;1) and let q(s) have k zeros in the open right
half plane. Given a nonzero � 2 R, �(s; �) 2 H if and only if the magnitude jp(j!)=q(j!)j
is di�erent from zero for all ! 2 [0;1) and the net change in the angle of the vector V (!; �)
pointing from ���1 to a point on the Nyquist plot of p(s)=q(s) as ! increases from 0 to1 is
equal to k�. Since ~G(!) is a rational function of !, the Nyquist plot of p(s)=q(s) has only a
�nite number of intersections with the real axis. Moreover, by the geometry of the Nyquist
plot, the net change in the angle of V (!; �) will be the same for all points between any two
consecutive intersections. To determine the set A(p; q), it is thus necessary to compute the
change in the angle of V (!; �i) only at a �nite number of points �i. A complete Nyquist plot
of p(s)=q(s), however, must be drawn. The restrictive assumptions that q(s) has no j!-axis
zeros and that � 6= 0 can be removed without di�culty [7]. Moreover, a similar criterion
can be stated on the inverse Nyquist plot which is the Nyquist plot of q(s)=p(s). We �nally
note that the logarithmic frequency response graphs Bode plots [1] can also be used for a
graphical determination of A(p; q).

(iii)Hurwitz determinants [6]: Given q(s) 2 R[s] with deg q = n, let

q(s) = a0s
n + b0s

n�1 + a1s
n�2 + b1s

n�3 + ::: (a0 6= 0): (3)
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The Hurwitz matrix of q(s) is ([3], xXV.6) the n� n matrix

H(q) :=

2
666666664

b0 b1 b2 ::: bn�1

a0 a1 a2 ::: an�1

0 b0 b1 ::: bn�2

0 a0 a1 ::: an�2

0 0 b0 ::: bn�3

:: :: :: ::: ::

3
777777775
;

where ak and bk are zero if they do not appear in (3). Its successive principal minors
�1 = b0; �2 = b0a1 � a0b1; :::;�n = detH(q) are called the Hurwitz determinants. The
Hurwitz criterion for stability is that q 2 H if and only if

a0�1 > 0; �2 > 0; a0�3 > 0; :::; anmod 20 �n > 0:

For �(s; �) = q(s) + �p(s), the entries of the Hurwitz matrix H(�) are linear in �. The
Hurwitz criterion applied to H(�) thus yields n inequalities for polynomials in �. The
set A(p; q) is simply the intersection of the sets of � satisfying each inequality. Note that
determination of A(p; q) requires the determination of the roots of n polynomials. A shortcut
is obtained ([7], xV.4) using a consequence of Orlando's formula ([3], xXV.7): If �(s; �) has
at least one pair of zeros on j!-axis, then the last Hurwitz determinant �n(�) associated
with �(s; �) is zero. To determine A(p; q), it is therefore only necessary to determine the
roots in � of �n(�). This yields at most n points on the real axis and partitions the real axis
into at most n+ 1 intervals. In each interval, the sign pattern of the Hurwitz determinants
remain the same. Consequently, A(p; q) is the union of those open intervals at one point of
which �(s; �) is Hurwitz stable. The diagonal terms of a particular triangularization ([3],
xXV.6) of the Hurwitz matrix are the terms in the �rst column of the Routh array [12] and
the method of Routh array is essentially the same as the method of Hurwitz determinants
when applied to our problem.

(iv)Neimark D-decomposition [8]: Let

q(j!) = ~h(!) + j!~g(!) ; p(j!) = ~f(!) + j!~e(!);

where ~h; ~g; ~f; ~e are real and even polynomials of !. Then, �(j!; �) = [~h(!) + � ~f(!)] +
j![~g(!) + �~e(!)]. If �(s; �) has a j!-axis zero, then as � is real, ~h(!) + � ~f(!) = 0 and
~g(!) + �~e(!) = 0. Eliminating � from these two equalities, we have

![~g(!) ~f(!)� ~h(!)~e(!)] = 0: (4)

Consequently, if �(s; �) has a j!-axis zero, then (4) holds for some ! 2 [0;1). Let the roots
in [0;1) of (4) be !i; i = 1; :::; ~k and de�ne

�i =

8>><
>>:
� ~h(!i)

~f(!i)
if ~f(!i) 6= 0

� ~g(!i)
~e(!i)

if !i~e(!i) 6= 0:

(5)
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If ~f(!i) = 0 and !i~e(!i) = 0, then let �i :=1. The values �i so de�ned satisfy �(j!i; �i) = 0
for i = 1; :::; ~k. We have so far shown that �(s; �) has a j!-axis zero for some � if and only
if � 2 f�i; i = 1; :::; ~kg. By the continuity of the roots of �(s; �) with respect to �, the
following description for A(p; q) is immediate: Let f!ig be the roots in [0;1) of (4) and let
f�ig be as de�ned in (5). Let the distinct values of �i; i = 1; :::; ~k be ordered as

1 > �i1 > ::: > �ik > �1

and let �i0 := 1 and �ik+1
:= �1 for convenience. Then, for l = 0; :::; ~k the interval

(�il; �il+1
) is in A(p; q) if and only if at one point � in (�il; �il+1

) the polynomial �(s; �)
is Hurwitz stable. Since the union of all candidate intervals cover R, this is a complete
description of A(p; q). Thus the method only requires the determination of the roots of (4),
�i, and at most ~k + 1 applications of some stability criterion such as Routh or Hurwitz at
one interior point of each interval.

The similarity between the methods (ii)-(iv) should be clear at this point. By (2), the
real axis intersections of the Nyquist plot occur at the points in f! 2 [0;1) : ~G(!) = 0g
which are among the roots f!i; i = 1; :::; ~kg of (4) by the second expression below

~H(!) =
~h(!) ~f(!) + !2~g(!)~e(!)

~h(!)2 + !2~g(!)2
; ~G(!) =

![~h(!)~e(!)� ~g(!) ~f(!)]
~h(!)2 + !2~g(!)2

: (6)

Also by these equalities, the values of the real axis intersections can be shown to be f��1
i ; i =

1; :::; ~kg. The method of Nyquist plot for the determination of A(p; q) is thus a particular case
of Neimark D-decomposition where the tests of stability in the interior points of the intervals
are done through the Nyquist stability criterion. On the other hand, using the properties
of Hurwitz determinants it can be shown that f�i; i = 1; :::; ~kg � f� 2 R : �n(�) = 0g.
Consequently, the re�ned method of Hurwitz determinants is essentially the same as the
method of Neimark D-decomposition. (The methods (iii) and (iv) however also extend to
the cases where �(s; �) is any continuous function of a real vector � to yield some geometric
criteria for the determination of A(p; q) [7], [8].)

The main contribution of this paper is the derivation of a similar method to (ii)-(iv) that
avoids the tests of stability at the intervals of the real axis. This requirement is replaced
by checks of the sign pattern of a rational function at the real nonnegative roots of the
polynomial (4). Since (4) is an odd polynomial of ! with degree at most n + m, it has
at most n+m

2
� 1 nonnegative roots and a root at ! = 0. Consequently, the method only

requires (i) the determination of the roots of a polynomial of degree at most n+m
2
�1 and (ii)

a �nite number of \rational operations". One consequence of our main result is a condition
for A(p; q) to consist of precisely one interval on the real axis. This result is of some interest
in the study of convex directions (see [11], [5]).

The paper is organized as follows. In Section 2, we state various elementary facts on
polynomials and give an extension of Hermite-Biehler theorem ([3], xXV.14). In Section
3, we state and prove the main results, Theorems 1 and 2. In Section 4, we pursue some
implications of the main results in the robust stability analysis. The proof of Lemma 1 is
given in the Appendix. The main results in this paper are based on the report [10].
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2 Signature of Polynomials

In this section, we give some more terminology and notation, state some elementary facts on
polynomials and Hurwitz stable polynomials, and give an extension of the Hermite-Biehler
theorem.

