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ABSTRACT
Several efficient component and vector filters applicable for
processing multichannel and color images are compared quan-
titatively. The cases of Gaussian and mixed Gaussian and im-
pulsive noise are considered. It is shown that in situations typi-
cal for practice the best results are provided by a vector double-
window modified trimmed mean filter and by a modified sigma
filter applied to each component.

1. INTRODUCTION
Many images, e.g., color images and multispectral remote
sensing data, can be considered as multichannel data. It is an
important and difficult task to remove noise from these images
while preserving edges and fine details. This task becomes es-
pecially complicated when, besides additive or multiplicative
Gaussian noise, also spikes are present. In this case only robust,
mainly nonlinear, filters perform reasonably well.

There are two principal ways to filter the multichannel data [1].
First, the components can be processed separately. For instance,
for RGB color images each color component (i.e., red, green,
and blue) can be filtered separately. Second, it is possible to
apply vector filters, which take into account the mutual correla-
tion of the components.

Yet another problem is that, e.g., the performance of different
filtering algorithms for color images also depends on the prop-
erties of the images [2]: the level of noise, the probability of
spike occurrence, the object contrasts and shapes, etc. Moreo-
ver, there are no commonly accepted criteria for the analysis of
the quality of the processing algorithms for color images.

In previous articles we have introduced several nonlinear filters,
which perform well with grayscale images. In this paper we
compare through experiments the suitability of some of those
filters to the componentwise processing of color images. Moreo-
ver, we compare the performance of those selected (component)
filters to the performance of vector filters.

2. STUDIED FILTERS
The studied component filters are the adaptive Lpq–filter
(ALPQF) [3], the modified sigma filter (MSF) [4], and the it-
erative filtering procedures based on the sequential application
of the FIR median hybrid filter to the output of the local statistic
Lee (LEE+FIRMH) [5] or the adaptive Lpq (ALPQF+FIRMH)
[6] filter. (The Lpq–filter is a nonlinear filter, whose output is
based only on the pth and qth order statistics.)

The examined vector filters contain basic filters like the vector
median filter (VMF) [1], the vector Lpq-filter (VLPQF) [7], the
vector α-trimmed mean filter (VATMF) [7], and adaptive vector
filters based on hard switching between the vector Lpq–filter and
vector median filter (VLPQF+VMF) or between the vector α-
trimmed mean filter and vector median filter (VATMF+VMF)
[7]. In addition, the performance of the filters was compared to
the performance of the vector double window modified trimmed
mean (DW MTM) filter, which has been shown to be one of the
best vector filtering algorithms [8].

3. TEST CASE
The comparison tests were done using both artificial test image
(see Fig. 1a) and real RGB color images, e.g., the image “Man-
drill” in Fig. 2a. To simplify the visual inspection, the contrast
and brightness of the images in Fig. 1 are enhanced. Moreover,
due to technical limitations all images are in grayscale in the
printed version of this paper. For test purposes the test images
were corrupted (each component separately) by mixed noise,
which contained spikes with different probabilities and additive
Gaussian noise with zero mean and different variances (an ex-
ample is presented in Fig. 1b). For spikes the “salt and pepper”
model was used.

As can be seen, the artificial test image contains objects of vari-
ous shapes, dimensions, and contrasts with respect to the sur-
rounding background. Thus, it is possible to achieve good esti-
mates for the performance of the filtering algorithms. Also, it is
possible to analyze visually the peculiarities of the output im-
ages.

The size of the scanning window was 5x5 for the component
filters. For the vector filters both the 3x3 and the 5x5 scanning
windows were used. The norms used for the vector filtering
were the L1 norm and the Euclidean L2

2 norm. In addition, the
adaptation procedure of the adaptive componentwise filters was
suited for the case of additive noise.

For the quantitative characterization of the filter efficiency we
used several commonly accepted criteria including such that
take into account, e.g., the mutual correlation of the image com-
ponents. These criteria were calculated for the entire test image,
for its homogeneous regions (background), and for the locally
active areas of the image, i.e., edges, details, and their neigh-
borhoods. Besides the traditional criteria like the MAE, the
RMSE [7], and the correlation coefficient (Corr) [7], some typi-
cal criteria for the analysis of the vector filter performance were



(a) (b)

(c) (d)

Figure 1. (a) Artificial RGB color test image; (b) the test image corrupted (for every component) by additive Gaussian noise with
σ2=100 and impulsive “salt and pepper” noise (Pi=0.03); (c) the output of the 5x5 MSF; (d) the output of the 5x5 vector DW MTM
filter.

