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ABSTRACT 

There is a close relationship between the conventional 
Discrete Cosine Transform (DCT) and Discrete 
Fourier Transform (DFT). Here, we introduce another 
transform, the Discrete Fractional Cosine Transform 
(DFrCT), which has a similar relationship with the 
Discrete Fractional Fourier Transform (DFrFT). The 
DFrCT share many useful properties of the regular 
cosine transform, and has a free parameter, its 
fraction. When the fraction is zero, we get the cosine 
modulated version of the input signal. When it is 
unity, we get the conventional DCT. As the fraction 
changes from 0 to 1 we get different forms of the 
signal which interpolate between the cosine 
modulated form of the signal and its DCT  
representation. Thus, DFrCT is a general form of 
DCT which has an additional free parameter, and 
with this free parameter it may find its place in many 
applications where DCT is found to be useful.  
 

1. INTRODUCTION 
The ath order fractional Fourier transform is 
the generalization of the conventional 
Fourier transform such that a=1 corresponds 
to the conventional Fourier transform and 
a=0 corresponds to the identity operation. 
However, the optical and digital 
implementations of this more general and 
flexible transform is just as efficient as the 
conventional Fourier transform. In addition 
to that, it has a very close relationship with 
the Wigner Distribution which makes the 
fractional Fourier transform attractive in 
time-frequency analysis of signals. 
Specifically, the horizontal axis of the 
Wigner plane corresponds to the signal 
domain (a=0), the vertical axis corresponds 
to the Fourier domain (a=1), and any axis in 
between corresponds to the fractional 
Fourier domain. The effect of the fractional 

Fourier transform is best exploited when the 
signals to be transformed are concentrated 
neither in signal nor in Fourier domain. 
More about fractional Fourier transform can 
be found in [1-5] and its applications can be 
found in [6-10] and the references therin. 
 
The fractional Fourier transform was defined 
in continuous domain and there was not any 
discrete definition of the transform. All 
digital implementations were based on 
approximating the continuous version of the 
definition (the reader may refer to [6] as an 
example). The approximations were more 
successful when the number of samples were 
larger, and they became poorer when the 
number of samples were fewer. Recently 
proposed discrete definition of the transform 
in [10] allowed us to define the fractional 
Fourier transform for any number of 
samples. Here we will use this discrete 
definition to define our discrete fractional 
cosine tranform (DFrCT) for any number of 
samples. Our DFrCT definition shares many 
useful properties of the regular DCT. In this 
paper, we will first describe the derivation of 
DFrCT, and then will focus on the properties 
of it through some illustrative examples. 
 

2. THE DFrCT 
The definition of the discrete cosine 
transform is: 
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An alternative definition is in terms of the 
Fourier transformation of the extended 
signal to twice the signal size by flipping 
around the original signal: 

y n x n x N n[ ] [ ] [ ]= + − −2 1  
Let us define C kx ( )  as 

C k e Y kx
i k N( ) ( )/= − 2 4π  

where Y(k) is the 2N point discrete Fourier 
transform of the extended signal y[n]. Then 
the DCT of x[n] is the first N elements of 
C kx ( ) . This definition can be rewritten as 
F N2  (2N point discrete Fourier transform) 

and F N2
1−  (2N point inverse discrete Fourier 

transform) of the input x[n] as 
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 From this interpretation, we can see that the 
overall transformation can be rewriten in 
terms of matrix multiplications: 
F = 2Nx2N DFT matrix, 
IF= 2Nx2N IDFT matrix, 
COS_MAT = diag(cos(n * Pi / 2N)) 
SIN_MAT = diag(sin(n * Pi / 2N)) 
DCT_EXT = COS_MAT*(F + IF)  
                   -i*SIN_MAT*(F - IF) 
and the DCT matrix is the first NxN part of 
the DCT_EXT matrix.This definition is a 
very convenient format for defining the 
DFrCT. In other words, by replacing the 
2Nx2N forward and inverse DFT matrices 
with the corresponding Discrete Fractional 
Fourier Transform (DFrFT) matrices defined 
in [10], we readily obtain the real valued 
DFrCT matrix. 
 