Given a set of polynomials  1; :::;  k 2 R[s] not all zero and k > 1, their greatest com-
mon divisor (with highest coe�cient 1) is unique and it is denoted by gcd f 1; :::;  kg. If
gcd f 1; :::;  kg = 1, then we say ( 1; :::;  k) is coprime. Let C denote the set of complex
numbers and let C�; C0; C+ denote the points in the open left half, j!-axis, and the open
right half of the complex plane, respectively. Also let C0+ denote the points in the closed
right half complex plane. Then, the set H of Hurwitz stable polynomials are

H = f (s) 2 R[s] : p(s) = 0) s 2 C�g:

The constant nonzero polynomials, i.e., the nonzero elements of R, are thus considered
Hurwitz stable. The signature �( ) of a polynomial  2 R[s] is the di�erence between the
number of its C� roots and C+ roots. The signature thus disregards the j!-axis zeros of
the polynomial. Nevertheless,  2 H , �( ) = deg  holds.

If fr1; :::; rtg are a �nite number of real numbers and I is a subset of f1; :::; tg, then

max
i2I

ri; min
i2I

ri

denote the maximum and the minimum of the numbers ri as i runs in I. If I is the empty
set, then the maximum is taken as �1 and the minimum is taken as +1, for convenience.
We will also use the notation r(�1) for the limit as s ! �1 of a real rational function
r(s).

Given  2 R[s], the even-odd components (a; b) of  (s) are the unique polynomials
a; b 2 R[u] such that  (s) = a(s2) + sb(s2). The even-odd components of a polynomial and
the real and imaginary parts of  (j!), ~a(!) := Re f (j!)g and ~b(!) := Im f (j!)g, are
related by

~a(!) = a(�!2); ~b(!) = !b(�!2):

Also note that

deg  is even )
(
deg a = deg  

2

deg b < deg  
2

)
; deg  is odd )

(
deg a � deg  �1

2

deg b = deg  �1
2

)
: (7)

If  6= 0, then d := gcd fa; bg is well-de�ned. Since d(u0) = 0 for u0 2 C if and only if
s1 =

p
u0 and s2 = �pu0 are both roots of  (s), the roots of d(s2) correspond to roots of

 (s) which are symmetrically located with respect to the origin in the complex plane. As
a consequence, if d(u) 6= 0 8u � 0, then  (s) has no roots on C0 except possibly a simple
zero (i.e., a zero of multiplicity 1) at the origin. Also note that if  (s) 2 H, then d = 1 since
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otherwise there would be at least one root of  (s) in C0+. It is actually possible to state
a necessary and su�cient condition for the Hurwitz stability of  in terms of its even-odd
components (a; b). This result is known as the Hermite-Biehler theorem. We state it in a
suitable form for our purpose. Let us de�ne the signum function S : R! f�1; 0; 1g by

Sr =
8><
>:
�1 if r < 0
0 if r = 0
1 if r > 0:

Proposition 1 ([3], xXV, 14) A nonzero polynomial  2 R[s] is Hurwitz stable if and only
if its even-odd components (a; b) are such that b 6� 0 and at the distinct real negative roots
v1 > v2 > ::: > vk of b the following holds:

deg  =

( Sb(0)[Sa(0) � 2Sa(v1) + :::+ (�1)k2Sa(vk)] for deg  odd
Sb(0)[Sa(0) � 2Sa(v1) + :::+ (�1)k2Sa(vk) + (�1)k+1Sa(�1)] for deg  even.

(8)

By (7), if deg  is odd, then deg b = (deg  � 1)=2 so that deg  � 2k + 1. However, the
maximum value the right hand side of (8) can attain is also 2k + 1. Similarly, if deg  is
even, then it is easy to see by (7) that deg  � 2k+2 which is the maximum value the right
hand side of (8) can attain. It follows that (8) is satis�ed if only if k = deg b, Sa(0) = Sb(0),
and in each interval (v1; 0), (v2; v1); :::, the polynomial a has exactly one root. Such an (a; b)
is called a positive pair ([3], xXV, 14) and the proposition reads:  2 H if and only if (a; b) is
a positive pair. The following is a generalization of Proposition 1 to not necessarily Hurwitz
stable polynomials.

Lemma 1. Let a nonzero polynomial  2 R[s] have the even-odd components (a; b).
Suppose b 6� 0 and (a; b) is coprime. Then, �( ) = r if and only if at the real negative roots
of odd multiplicities v1 > v2 > ::: > vk of b the following holds:

r =

( Sb(0�)[Sa(0)� 2Sa(v1) + :::+ (�1)k2Sa(vk)] for deg  odd
Sb(0�)[Sa(0)� 2Sa(v1) + :::+ (�1)k2Sa(vk) + (�1)k+1Sa(�1)] for deg  even,

(9)

where b(0�) := (�1)m0b(m0)(0), m0 is the multiplicity of u = 0 as a root of b(u), and b(m0)(0)
denotes the value at u = 0 of the m0-th derivative of b(u).

Proof. See the Appendix.3 2

3 The Set of Stabilizing Gains

We now return to our problem. Let p; q 2 R[s] be nonzero, with m = deg p and n = deg q
and satisfy

(A1) n � m; n � 1.

3It would be surprising if this result is not already known in some form or other. However, we have not
been able to locate an appropriate reference and a proof is supplied.

6



(A2) (p; q) is coprime.

In this section we obtain analytic descriptions of A(p; q) through two closely related proce-
dures in Theorems 1 and 2 under assumptions (A1) and (A2). Note that if (A1) fails, then
either n < m in which case A(p; q) = ; or n = 0 in which case A(p; q) = Rnf�q=pg. On the
other hand, if (A2) fails, then with ~� := gcdfp; qg, we have q = ~�~q and p = ~�~p for coprime
polynomials (~q; ~p). Then, A(p; q) 6= ; if and only if ~� 2 H and A(~p; ~q) 6= ;, in which case
A(p; q) = A(~p; ~q). Consequently, we can assume (A1) and (A2) without loss of generality.

Let (h; g) and (f; e) be the even-odd components of q and p, respectively, so that q(s) =
h(s2)+sg(s2); p(s) = f(s2)+se(s2). By (A1), f and e are not both zero and d := gcd ff; eg
is well-de�ned. Let

f = d �f; e = d�e

for coprime polynomials �f; �e 2 R[u]. Then, the polynomial

�p(s) := �f(s2) + s�e(s2) = p(s)=d(s2) (10)

is free of C0 roots except possibly a simple root at s = 0. Let (H;G) be the even-odd
components of q(s)�p(�s). Also let F (s2) := p(s)�p(�s). By a simple computation, it follows
that

H(u) = h(u) �f(u)� ug(u)�e(u);
G(u) = g(u) �f(u)� h(u)�e(u);
F (u) = f(u) �f(u)� ue(u)�e(u):

(11)

These polynomials are related to q(j!)=p(j!) by

H

F
(�!2) = Refq(j!)

p(j!)
g; �!G

F
(�!2) = Imfq(j!)

p(j!)
g

whenever de�ned. If G 6� 0 and if they exist, let the real negative zeros with odd multiplicities
of G(u) be fv1; :::; vkg with the ordering

v1 > v2 > � � � > vk; (12)

with v0 := 0 and vk+1 := �1 for notational convenience, and let the real negative zeros with
even multiplicities of G(u) be fu1; :::; ulg.

Lemma 2. Given p; q 2 R[s] satisfying (A1), (A2), let F;G;H be de�ned by (11). A
real number � is in A(p; q) if and only if G 6� 0, (H + �F;G) is coprime, and �[ (s; �)] =
n� �[�p(s)], where  (s; �) := H(s2) + �F (s2) + sG(s2).