MAE in L*a*b* space (EL*a*b*) [10], and the V-distance (Vd)
defined by
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where iI  and iÎ  are the ith samples (vectors) of the noise-free

and the filtered signal, respectively, ⋅  is the Euclidean norm,

and G  is the size of the sample set G. The possible division by

zero must naturally be taken care of in the V-distance calcula-
tion. In the tests reported in this paper we have used instead of
zero the value one, which is the minimal nonzero value.

Together these criteria describe the performance of the filtering
algorithms from different points of view. For example, the
RMSE is more sensitive to spike influence than the MAE is
and, conversely, the MAE is more sensitive to edge/detail dis-
tortions. Among the considered criteria, the EL*a*b* criterion
reflects most the human perception. The MCRE criterion, on the
other hand, evaluates chromaticity (color preservation) error and
does not take into account error in the intensities. Finally, the V-

distance takes into account both the intensity error and the color
error (angle between “color vectors”) between the output image
and the noise-free image. Thus, it combines the advantages of
the RMSE and the MCRE.

4. EXPERIMENTAL RESULTS
Some of the experimental results are presented in Tables 1-4. In
the reported tests the variance σ2 of the Gaussian noise was 25
and 100 and the probability Pi for the total occurrence of spikes
was 0.0 and 0.03. The probability for both the positive and
negative impulses was equal. The size of the scanning window
was 5x5 except for the adaptive vector filters, for which the size
of the scanning window of the latter operation was 3x3, and the
vector DW MTM filter, for which the size of the scanning win-
dow of the first operation was 3x3.

The trimming in the VATMF as well as the selection of the
order statistic used in the vector Lpq–filter was done by omit-
ting  9 most distant samples. The order statistics used in the
componentwise Lpq–filters were 6 and 20. The trimming pa-
rameter in the vector DW MTM filter was chosen so that with
Gaussian noise on the average 5.45 per cent of the samples
would be omitted in the homogeneous areas of the image.



Filter type Norm MAE RMSE Corr MCRE EL*a*b* Vd

No filtering (= original error) 4.000 5.011 0.9861 0.096 14.693 0.232
Vector median (VMF) L2

2 1.718 2.859 0.9954 0.036 5.764 0.107
L1 1.639 2.612 0.9961 0.037 5.704 0.101

Vector Lpq (VLPQF) L2
2 1.707 3.303 0.9938 0.033 5.325 0.111

L1 1.792 3.338 0.9937 0.035 5.724 0.114
Vector a-trimmed mean (VATMF) L2

2 1.148 2.175 0.9973 0.025 3.928 0.076
L1 1.154 2.154 0.9974 0.025 4.011 0.076

Adaptive vector Lpq + vector median L2
2, L2

2 1.434 2.019 0.9977 0.032 5.068 0.086
(VLPQF+VMF) L1, L1 1.525 2.056 0.9977 0.035 5.380 0.089
Adaptive vector a-trimmed mean + vector median L2

2, L2
2 1.092 1.653 0.9985 0.025 3.966 0.069

(VATMF+VMF) L1, L1 1.108 1.613 0.9985 0.026 4.050 0.068
L2

2, L1 1.072 1.570 0.9986 0.025 3.916 0.066
Iterative Lee + FIR median hybrid (LEE+FIRMH) 1.185 1.706 0.9984 0.028 4.341 0.073
Adaptive Lpq (ALPQF) 1.037 1.549 0.9987 0.023 3.670 0.066
Iter. ALPQF + FIR med. hyb. (ALPQF + FIRMH) 0.974 1.474 0.9988 0.022 3.485 0.062
Modified sigma (MSF) 0.906 1.263 0.9991 0.022 3.456 0.057
Vector DW MTM L2

2 0.820 1.214 0.9992 0.020 3.143 0.053

Table 1. Results from the filtering of the artificial test image corrupted only by additive Gaussian noise (σ2=25).

Filter type Norm MAE RMSE Corr MCRE EL*a*b* Vd

No filtering (= original error) 7.930 9.836 0.9497 0.200 30.418 0.454
Vector median (VMF) L2

2 3.226 4.526 0.9884 0.069 10.953 0.184
L1 3.208 4.339 0.9894 0.072 11.252 0.185

Vector Lpq (VLPQF) L2
2 3.039 4.492 0.9887 0.063 9.961 0.175

L1 3.256 4.642 0.9879 0.070 10.977 0.186
Vector a-trimmed mean (VATMF) L2

2 2.223 3.253 0.9940 0.046 7.612 0.131
L1 2.262 3.256 0.9940 0.051 7.867 0.133

Adaptive vector Lpq + vector median L2
2, L2

2 2.841 3.836 0.9918 0.063 9.864 0.163
(VLPQF+VMF) L1, L1 3.060 3.967 0.9913 0.070 10.763 0.175
Adaptive vector a-trimmed mean + vector median L2