3. PROPERTIES OF DFrCT 
By construction, the DFrCT matrix at 
fraction = 1 is equal to the regular DCT 
matrix.  
 

Due to the construction method, the DFrCT 
matrix shares many of the useful properties 
of the regular DCT matrix. Consider the 
following frame images of the DFrCT at 
various fractions. In Fig.1, we can see the 
DFrCT frames at fraction = 1. Due to the 
spectral properties of this transform, it can 
be observed that the spatial frequencies 
increase along horizontal and vertical 
directions. However, the transformation does 
not preserve the localization information, 
and the transform signal only contains 
spectral information. In many image coding 
algorithms, in order to exploit the different 
characteristics of the image (due to being 
non-ergodic), the transforms are performed 
over smaller blocks in the image [11,12].  

Figure 1 

In Figures 2 to 6, we show DFrCT frames 
corresponding to fractions 0.8, 0.6, 0.4, 0.2, 
and 0.1, respectively. These figures illustrate 
an important property of the DFrCT. As we 
proceed from higher fractions to lower 
fractions, we start obtaining more localized 
regions on the frame images. Finally, the 
frame image at fraction = 0 is simply an 
array of matrices each of which has only one 
non-zero element at the raster-scan order. 
This situation shows that we had obtain an 
adjustable time localization information by 
using the fractional Fourier domain at 
different fractions. 
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Figure 2 

Figure 3 
 

Figure 4 

 
Figure 5 

 
4. POTENTIAL APPLICATIONS 

The time localization property of DFrCT has 
some potential applications for a number of 
specific waveforms and signal types. As an 
example, for chirp-like signals, the time 
localization property may exploit the 

changing spectral characteristics of the 
transform along the time domain. 

Figure 6 
For normal images, where the signal can be 
represented as an AR(1) sequence with a 
high correlation, we know that DCT 
performs quite near to the KLT, which is the 
optimum average transform. For the same 
type of signals, the DFrCT performance gets 
degraded as the fraction index gets smaller 
(Fig. 7). 

Figure 7 
This figure shows the basis restriction error 
[12] plots in the logarithmic scale in terms of 
the number of samples retained in the 
transform domain for an AR(1) sequence 
with ρ=0.95. The basis restriction error is the 
mean squared error between the original 
signal and the transformed and inverse 
transformed signal after eliminating some of 
the transform coefficients and retaining the 
first N elements, where N, the number of 
retained elements, are indicated in the 
horizontal axis of Fig. 7. The solid line 
shows the regular DCT (or DFrCT at 
scale=1), the dashed line shows DFrCT at 
scale = 0.8, the dot-dashed line shows 
DFrCT at scale = 0.4.  



 
However, for an arbitrary signal, the retained 
transform coefficients need not be in the 
order from the first to the last. Or, they need 
not be signals of an AR(1) nature. The 
wavelet theory and the appropriate coders is 
indeed an attempt to find the suitable 
transformations which yield significant 
transform coefficients in a localized manner. 
The coders and quantizers, then, exploit the 
localization, and obtain compact 
representations. 
 
In the case of fractional Fourier domain, the 
signals which have localized distributions in 
the Wigner distribution, but don’t have the 
localization neither in the time domain, nor 
in the frequency domain, can be represented 
in a very compact manner. The cosine 
transform in the fractional domain 
incorporates this property of the fractional 
Fourier transform together with the nice 
properties of the cosine transform, such as 
being real-valued. In order the DFrCT to 
have a value for coding, appropriate coders 
which exploit the energy localizations, 
should be found. As another interesting 
problem, the class of signals which have a 
tilted Wigner distribution can be 
investigated. The digital images which have 
strong perspective lines have chirp-like 
structures, and can be a potential application 
for the fractional domain processing. 
 

5. CONCLUSIONS 
In this paper we introduced a novel 
transform called DFrCT with an extra free 
parameter, its fraction, which reduces to 
DCT when its fraction is unity. With its 
extra free parameter this newly proposed 
transform may result in better performance 
figures in all applications where DCT is 
used. 
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