Proof. Note that by (11),  (s; �) = �(s; �)�p(�s) and that s0 is a root of �p(�s) if and
only if �s0 is a root of �p(s). If � 2 A(p; q), then �(�) = n and �( ) = n � �(�p). Suppose
gcdfH + �F;Gg 6= 1. Since (H + �F;G) are the even-odd components of  (s; �), it follows
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that s0 = �pu0 are both roots of  (s; �) for some root u0 2 C of gcdfH + �F;Gg(u).
If Re fs0g = 0, then as �(s; �) is Hurwitz stable both should be roots of �p(�s). This is
not possible since �p(s) has no zeros in C0 except possibly a simple zero at s = 0. Hence
Re fs0g 6= 0 and one of the roots, say s0 = �pu0, is in C+. Since � is Hurwitz stable, s0 is a
root of �p(�s). Since gcd ( �f; �e) = 1, �s0 can not also be a root of �p(�s) so that it is a root of
�(s; �). But �(�s0; �) = q(�s0)+�p(�s0) = 0 implies by �p(�s0) = 0 that q(�s0) = 0. This
contradicts the assumption (A2). Now if G � 0, then by coprimeness of (H+�F;G),  (s; �)
is a constant. This implies that n = 0 which contradicts the assumption (A1). Conversely,
suppose G 6� 0 and for some � 2 R, (H + �F;G) is coprime and �( ) = n � �(�p). Hence
�(�) = n and all roots of � are in C�. 2

Theorem 1. Let p; q 2 R[s] satisfy the assumptions (A1), (A2) and let F;G;H, fvig be
de�ned by (11), (12).

[Existence] The set A(p; q) is nonempty if and only if

(i) G 6� 0,

(ii) (F;G;H) is coprime,

(iii) There exists a sequence of signums

I =

( fi0; i1; : : : ; ikg for odd n�m
fi0; i1; : : : ; ik+1g for even n�m;

where i0 2 f�1; 0; 1g and ij 2 f�1; 1g for j = 1; : : : ; k + 1 satisfying (1)-(3):

(1) F (vj) = 0 ) ij = SH(vj)SG(0�); j = 0; 1; :::; k:

(2) n� �(p) =

(
i0 � 2i1 + 2i2 + � � �+ 2(�1)kik for odd n�m
i0 � 2i1 + 2i2 + � � �+ 2(�1)kik + (�1)k+1ik+1 for even n�m:

(3)
max
j2J�

H

F
(vj) < min

j2J+

H

F
(vj) if G(0�) > 0;

max
j2J+

H

F
(vj) < min

j2J�

H

F
(vj) if G(0�) < 0;

where J + := fj : ij 2 I; ijSF (vj) = 1g and J � := fj : ij 2 I; ijSF (vj) = �1g and
where G(0�) := (�1)m0G(m0)(0) with m0 being the multiplicity of u = 0 as a root of
G(u).

[Determination] Let (i)-(iii) hold. Let I1; I2; : : : ; I� be the set of all signum sequences
that satisfy (iii) and let J �

t := fj : ij 2 It; ijSF (vj) = �1g for t = 1; :::; �. Consider the �
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open intervals de�ned by

At :=

8>>>>>><
>>>>>>:

(� min
j2J+

t

H

F
(vj); �max

j2J�t

H

F
(vj)) if G(0�) > 0

(� min
j2J�t

H

F
(vj); �max

j2J+
t

H

F
(vj)) if G(0�) < 0

(13)

for t = 1; 2; � � � ; � and the set of points

Â :=

8><
>:
f�H

F
(uj) : F (uj) 6= 0g if n > m

f�H
F
(uj) : F (uj) 6= 0g [ f� q

p
(1)g if n = m:

Then,

A(p; q) =
�[
t=1

At n (Â \ At): (14)

Proof. (Only If) Let A(p; q) 6= ; and let � 2 A(p; q). Thus, �(s; �) 2 H and, by
Lemma 2, G 6� 0, (H + �F;G) is coprime (implying that (F;G;H) is also coprime), and
�( ) = n��(�p), where  (s; �) = �(s; a)�p(�s). Since (H+�F;G) are even-odd components
of  and since deg  = n + deg �p is odd if and only if n � m is odd, it follows by Lemma
1 that at the roots vj of G(u), (9) holds with a(u) := H(u) + �F (u) and b(u) := G(u).
Therefore, the sequence of signums I = fijg de�ned by

ij =

( S(H + �F )(vj) if G(0�) > 0
�S(H + �F )(vj) if G(0�) < 0

(15)

for j = 0; 1; : : : ; k; k + 1 satis�es (1) and (2) of (iii). Note that, by (ii), ij 6= 0 except when
�p(0) = 0 so that ij 2 f�1; 1g for j = 1; :::; k+1 and i0 2 f�1; 0; 1g, where i0 = 0 if and only
if �p(0) = 0. To prove that � satis�es (3) of (iii), let us �rst suppose G(0�) > 0. Then, by
(15), we get

� > �H
F
(vj) for all vj for which ijSF (vj) = 1;

� < �H
F
(vj) for all vj for which ijSF (vj) = �1;

where for j = k+1 the fact that \ deg H � deg F for even n�m" is used, see (7). It follows
that

max
fj : ijSF (vj)=1g

�H
F
(vj) < � < min

fj : ijSF (vj)=�1g
�H
F
(vj);
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or equivalently,

� min
fj : ijSF (vj)=1g

H

F
(vj) < � < � max

fj : ijSF (vj)=�1g

H

F
(vj):

This yields the �rst inequality in (3). The second inequality in (3) is shown similarly in the
case G(0�) < 0. This proves the \only if" part of the \existence" statement. By coprimeness
of (H + �F;G) and by deg �(s; �) = deg q, we have � 62 Â. Therefore, by (3), A(p; q) � A,
where A denotes the right hand side of (14).

(If) Suppose (i)-(iii) are satis�ed. We prove that A � A(p; q) establishing the \if" part
of the \existence" statement as well as the description for A(p; q). Let us �rst consider

Ac := A \ f� 2 R : (H + �F;G) is coprimeg:

By the de�nition of the set Ac, (H + �F;G) is coprime for all � 2 Ac and, by (i), G 6� 0.
Let � 2 Ac belong to the interval A� obtained by a signum set I� for some � 2 f1; :::; �g.
Thus, as (3) holds for J �

� and J +
� , we have �S(H + �F )(vj) = ij for SG(0�) = � for all

ij 2 I� . By (2) of (iii), it follows that a := H + �F; b := G satisfy (9) of Lemma 1 so that
�(�(s; �)�p(�s)) = n��(�p(s)). By Lemma 2, it follows that Ac � A(p; q). We now show that
the set A n Ac of �nite number of points is empty. Suppose �0 2 A n Ac so that there exists
u0 2 C satisfying H(u0) + �0F (u0) = 0; G(u0) = 0. If F (u0) = 0, then gcd fF;G;Hg 6= 0
which contradicts (ii). Thus, F (u0) 6= 0. We consider two cases. First, suppose u0 is real
and nonpositive. Then, u0 2 fv0; :::; vk; u1; :::; ulg and �0 = �H(u0)=F (u0). This contradicts
the fact that �0 2 A. Second, suppose that u0 is either a real positive number or a nonreal
complex number. It follows that �(�pu0; �0)�p(�pu0) = 0 since u0 is a common zero of
the even-odd components of �(s; �0)�p(�s). Note that both �pu0 can not be roots of �p(s)
since the latter has coprime even-odd components. On the other hand, if �p(�pu0) = 0 and
�(�pu0) = 0, then (p; q) is not coprime and (A2) is contradicted. Hence, both of �pu0 are
the roots of �(s; �). Note that Refpu0g 6= 0 as u0 is either real positive or nonreal complex.
Consequently, �(s; �) has a root in C+. But, since Ac is dense in A, there exists �1 2 Ac
arbitrarily close to �0 for which �(s; �1) is Hurwitz stable. By the continuity of the roots of
� with respect to � and by the fact that C� \C+ = ;, such an �0 can not exist. We have
thus shown that A n Ac is empty and hence A � A(p; q). 2

Remarks. 1. By condition (2) of (iii), some of the elements of I may be �xed. If
�p(0) 6= 0, then the �xed elements are determined by vj for which F (vj) = 0 for some
j = 0; 1; :::; k. Since F (u) = d(u) �F (u) where �F (s2) := �p(s)�p(�s), we have �F (u) > 0 for all
u � 0 and the roots of G which yield �xed elements are among the real negative roots of
gcdfG; dg. On the other hand, if �p(0) = 0, then H(0) = 0; F (0) = 0 which �xes i0 = 0. The
real negative roots of d(u) yield pairs of zeros of p(s) in C0. By these considerations, it is
easy to see that, the �xed signums in I occur if and only if either p(s) has a zero j! 6= 0
such that u = �!2 is a zero of G(u) or �p(0) = 0.