2, L2
2 2.220 3.170 0.9943 0.050 7.827 0.132

(VATMF+VMF) L1, L1 2.240 3.052 0.9947 0.052 8.018 0.132
L2

2, L1 2.180 2.998 0.9949 0.050 7.751 0.128
Iterative Lee + FIR median hybrid (LEE+FIRMH) 2.261 3.099 0.9946 0.052 8.011 0.133
Adaptive Lpq (ALPQF) 2.049 3.077 0.9947 0.047 7.348 0.127
Iter. ALPQF + FIR med. hyb. (ALPQF + FIRMH) 1.922 2.888 0.9953 0.044 6.865 0.118
Modified sigma (MSF) 1.826 2.458 0.9966 0.042 6.558 0.107
Vector DW MTM L2

2 1.635 2.181 0.9973 0.038 5.894 0.097

Table 2. Results from the filtering of the artificial test image corrupted only by additive Gaussian noise (σ2=100).

It should be noted here that all parameters except the correlation
are to be minimized. The Corr is to be as close to unit as possi-
ble. In addition, we can see from Tables 1-4 that the Vd criterion
is in coherence with the other error criteria. Thus, it is an ap-
propriate criterion for the filter performance characterization.

Tables 1 and 2 contain the error values for the entire artificial
test image in cases of only Gaussian noise. As can be seen, the
a-trimmed mean filter is clearly the best non-adaptive vector
filter. In fact, it was in practice the only non-adaptive vector
filter that could produce better results than the worst considered
adaptive vector filter. Moreover, the vector α-trimmed mean
filter usually performed better than the adaptive vector filters
based on the combination of the VLPQF and the VMF but worse

than the adaptive vector filters based on the combination of
VATMF and the VMF. Finally, the vector DW MTM filter pro-
duced the best results according to all used quantitative criteria.

When componentwise filtering was applied the best results were
obtained using the modified sigma filter. Also, the iterative
procedure based on the ALPQF and the FIR median hybrid filter
produced good results. Moreover, these two filters, as well as
the adaptive Lpq-filter, performed better than all tested vector
filters, excluding the vector DW MTM filter, which was the best
also when compared to component filters.

Although the L2
2 norm is theoretically optimal for Gaussian

noise we can see that in some cases the results are better with
the L1 norm. The reason for this is that the L1 norm leads to



Filter type Norm MAE RMSE Corr MCRE EL*a*b* Vd

No filtering (= original error) 7.703 28.725 0.7471 0.134 23.905 0.558
Vector median (VMF) L2

2 3.639 5.323 0.9862 0.072 11.824 0.211
L1 1.692 2.731 0.9958 0.038 5.893 0.105

Vector Lpq (VLPQF) L2
2 2.560 4.259 0.9902 0.048 7.960 0.154

L1 1.952 3.627 0.9926 0.038 6.191 0.124
Vector a-trimmed mean (VATMF) L2

2 1.510 2.725 0.9959 0.030 4.926 0.100
L1 1.217 2.297 0.9970 0.026 4.136 0.080

Adaptive vector Lpq + vector median L2
2, L2

2 2.298 3.718 0.9929 0.048 7.713 0.143
(VLPQF+VMF) L1, L1 1.632 2.270 0.9971 0.037 5.761 0.097
Adaptive vector a-trimmed mean + vector median L2

2, L2
2 1.478 3.009 0.9951 0.031 5.009 0.105

(VATMF+VMF) L1, L1 1.124 1.751 0.9983 0.026 4.111 0.071
L2

2, L1 1.349 1.978 0.9979 0.031 4.820 0.082
Iterative Lee + FIR median hybrid (LEE+FIRMH) 2.490 7.454 0.9704 0.056 9.012 0.206
Adaptive Lpq (ALPQF) 1.128 2.045 0.9977 0.026 4.023 0.077
Iter. ALPQF + FIR med. hyb. (ALPQF + FIRMH) 1.056 1.892 0.9980 0.024 3.800 0.072
Modified sigma (MSF) 1.038 2.111 0.9975 0.027 4.077 0.075
Vector DW MTM L2

2 0.888 1.496 0.9987 0.022 3.394 0.059

Table 3. Results from the filtering of the artificial test image corrupted by additive Gaussian noise (σ2=25) and impulsive noise
(Pi=0.03).