2. Suppose p(s) has no roots in C0 and let n � m be even. Then, there are no �xed
signums in I by Remark 1. In this case, there are 2k+2 di�erent candidate signum sequences
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to satisfy (2) and (3) in Theorem 1. With l := n � �(p), it is easy to compute that among
these

(k+1)!
[(2k+2�l)=4]![(2k+2+l)=4]!

if (l + 2k)mod 4 = 2

2 k!
[(2k�l)=4]![(2k+l)=4]!

if (l + 2k)mod 4 = 0

di�erent signum sequences satisfy (2) and are candidate sequences to satisfy condition (3)
in Theorem 1.

3. Two di�erent signum sequences I1; I2 satisfying (iii) yield two disjoint intervals A1,
A2. To see this, suppose � 2 A1 \ A2. Then, by the \only if" part of the proof of Theorem
1, (15) holds for signums of both I1 and I2 and they are identical. Consequently, there may
be at most k + 2 di�erent signum sequences that satisfy (iii) in Theorem 1. 4

Let us now consider the set

B(p; q) := f� 2 R : �(s; �) = �q(s) + p(s) 2 H ; deg � = deg qg:

If (A1) and (A2) hold, then the following relation between A(p; q) and B(p; q) is immediate.
If � 2 A(p; q) and � 6= 0, then � := ��1 is in B(p; q). If 0 2 A(p; q), then q 2 H and the
intervals (�1;1), (�1;��2) are contained in B(p; q) for some �1; �2 > 0. If � 2 B(p; q)
and � 6= 0, then � := ��1 is in A(p; q). If 0 2 B(p; q), then n = m, p 2 H, and the intervals
(�1;1), (�1;��2) are contained in A(p; q) for some �1; �2 > 0.

We now state a counterpart to Theorem 1 which states conditions for B(p; q) to be
nonempty and gives a description of B(p; q).

By (A1), h and g are not both zero and b := gcd fh; gg is well-de�ned. Let

h = b�h; g = b�g

for coprime polynomials �h; �g 2 R[u]. Then, the polynomial

�q(s) := �h(s2) + s�e(s2) = q(s)=b(s2) (16)

is free of C0 roots except possibly a simple root at s = 0. Let (E;D) be the even-odd
components of p(s)�q(�s) and let C(s2) := �q(s)�q(�s). Similar to (11), we have

E(u) = �h(u)f(u)� u�g(u)e(u);
D(u) = �h(u)e(u)� �g(u)f(u);
C(u) = �h(u)h(u)� u�g(u)g(u):

(17)

By (2) and (6), we have

E

C
(�!2) = Refp(j!)

q(j!)
g; !D

C
(�!2) = Imfp(j!)

q(j!)
g

11



whenever de�ned. If D 6� 0 and if they exist, let the real negative zeros with odd multiplicities
of D(u) be fx1; :::; xkg with the ordering

x1 > x2 > � � � > xk; (18)

with x0 := 0 and xk+1 := �1 for notational convenience, and let the real negative zeros with
even multiplicities of D(u) be fy1; :::; ylg.4

Theorem 2. Let p; q 2 R[s] satisfy the assumptions (A1), (A2) and let C;D;E, fxjg
be de�ned by (17), (18).

[Existence] The set B(p; q) is nonempty if and only if

(i) D 6� 0,

(ii) (C;D;E) is coprime,

(iii) There exists a sequence of signums

I = fi0; i1; : : : ; ik+1g

where i0 2 f�1; 0; 1g and ij 2 f�1; 1g for j = 1; : : : ; k + 1 satisfying (1)-(3):

(1) C(xj) = 0 ) ij = SE(xj)SD(0�); j = 0; 1; :::; k:

(2) n� �(q) = i0 � 2i1 + 2i2 + � � �+ 2(�1)kik + (�1)k+1ik+1:

(3)
max
j2J�

E

C
(xj) < min

j2J+

E

C
(xj) if D(0�) > 0;

max
j2J+

E

C
(xj) < min

j2J�

E

C
(xj) if D(0�) < 0;

where J + := fj : ij 2 I; ijSC(xj) = 1g and J � := fj : ij 2 I; ijSC(xj) = �1g
and where D(0�) := (�1)n0D(n0)(0) with n0 being the multiplicity of u = 0 as a root
of D(u).

[Determination] Let (i)-(iii) hold. Let I1; I2; : : : ; I� be the set of all signum sequences
that satisfy (iii) and let J �

t := fj : ij 2 It; ijSC(vj) = �1g for t = 1; :::; �. Consider �
open intervals de�ned by

Bt :=

8>>>>>><
>>>>>>:

(� min
j2J+

t

E

C
(xj); �max

j2J�t

E

C
(xj)) if D(0�) > 0

(� min
j2J�t

E

C
(xj); �max

j2J+
t

E

C
(xj)) if D(0�) < 0

4There is a slight ambiguity of notation here; D and G may not have the same number of real negative
roots of odd (even) multiplicity unless d and b have.
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for t = 1; 2; � � � ; � and the set of points

B̂ :=

8><
>:
f�E

C
(yj) : C(yj) 6= 0g [ f0g if n > m

f�E
C
(yj) : C(yj) 6= 0g [ f� q

p
(1)g if n = m :

Then,

B(p; q) =
�[
t=1

Bt n (B̂ \Bt): (19)

Proof. The proof is analogous to the proof of Theorem 1. We only give an outline.
Similar to Lemma 2, given p; q 2 R[s] satisfying (A1), (A2), � 2 B(p; q) if and only if D 6� 0,
(E + �C;D) is coprime, and �[ (s; �)] = n � �[�q(s)], where  (s; �) := E(s2) + �C(s2) +
sD(s2). Applying Lemma 1 with a := E+�C; b := D and noting that deg  = deg �+deg �q
is even, it follows that the signum sequence �I = f�ijg, where

�ij =

( S(E + �C)(xj) if D(0�) > 0
�S(E + �C)(xj) if D(0�) < 0;

(20)

satis�es (iii) provided � 2 B(p; q). Conversely, if a signum sequence I satisfying (iii) exists,
then again by Lemma 1, the polynomial  (s; �) will have the signature n � �(q) for any
� 2 B, where B is the right hand side of (19), so that � 2 B ) � 2 B(p; q). 2

Remark 4. Remarks (1)-(3) apply to Theorem 2 with appropriate modi�cations. The
�xed signums in I occur if and only if either q(s) has a zero j! 6= 0 such that u = �!2 is
a zero of D(u) or �q(0) = 0. If there are no �xed signums in I, then the number of di�erent
signum sequences satisfying (2) of Theorem 2 is again approximately the number given in
Remark 2. Finally, two di�erent signum sequences satisfying (iii) yield disjoint open intervals
all (except �nitely many) points of which are in B(p; q). 4

Remark 5. Theorem 2 is an analytic version of the Nyquist stability criterion outlined
in Section 1, (ii). Similarly, Theorem 1 is an analytic version of the inverse Nyquist criterion.
We now give an explicit connection between the signum sequences in Theorems 1 and 2 and
the intervals they yield under the assumptions (A1), (A2), and

(A3) b = gcd fh; gg = 1; d = gcd ff; eg = 1.

By (A3), H = E, G = �D, G(0�) = �D(0�) and vj = xj for j = 0; 1; :::; k + 1. Moreover,
for any �; � 2 R, we have

H(H + �F )� F (�E + C) = �uGD;
H(E + �C)� C(�H + F ) = �uDG: (21)

Now let It = fijg satisfy the conditions (1)-(3) of Theorem 1 and yield At = (�1; �2), all
(except possibly �nitely many) points of which are in A(p; q). When n � m is odd, let
ik+1 := SH(vk+1)SG(0�) for convenience and consider �It = f�ijg de�ned by

�ij :=

( �ijSH(vj) if 0 < �1 < �2

ijSH(vj) if �1 < �2 < 0
(22)
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for j = 0; :::; k; k+1 if �p(0) 6= 0. If �p(0) = 0, then we let �ij be de�ned by (22) for j = 1; :::; k+1
and by

�i0 =

( SD(0�) if 0 < �1 < �2

�SD(0�) if �1 < �2 < 0
:

Note that as the interval At in the above two cases do not contain the point � = 0, by
the �rst equality in (21), the number � = 1=� is such that (20) holds. By the \only if"
part of the proof of Theorem 2, the signum sequence �It de�ned above yields the interval
Bt = (1=�2; 1=�1), all (except �nitely many) points of which are in B(p; q). If �1 < 0 < �2,
then 0 2 A(p; q) and the signum sequence It = fij = SH(vj)g satis�es (iii) of Theorem 1
yielding At. The constant signum sequences f�1g and f+1g both satisfy (20) for � ! �1,
by the second equality in (21) and yield the intervals Bt1 = (�1; 1=�1) and Bt2 = (1=�2;1).
We note that, given an interval Bt obtained via the signum sequence �It, the procedure of
de�ning It satisfying (iii) of Theorem 1 and yielding At is similar and follows by the equalities
(21). Finally, the restrictive assumption (A3) can be removed at the expense of a much more
detailed analysis. 4

Example 1. Consider

q = s6 + 2s5 + 5s4 + 5s3 + s2 + 0:5s� 0:05;
p = s6 + 4s5 + 30s4 + 60s3 + 150s2 + 100s+ 100:

To determine A(p; q), we �rst employ Theorem 1. By the method of Hurwitz determinants,
it is easy to see that p is Hurwitz stable, i.e., � (p) = 6 which also implies that b = 1. Using
(11), we have

F (u) = u6 + 44u5 + 720u4 + 4800u3 + 16500u2 + 20000u+ 10000;
G(u) = �2u5 � 15u4 + 46:5u3 + 405:2u2 + 478u+ 55;
H(u) = u6 + 27u5 + 161u4 + 377:95u3 + 118:5u2 + 42:5u� 5:

The polynomial G(u) has one positive and four negative real zeros which are

v1 = �0:1289; v2 = �1:3783; v3 = �3:7921; v4 = �7:5823:

Since n � m = 0 is even and n � � (p) = 0, by Remark 2, there are 12 candidate signum
sequences fi0; i1; i2; i3; i4; i5g that satisfy the condition (2) of item (iii) in Theorem 1. Now,
G(0�) = G(0) = 55 > 0, F (vi) > 0 for i = 0; :::; 5, and

H
F
(v0) = �0:0005; H

F
(v1) = �0:0012; H

F
(v2) = �0:1041;

H
F
(v3) = �0:1471; H

F
(v4) = �0:6207; H

F
(v5) = 1:

The signum sequences

I1 = f1; 1; 1; 1; 1; 1g; I2 = f1; 1; 1;�1;�1; 1g;
I3 = f1;�1;�1;�1;�1; 1g; I4 = f�1;�1;�1;�1;�1;�1g
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satisfy (3) in Theorem 1.iii. By (13), we obtain the four intervals

A1 = (0:6207;+1); A2 = (0:1041; 0:1471); A3 = (0:0005; 0:0012); A4 = (�1;�1)

and Â = �1 so that A(p; q) = A1 [A2 [A3 [A4. The root loci of �(s; �) = q(s) + �p(s) in
Figure 1 displays how these four intervals yield Hurwitz stable �(s; �).
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Figure 1: Root-loci of �(s; �):

Continuing the same example, we now employ Theorem 2 to determine B(p; q). By
the method of Hurwitz determinants, the polynomial q has no zeros in C0 and � (q) = 4.
Moreover, d = 1 and using (17) we have D(u) = �G(u); E(u) = H(u), C(u) = u6 + 6u5 +
7u4 � 17:1u3 � 4:5u2 � 0:35u+ 0:0025 so that xi = vi for i = 0; :::; 5. There are 10 di�erent
signum sequences fi0; i1; i2; i3; i4; i5g that satisfy (2) of Theorem 2.iii, where n � � (q) = 2.
Now, D(0�) = �G(0) = �55 < 0, C(xi) > 0 for i = 0; :::; 5, and

E
C
(x0) = �2000; E

C
(x1) = �828:6583; E

C
(x2) = �9:6063;

E
C
(x3) = �6:7970; E

C
(x4) = �1:6111; E

C
(x5) = 1:

Three signum sequences

I1 = f1;�1;�1;�1;�1;�1g; I2 = f1; 1; 1; 1; 1;�1g;
I3 = f1; 1; 1;�1;�1;�1g

satisfy condition (3) of Theorem 3.iii which yield B1 = (828:6583; 2000); B2 = (�1; 1:6111),
B3 = (6:797; 9:6063). The set B̂ = f�1g and hence B(p; q) = B1 [B2 [B3. The correspon-
dence between A(p; q) and B(p; q) can be seen using Remark 5. �

Example 2. In this example, we illustrate how �xed signums can arise in the candidate
signum sequences. Consider

q = s6 + s5 + 11s4 + 2s3 + 19s2 + 12;
p = s5 + 3s4 + 4s3 + 6s2 + 4s:
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We have �p = s3 + 3s2 + 2s, � (�p) = 2, and G(u) = �(u + 1)(u + 2)(u + 3)(u + 4); F (u) =
�u(u � 1)(u � 4)(u + 2), H(u) = u(2u3 + 29u2 + 53u + 36). The zeros of G(u) are v0 =
0; v1 = �1; v2 = �2; v3 = �3; v4 = �4: Evaluating F at these zeros, F (v0) = 0; F (v2) = 0.
By (1) of Theorem 1.iii, i0 = 0 and i2 = 1. Since n� � (p) = 4, the signum sequences I1 =
f0;�1; 1; 1; 1g; I2 = f0;�1; 1;�1;�1g; I3 = f0; 1; 1;�1; 1g are the only ones that satisfy (2)
of Theorem 1.iii. Moreover, SF (v3) = SF (v4) = �1 and we have J1 = f�1;�1;�1g; J2 =
f�1; 1; 1g; J3 = f1; 1;�1g. Using G(0�) < 0 and

H

F
(v1) = �1; H

F
(v3) = 3;

H

F
(v4) = 2;

the only signum sequence satisfying the third item of Theorem 1 turns out to be I1 which
yields A(p; q) = (1;+1). �

4 Special Cases

In this section, we pursue some consequences of Theorems 1 and 2 and make contact with
some results in robust stability analysis. We consider three cases:

(A4) �p(s) = 0 ) s 2 C0+.

(A5) �q(s) = 0 ) s 2 C0+.

(A6) q(s) = 0 ) s 2 C�.

By (10) and (16), the polynomials �p and �q are free of C0 roots except possibly a simple root
at the origin. Thus, (A4) and (A5) hold if and only if the corresponding polynomial has all
its roots in C+ or one root at 0 and the rest in C+. Alternatively, (A4) holds if and only if
�(�p) = �deg �p or �p(0) = 0; �(�p) = �deg �p + 1; similarly for (A5). On the other hand (A6)
holds if and only �(q) = n, or equivalently, 0 2 A(p; q); � 2 B(p; q) as � ! �1.