Filter type Norm MAE RMSE Corr MCRE EL*a*b* Vd

No filtering (= original error) 8.136 29.364 0.8322 0.118 22.528 0.513
Vector median (VMF) L2

2 5.747 9.591 0.9741 0.063 12.736 0.300
L1 2.963 6.061 0.9894 0.036 6.802 0.174

Vector Lpq (VLPQF) L2
2 6.252 10.175 0.9696 0.050 11.586 0.301

L1 5.298 9.398 0.9743 0.048 10.619 0.267
Vector a-trimmed mean (VATMF) L2

2 3.436 6.743 0.9868 0.029 6.511 0.210
L1 2.656 5.736 0.9907 0.025 5.289 0.155

Adaptive vector Lpq + vector median L2
2, L2

2 3.866 8.015 0.9822 0.049 9.326 0.244
(VLPQF+VMF) L1, L1 2.385 3.945 0.9955 0.039 6.712 0.133
Adaptive vector a-trimmed mean + vector median L2

2, L2
2 3.139 7.759 0.9831 0.037 7.229 0.231

(VATMF+VMF) L1, L1 1.803 3.574 0.9963 0.029 5.057 0.113
L2

2, L1 1.974 3.672 0.9961 0.032 5.536 0.119
Iterative Lee + FIR median hybrid (LEE+FIRMH) 3.689 9.245 0.9760 0.064 11.194 0.230
Adaptive Lpq (ALPQF) 2.535 5.015 0.9928 0.043 7.389 0.160
Iter. ALPQF + FIR med. hyb. (ALPQF + FIRMH) 2.305 4.589 0.9939 0.040 6.850 0.149
Modified sigma (MSF) 1.350 3.537 0.9964 0.028 4.502 0.090
Vector DW MTM L2

2 1.174 3.079 0.9973 0.021 3.638 0.088

Table 4. Results from the filtering of the locally active areas of the artificial test image corrupted by additive Gaussian noise
(σ2=25) and impulsive noise (Pi=0.03).

better edge/detail preservation and to a more robust filter than
the L2

2 norm (see, e.g., [1, 7]). Naturally, this kind of properties
are important for image enhancement.

The results for the mixed noise (presented in Tables 3 and 4)
are, in general, coherent to results presented in Tables 1 and 2.
For instance, the vector DW MTM filter remains superior.
There are, however, also some differences due to the fact that
the robustness of the filters starts to play an important role. The
most interesting change is that now both the combination of the
VATMF and the VMF utilizing the L1 norm and the iterative
combination of the ALPQF and the FIRMH filter outperformed

the MSF in the entire image according to most criteria. How-
ever, the MSF was still better in the locally active areas of the
image, i.e., the MSF has better edge/detail preservation ability.
Another interesting change is that now the iterative combination
of the Lee and the FIRMH filter was among the worst of the
studied filters.

The results in the homogeneous regions of the test image are
coherent to those presented here. For example, the RMSE val-
ues for the homogeneous regions of the test image are 4.525,
1.960, 1.644, 1.366, 7.202, 1.192, 1.861, and 1.159 for VMF
with L2

2 and L1 norms, VATMF+VMF with L2
2, L2

2 and L1, L1

norms, LEE+FIRMH, ALPQF+FIRMH, MSF, and vector DW
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Figure 2. Real RGB color image “Mandrill”: (a) corrupted (for every component) by additive Gaussian noise with σ2=100 and
impulsive “salt and pepper” noise (Pi=0.03); (b) the output of the 5x5 MSF.

MTM filter, respectively. As can be seen, the robustness of the
MSF and, especially, the iterative combination of the Lee and
the FIRMH filter is rather poor. The adaptive combination of the
VATMF and the VMF with L1-norm, on the other hand, gives
rather good results also in the case of spike presence.

The visual evaluation of the test images confirms the conclu-
sions drawn above. As can be seen from Fig. 1c, the modified
sigma filter provides very good edge preservation but fails to
remove all of the spikes. The output of the vector DW MTM
filter in Fig. 1d also seems to be a good trade-off between the
detail preservation and spike removal.

A noisy “Mandrill” corrupted by Gaussian and impulsive noise
is shown in Fig. 2a. As can be seen from Fig. 2b, the modified
sigma filter produces now visually good quality. It is interesting
that in this case the best detail-preserving component filters (the
modified sigma filter and the iterative combination of the Lee
and the FIRMH filter) outperform the vector DW MTM filter
according to all quantitative criteria. For example, the RMSEs
of the MSF, the iterative LEE+FIRMH, and the vector DW
MTM filter are 12.0, 12.8, and 19.0, respectively. The large
number of small details in the image “Mandrill” explains this
fact as the vector DW MTM filter smears those details heavily.

5. SUMMARY
In this paper the performance of several recently introduced
nonlinear filters was studied in the context of color image proc-
essing. It was shown through experiments that some of the com-
ponent filters performed so well that they outperformed all but
one of the studied vector filters. Moreover, with the modified
sigma filter the results were even so promising that it motivates
us to design next a modified vector sigma filter based on the
approach similar to that one used in the modification of the
scalar valued sigma filter.
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