Corollary 1. Let p; q 2 R[s] satisfy (A1), (A2), (A4). Then, A(p; q) 6= ; if and only if
the alternating signum sequence I = fG(0)(�1)jg satis�es (1)-(3) in Theorem 1, in which
case

A1 =

8>>>>><
>>>>>:

(� min
j2J+

H

F
(vj); �max

j2J�

H

F
(vj)) if G(0) > 0

(� min
j2J�

H

F
(vj); �max

j2J+

H

F
(vj)) if G(0) < 0;

(23)

where J + := fj : SF (vj) = (�1)jg and J � := fj : SF (vj) = (�1)j+1g,

Â =

( ; if n > m
f�p

q
(1)g if n = m;
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and A(p; q) = A1 n (Â \ A1).

Proof. Let �p satisfy (A4). Let us �rst consider the case �(p) = �(�p) = �deg �p. If n�m
is odd, then by (7), we have 2deg G = n + deg �p � 1 so that n � �(p) = 2deg G + 1. As
2k + 1 is the maximum value that can be attained in the right hand side of (2) of Theorem
1, (2) can be ful�lled if and only if k = deg G. Hence condition (iii) in Theorem 1 can be
satis�ed if and only if k = deg G ( i.e., all roots of G are real negative and distinct) and I
is the alternating sequence with elements ij = G(0)(�1)j for j = 0; 1; :::. If n �m is even,
then by (7), 2deg G + 1 � n + deg �p � 1 so that n + deg �p � 1 � 2deg G + 1 � 2k + 1. As
2k+2 is the maximum number that can be attained in the right hand side of (2) of Theorem
1, (2) can be ful�lled if and only if k = deg G and I = fG(0)(�1)jg. In the case �p(0) = 0
and �(p) = �(�p) = �deg �p+ 1 we have i0 = 0 and by similar arguments we again have that
(2) holds if and only if k = deg G and ij = G(0)(�1)j for j = 1; 2; :::. Since G has all its

roots distinct, the set fujg is empty and Â can have at most one element. Hence, for the

alternating signum sequences the set A(p; q) simpli�es to A(p; q) = A1 n (Â \A1), where A1

is given by (23). 2

Corollary 2. Let p; q 2 R[s] satisfy (A1), (A2), (A5). Then, B(p; q) 6= ; if and only if
the alternating signum sequence I = fD(0)(�1)jg satis�es (1)-(3) in Theorem 2, in which
case

B1 =

8>>>>><
>>>>>:

(� min
j2J+

E

C
(xj); �max

j2J�

E

C
(xj)) if D(0) > 0

(� min
j2J�

E

C
(xj); �max

j2J+

E

C
(xj)) if D(0) < 0;

where J + := fj : SC(vj) = (�1)jg and J � := fj : SC(vj) = (�1)j+1g,

B̂ =

( ; if n > m
f� q

p
(1)g if n = m;

and B(p; q) = B1 n (B̂ \ B1).

Proof. The proof is similar to the proof of Corollary 1 and it is omitted. 2

If n > m, then Â = ; and B̂ = ; in Corollaries 1 and 2. It follows that if either (A4) or
(A5) holds, then the set A(p; q) is an interval (possibly empty). Consequently, the pair of
polynomials (p; q) has the following property:

(CC) q + �1p; q + �2p 2 H for some �1 < �2 in R ) q + �p 2 H 8 � 2 [�1; �2]:

The condition (CC) is a convexity condition for (q +Rp) \ H, where (q +Rp) := fq + �p :
� 2 Rg. We refer the reader to [11], [5] for motivations of studying (CC) when q is a stable
polynomial. We note that (CC) is a slight generalization (to unstable q) of the geometric local
concept of convex directions introduced in [5]. Of particular relevance to (CC) is Theorem
2 of [11], which gives a necessary and su�cient condition on p in order for (p; q) to satisfy
(CC) for any Hurwitz stable q.
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By Corollaries 1 and 2, if either p satis�es (A4) or q satis�es (A5), then a coprime pair
(p; q) with deg q > deg p satis�es (CC). Note that if p (resp. q) is an even or odd polynomial
in s or a polynomial having all its roots in C+, or if it is a multiple of polynomials of these
two types, then p (resp. q) satis�es (A4) (resp. (A5)) and the pair (p; q) satis�es (CC) for
any q (resp. p) such that n > m.

These simple conditions obtained by Corollaries 1 and 2 are only su�cient conditions for
(CC) to hold. Theorem 1 (or Theorem 2) of course yields a necessary and su�cient condition
on posing the requirement that at most one signum sequence satisfying the conditions (1)
and (2) of Theorem 1 also satis�es condition (3). In order to cut down the number of di�erent
signum sequences which must be tested however, we further investigate this question below
under the simplifying assumption (A6), i.e., we assume that q is Hurwitz stable. Under
this assumption, the condition obtained by Theorem 2 can be considerably simpli�ed and
Corollary 4 below yields a necessary and su�cient condition for A(p; q) to consist of exactly
one interval. The condition obtained is very easy to check.

Let (A6) hold. Then, q 2 H so that �(q) = n. As q is free of C0 zeros, we have �q = q
and q(0) 6= 0. Since � 2 B(p; q) for � ! �1, the conditions (i)-(ii) of Theorem 2 hold and
since C(u) > 0 for all u � 0, the condition (1) of (iii) is trivially satis�ed. Thus, all elements
of the candidate signum sequences I of Theorem 2 are free and they should satisfy

0 = i0 + (�1)k+1ik+1 + 2[(i2 + i4 + :::)� (i1 + i3 + :::)]: (24)

In particular, the constant signum sequences f+1g and f�1g satisfy (24) yielding the inter-
vals (�1;�b2) and (�b1;1) with

b1 := min
j

E

C
(xj); b2 := max

j

E

C
(xj): (25)

There may of course be other signum sequences satisfying (iii) of Theorem 1. Below in
Corollary 3, we simplify the condition of Theorem 2 for the existence of such sequences and
associated intervals. Let

�j :=
E

C
(xj); j = 0; 1; :::; k + 1: (26)

We order �j as

�j1; �j2; :::; �jk+2
(27)

where �j� occurs to the left of �j� (i.e., � < �) if and only if either �j� < �j� or �j� = �j�
and j� < j�. Note that �j1 = b1 and �jk+2

= b2, by (25). Let us denote

M(t) := maxfl : �jl = �jtg: (28)

for t = 1; :::; k + 2 and let �; � be such that

j� = 0; j� = k + 1: (29)
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Example 3. If k = 7 and

�0 = 0:5; �1 = 0:2; �2 = 1; �3 = 4:1; �4 = 1;
�5 = 0:2; �6 = �3; �7 = 1; �8 = �3;

then

j1 = 6; j2 = 8; j3 = 1; j4 = 5; j5 = 0;
j6 = 2; j7 = 4; j8 = 7; j9 = 3
M(1) =M(2) = 2; M(3) =M(4) = 4;
M(6) =M(7) =M(8) = 8; M(5) = 5; M(9) = 9;
� = 5; � = 2:

We also note that for this case the condition (30) below fails. �
Corollary 3. Let p; q 2 R[s] satisfy (A1), (A2), (A6) and let �j, jt, M(t), and �; � be

as in (26)-(29). For some t = 1; :::; k + 1, the interval

Bt := (��jt+1;��jt)

is such that Bt n (B̂ \Bt) is contained in B(p; q) if and only if t =M(t), max f�; �g � t or
min f�; �g > t, and

8>>>>>><
>>>>>>:

M(t)X
l=1

(jl mod 2) =
M(t)

2
if min f�; �g > t

k+2X
l=M(t)+1

(jl mod 2) =
k �M(t)

2
+ 1 if max f�; �g � t:

(30)

Proof. Note that the distinct values in f�jg are f�jM(t)
; �jM(t)+1

g. By (A6), the constant
signum sequences yield the intervals (�1;��jM(k+2)

) and (��jM(1)
;1) which are (except

their common points with B̂) contained in B(p; q).

[Only if]We assume that D(0�) > 0 as the case D(0�) < 0 is similar. Suppose for some
t = 1; :::; k + 1, Bt n (B̂ \ Bt) is contained in B(p; q). By Theorem 2, there exists It = fijg
satisfying (24) and

�jt = max
fj: ij=�1g

�j; �jt+1 = min
fj: ij=1g

�j: (31)

By Remark 4, It can not be a constant sequence so that �jt and �jt+1 are both �nite values
and t 2 f1; :::; k + 1g. Moreover, as �jt 6= �jt+1, it must be that t = M(t). By (31) and by
the de�nition of the index ij,

ijl =

(
1 for l > t
�1 for l < t + 1:

(32)
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In order for (24) to be satis�ed, i0 and ik+1 should have the same sign (whether k is even or
odd). Hence, 0; k+1 2 fij1 ; :::; ijtg or 0; k+1 2 fijt+1; :::; ijk+2

g. Equivalently,max f�; �g � t
or min f�; �g > t. If we let ne(o) denote the number of even (odd) integers in fj1; :::; jtg and
let me(o) denote the number of even (odd) integers in fjt+1; :::; jk+2g, then (24) and (32) yield

0 = �ne +me + no �mo if k is even
0 = �ne +me + no �mo � 1 if k is odd and max f�; �g � t
0 = �ne +me + no �mo + 1 if k is odd and min f�; �g > t:

We now note that ne + no = t, me + mo = k + 2 � t, ne + me = (k + 2)=2 if k is even,
and ne + me = (k + 3)=2 if k is odd. Using these above, we obtain no = t=2 if k is even,
mo = (k�t+2)=2 if k is odd andmax f�; �g � t, and no = t=2 if k is odd andmin f�; �g > t.
Hence, one of (30) holds.

[If ] If t =M(t) exists such that (30) holds, then let

ijl :=

( �D(0�) for l �M(t)
D(0�) for l > M(t)

It is straightforward to check that It = fijg satis�es (24) and yields the interval BM(t). 2

Remark 6. An equivalent way of stating (30) using the notation introduced in the above
proof is \minf�; �g > t ) no = ne > 0 and maxf�; �g � t ) mo = me > 0:" 4

Corollary 4. Let (A1), (A2), (A6) hold. Then, A(p; q) = (��1; �2) for some positive
numbers �1; �2 [or equivalently, B(p; q) = (�1;���1

1 ) [ (��1
2 ;1)] if and only if B̂ �

[�j1; �jk+2
] and for t = 1; :::; k + 1 it holds that

M(t)X
l=1

(jl mod 2) 6= M(t)

2
for all M(t) = t such that min f�; �g > t

and
k+2X

l=M(t)+1

(jl mod 2) 6= k �M(t)

2
+ 1 for all M(t) = t such that max f�; �g � t:

(33)

Proof. This is an immediate consequence of Corollary 3. 2

Example 4. We consider Example 4.4 in [5]. Let q(s) = (s+1)3 and p(s) = s2+p1s+p0,
where p0; p1 2 R. We use the result of Corollary 4 to determine the set of values (p1; p0) for
which (p; q) satis�es the condition (CC). By an easy computation D(u) = �u2+(3p1� p0�
3)u+(p1� 3p0) and D(u) has two negative real distinct zeros if and only if (p1; p0) are such
that

3 + p0 � 3p1 > 0; (34)
3p0 � p1 > 0; (35)
� := p20 � 6(1 + p1)p0 + 9 + 9p21 � 14p1 � 0 (36)

Case 1: If one or more of (34)-(36) fail, then k � 1 and the condition of Corollary 4 is easily
seen to be satis�ed. Case 2: If (34)-(36) all hold with � > 0 then D has two real negative
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and distinct roots x1 = 0:5(3p1� p0� 3+
p
�) > x2 = 0:5(3p1� p0� 3�p�). In this case,

�0 = p0; �1 =

(
x1+p0
3x1+1

; x1 6= �1
3

p1
x1+3

; x1 6= �3 ; �2 =

(
x2+p0
3x2+1

; x1 6= �1
3

p1
x2+3

; x2 6= �3 ; �3 = 0: (37)

The statement of Corollary 4 simpli�es to A(p,q) is not an interval if and only if

maxf�1; �2g < minf0; p0g or minf�1; �2g > maxf0; p0g: (38)

By an easy computation �1�2 = p1=8. If p1 � 0, then �1�2 � 0 and (38) fails. If p1 > 0,
then (36) can be written as � = [p0 � 3(1 + p1) + 4

p
2p1][p0 � 3(1 + p1) � 4

p
2p1] > 0

and we only need to consider two cases : Case 2.1: p1 > 0 , p0 > 3(1 + p1) + 4
p
2p1:

In this case (34) and (35) are trivially satis�ed. Moreover x1 + 3 < 0 which implies that
maxf�1; �2g < 0. Hence, (38) holds and A(p; q) is not an interval. (It can be seen that
A(p; q) = (�1=p0;�1=�1) [ (�1=�2;+1) using Corollary 3 and Remark 5. Note that the
additional interval is contained in the positive real axis.) The set of (p1; p0) satisfying
p1 > 0; p0 > 3(1 + p1) + 4

p
2p1 is the shaded region of the �rst �gure in Figure 2. Case

2.2: If p1 > 0 and p0 < 3(1 + p1)� 4
p
2p1, �1 + �2 = (3p1 � p0 + 3)=8 > 0: By (35), p0 > 0

and hence (38) implies maxf�1; �2g > p0. Hence, by (37), we have (3x1 + 1)(3x2 + 1) > 0
which implies p0 > 1=3: Using �1�2 = p1=8 > p20, �1 + �2 > 2p0 and (35) it follows that
8=9 < p1 < 9=8 and 1=3 < p0 < 3=8. In p1p0-plane, the region determined by 8=9 < p1 < 9=8,
1=3 < p0, 3 + p0 � 3p1 > 0 is a small region in the lower right hand side of the �rst �gure
in Figure 2 which is magni�ed in the second �gure in Figure 2. For these parameter values
A(p; q) consists of two intervals : A(p; q) = (�1=�1;+1) [ (�1=�2;�1=p0): The additional
interval is contained in the negative real axis. Case 3: If (34)-(36) all hold with � = 0 then
D has a real negative root with multiplicity two (x1 = x2). Then A(p; q) is an interval if
and only if Â = f�1=�1g is not included in (�1=p0;+1): We note that � = 0 only when
p1 � 0: Suppose that p1 = 0: Then p0 = 3 and �1 = 0: Let p1 > 0: We need to consider
two cases : Case 3.1: p1 > 0 , p0 = 3(1 + p1) + 4

p
2p1: Then �1=�1 > 0, hence Â is in

(�1=p0;+1): Case 3.2: p1 > 0 , p0 = 3(1 + p1)� 4
p
2p1: We obtain that �1=�1 > �1=p0

when 8=9 < p1 < 9=8 by using similar arguments as in Case 2.1. Consequently, (p; q) satis�es
(CC) if and only if (p1; p0) is not in f(p1; p0) : p1 > 0; p0 � 3(1 + p1) + 4

p
2p1g [ f(p1; p0) :

p1 > 0; 1=3 < p0 � 3(1 + p1)� 4
p
2p1; 8=9 < p1 < 9=8g. �
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Figure 2: For the shaded regions (CC) fails.
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Corollary 5. Suppose (A1), (A2), (A6) hold and let n > m. Let

~D = D=gcdfD;Eg; ~E = E=gcdfD;Eg;

and suppose all the real negative zeros of ~D have odd multiplicities. Let f~x1; :::; ~x~kg be the
real negative zeros of ~D: If the sequence fS ~E(~x1); :::;S ~E(~x~k)g is alternating, then A(p; q) is
an interval.

Proof. By (A6), we have b = 1 and C(xj) > 0 for j = 0; 1; :::; k + 1. A real negative

zero u of D is either a zero of ~D or of D̂ := gcdfD;Eg. Let the real negative zeros with odd
multiplicities of D̂ be x̂1; :::; x̂k̂. We have

S�j = SE
C
(xj) = S ~E(xj)SD̂(xj); j = 1; :::; k:

Since all the negative zeros of even multiplicity of D are also zeros of D̂, and since n > m,
the set B̂ is equal to f0g. Consider ~xi for which D̂(~xi) 6= 0 for i = 1; : : : ; ~k: Let ni denote
the number of those elements in fx̂jg n (f~xjg\fx̂jg) that are greater than ~xi: Let mi denote
the number of those elements in f~xjg \ fx̂jg that are greater than ~xi: It is easy to see

that, if xj = ~xi, then j + mi = i + ni and hence SD̂(xj) = (�1)ni+miSD̂(0�). On the
other hand, S ~E(xj) = S ~E(~xi) = (�1)(i�1)S ~E(~x1) as the sequence f ~E(~xi)g is alternating.

Consequently, if D̂(xj) 6= 0, then S�j = (�1)j�1+2miS ~E(~x1)SD̂(0�) for j = 1; :::; k; or

assuming S ~E(~x1)SD̂(0�) = 1 without loss of generality,

S�j =

8>><
>>:

1 if j is odd and D̂(xj) 6= 0

0 if D̂(xj) = 0

�1 if j is even and D̂(xj) 6= 0

for j = 1; :::; k. Since n > m, �k+1 = 0: Using the notation introduced in the proof of
Corollary 3, for t < minf�; �g we have no = 0, and for t � maxf�; �g we have me = 0 which
implies by Remark 6 that A(p; q) is an interval.

As an example of (p; q) satisfying the condition of Corollary 5, we can mention any pair
(p; q), where �p has all its roots in C0+

5. As another example, consider (p; q) for any Hurwitz
stable q and �p with deg �p = 1 < deg q. Using Lemma 1 and the fact that n�� (p) = n�1, it
is easy to see that for such �p, all zeros of G are real, negative, and distinct and the sequence
fH(v1); :::; H(vk)g is alternating. Moreover, gcdfD;Eg = D̂ = d and ~D = �G; ~E = H
so that Corollary 5 yields: If �p is a Hurwitz stable polynomial of degree one, then for any
Hurwitz stable q with higher degree than deg p condition (CC) holds. We note that, these
examples for the classes of polynomials satisfying (CC) for any Hurwitz stable q can also be
obtained via Theorem 2 of [11].

5Note that for this case Corollary 1 yields a stronger result.
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5 Conclusions

In Theorems 1 and 2, we have obtained an analytic method for the existence and determi-
nation of stabilizing feedback gains. The methods can be viewed as analytic versions of the
Nyquist and the inverse Nyquist methods and they are dual to each other in the same way
as the Nyquist and the inverse Nyquist methods are. The link between the two methods is
established in Remark 5. The discrete-time version of Hurwitz stability, the Schur stability,
can be developed in a similar manner but the details have to be worked out.

Computationally, the methods of Theorem 1 or 2 can be compared with the Neimark
D-decomposition method. In the latter, one is required to apply some algebraic stability
test (such as the Routh array method) in each predetermined interval on the real axis. In
the former, this burden is replaced by the determination of all signum sequences satisfying
(1) and (2) in the theorem statements. The number of such sequences can be quite large.
One remedy for this is to exploit the connection in Remark 5 to cut down the number of
candidate signum sequences still further. In fact if fijg satis�es (1) and (2) in Thorem 1,
then the transformed signum sequence f�ijg of (22) should satisfy (1) and (2) of Theorem
2, which puts a further constraint on fijg reducing the number of signum sequences which
must be tested for condition (3). The details of this reduction is left for future work.

Theoretically, the obtained methods yield results in the relatively new areas of research.
The main results of Section 3 are all new results in the study of convex directions. Under
the simplifying assumption that q is Hurwitz stable, we have obtained a very simple test for
a pair (p; q) to satisfy the convexity condition (CC). Whether a complete characterization
of all pairs (p; q) satisfying (CC) can be obtained from Theorems 1 and 2 is another open
question.

6 Appendix: Proof of Lemma 1.

We �rst consider the case  (0) 6= 0. Since (a; b) is coprime, in this case  has no zeros on C0 and
a(0) 6= 0. Let the real negative roots (if any) with odd multiplicities of a(u) be 6

u1 > u2 > � � � > ul

and de�ne

U :=

(
fujg

l
j=1 if m is even

fujg
l
j=1

S
ful+1 = �1g if m is odd;

(39)

V :=

(
fvig

k
i=1

S
fv0 = 0; vk+1 = �1g if m is even

fvig
k
i=1

S
fv0 = 0g if m is odd;

(40)

where m := deg  . We now order the elements of U [ V as

0 = t1 > t2 > � � � > tk+l+2 = �1

6The notation in the appendix deviates from that of the main text.
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and de�ne the index sets I and J which distinguishes certain elements in ftjg:

i 2 I , ti 2 V and ti+1 2 U for i = 1; 2; : : : ; k + l + 1;
j 2 J , tj 2 U and tj+1 2 V for j = 1; 2; : : : ; k + l + 1:

By either tracing the Leonhard locus7 of  (j!) ([7], xV.1) or by Cauchy index ([3], XV.3) consid-
erations, it is now easy to compute the net change in �(!) := arg  (j!) as ! increases from 0 to
1 as

�1
0 �(!) =

�

2
(
X
i2I

Sa(ti)Sb(ti+1)�
X
j2J

Sb(tj)Sa(tj+1)):

By ([3], xXV.3), �( ) = 2
��

1
0 �(!) and we obtain

�( ) =
X
i2I

Sa(ti)Sb(ti+1)�
X
j2J

Sb(tj)Sa(tj+1): (41)

We now show that the right hand sides of (9) and (41) are the same. Suppose �rst that deg( ) is
even. The right hand side of (9) can be written as

Sb(0�)
kX
i=0

((�1)i(Sa(vi)� Sa(vi+1)): (42)

Let �i denote the number of fujg between vi and vi+1 for i = 0; 1; : : : ; k+1: Hence, we can rewrite
(42) as

Sb(0�)
kX
i=0

2(�i mod 2)(�1)
iSa(vi): (43)

On the other hand, the right hand side of (41) can be written as

X
i:ui 6=0

(Sa(vi)Sb(vi�)� Sb(vi�)Sa(vi+1) ): (44)

By noting that Sa(vi) = Sa(vi+1) when �i is even for i = 0; 1; : : : ; k, we obtain that

�( ) =
X

i : ui odd

2Sa(vi)Sb(vi�): (45)

We also have Sb(vi�) = (�1)iSb(0�), since b(�) have i zeros between vi� and 0� for i = 0; 1; : : : ; k:
Hence, the right hand sides of (43) and (45) are equal. For the case deg( ) is odd, the equality of
the right hand sides of (9) and (41) can be shown similarly.

We now consider the case  (0) = 0. In this case by coprimeness of (a; b),  (s) has a simple
zero at the origin. Using

�( ) =
2

�
�1

0+ �(!)

7In the Russian literature, this is known as the Michailov plot.

24



and repeating all the above arguments by appropriate modi�cations it is possible to show that r
given by (9) is again equal to �( ). Here we only give a heuristic argument. Let ~a be a polynomial
obtained by a slight perturbation of the coe�cients of a and let ~ := ~a(s2) + sb(s2). If the
perturbations are su�ciently small, then ~ is such that Sa(vi) = S~a(vi) for i = 1; :::; k + 1 and
the root at s = 0 of  moves either to C� or to C+. In either case, ~r := �( ~ ) = r � 1. By
what has been proved, (9) holds with r; a replaced by ~r; ~a. Using the fact that Sa(vi) = S~a(vi) for
i = 1; :::; k + 1, we obtain that (9) holds with Sa(0) = 0. 2
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