
ABSTRACT

In this paper, the compactly supported orthonormal
symmetrical wavelets is used to estimate non-uniformly
sampled and non-gaussian noise corrupted load
consumption signals for the purpose of load forecasting in
a typical electrical utility network.  Power load forecasting
is an important function of utility management and present
methods invariably rely heavily on past historical load
curves which are collected from the grid via various
monitors placed at several nodes.  Wavelet technology is
proposed in this paper to recover irregularly sampled data,
for denoising, compression and subsequent extraction of
evolutionary trends in the signal in various time windows.
Simple algorithms are outlined for each stage in a modular
load signal analysis scheme.

Keywords:- Wavelets, Multi resolution analysis, Load
forecasting, Power system analysis

1. INTRODUCTION

Wavelet transforms is a relatively new mathematical tool
that has been the target of rich exploitation in many fields
including such varied areas like seismic studies, image
compression, signal processing processes and mechanical
vibrations.  The flexible time-scale representations of
wavelet transforms has positioned it in many applications
that traditionally used modified forms of Fourier
Transforms (FT) like Short Time FT (STFT) and the
Gabor Transforms.  Its rich temporal content and
frequency isolation features has contributed to the
successful results obtained by the application of wavelet
transforms in the area of power systems analysis.

The power utility industry is currently undergoing many
profound changes due to the deregulation of the utility
industry.  Consumption pattern recognition and prediction
are becoming very important functions to a utility
company as it is needed to support management decisions
from output and maintenance scheduling to investment
planning.

In a highly integrated and interconnected utility network
or power grid, many monitors are placed at each node to
monitor power system variables.  Such signals are very
vulnerable to high tension hum and electromagnetic noise.
The correlation of these signals from various parts of a
system would contain copious amount of noise.  The
nature of these signals is also unique in that they might
contain a very wide range of frequencies and harmonics.
These range from the extremely long wavelengths like
trends from a weekly cyclical pattern of power usage to
very high frequency transients caused by random events
like lightning strikes, switching and other phenomena.
Such higher-order harmonic contents are non-stationary
and non-gaussian.  Data collected are also prone to
malfunctions of monitoring devices.  This results in data-
dropouts and non-uniformly sampled data sets.  Recovery
of such irregularly sampled data is thus a challenge.  [1]

As large amounts of historical load patterns are needed in
a typical load forecasting algorithm, even low sampling
rates of 1 sample per minute generates a huge amount of
data.  Denoising and compression is thus desired.

To facilitate accurate load-flow analysis, a robust signal
recovery, noise filtering, compression and trend analysis
algorithm must be utilized to enable eventual automation
of the analysis of large volumes of  data generated by the
monitoring and recording of load-flow consumption
readings by any particular system.

Currently, several forecasting schemes utilize Artificial
Intelligence (AI) methods like ANN and GA to perform
load forecasting tasks.  The common problem with such a
method is that an AI scheme is only as intelligent as the
program that trains it.  This in turns depends heavily on
the reliability of the training data collected.  If such
training data is in the first place corrupted by noise, it
would mean that pre-processing of such data would be
necessary.  All these add to the implementation cost and
set-up time.  These includes the development and testing
of the network topology, the collection of training data,
pre-processing of such data, actual training and
reconfiguration (if necessary) and subsequent re-training.
Such a system when finally implemented is not portable as
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different utility networks have unique consumer patterns,
holidays and weather conditions. [2]

A modular approach to the system design of such an
analysis scheme is taken and schematically outlined in
fig.1.  This paper seeks to demonstrate the versatility and
prowess of the symlet wavelet in application of the
scheme.

2.  WAVELET TRANSFORMS

The theory of wavelets is an involved one.  There is no
space here for such a discourse, thus the reader is directed
to references [3,4,5].  For notational consistency, the
discrete wavelet transform is outlined briefly:-

If a function f(t) resides in the Hilbert space Vo, where Vo

is spanned by the orthogonal set of basis functions
{Φ(t-n)}, then f(t) can be expressed as:-

To form a Multi-resolution analysis (MRA), we have a
series of nested subspaces Vj+1 ⊂Vj where Vj+1=Vj⊕Wj.

Vj is spanned by the basis functions {Φ(t/2j  −n)} and Wj

is spanned by the basis functions {ψ(t/2j  −n)}.  In this
case,  f(t) can be decomposed to an arbitrary resolution
level J as below:-

3.  APPLICATIONS

3.1 Recovery of Irregularly Sampled Data

Inspired by the work of Ford and Etter [6], we apply their
Multiresolutional Basis Fitting Reconstruction (MBFR)
algorithm to load consumption signals.  A brief theoretical
development is outlined below:-

If we want M uniformly distributed samples of a discrete
signal but have only P<M samples of f on a non--
uniformly sampled grid, the signal at hand can be written:

It is desired that load points missing due to monitoring
failure be postulated based on the rest of the signal in a
“consistent” way.  Assuming the non-uniformly sampled
signal is undersampled with respect to the Nyquist
frequency of the complete, uniformly sampled signal and
the interpolation must preserve the frequency content, we
start by viewing the sampling grid given by the finest
resolution level desired.  A vector system of equations for
any resolution level J ≥ 1 is obtained as below:-

where G is the matrix of shifts of the scaling function
samples at level J associated with time index tk of each
sample.  H is the matrix of the shifts of the wavelet at
each level  j.  The wavelet coefficients for the signal at the
highest resolution levels cannot be obtained as not all of
the samples on the desired grid is available.  The signal
can however be approximated by its low-frequency
components, temporarily ignoring the HF terms.  We can
thus estimate (4) without the second term and solve the
system of equations in a least-squares sense for estimates
of the low frequency scaling function coefficients.  The
support of the scaling function doubles for each
successively coarser resolution thus J is the minimum
resolution level for which the system is over-determined.
The low frequency estimates of   f is thus given as:-

where G is the matrix of shifts of the scaling function at
level J at all integral shifts [0….M-1].  The error signal at
each available signal is thus:-

Fig 1: Block diagram of load analysis scheme.
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e0 consists of the frequencies too fine to be represented by
the scaling function and can be approximated by its next-
finer frequency components represented by the lowest
frequency band of the wavelet portion of the
decomposition given by (2).

The number of wavelet coefficients at level J is
approximately the same as the number of scaling function
coefficients, thus (6) is also an overdetermined system
which can be solved similarly for an estimate of the
coefficients dJ   We can then find the first refinement of
the estimate at every point on the even grid as follows:-

where HJ is the matrix of shifts of the wavelet at level J
at all integral shifts [0…M-1].

From the given non-uniformly sampled data set, there will
be sections of the irregularly spaced signal that are
densely sampled such that we can solve locally for the
difference signal at the resolution level J-1.  The
difference signal in those sections can thus be created:-

This is then solved in the least-squares fashion again for
these sections.  The process can then be repeated until the
finest possible resolution level is reached.

3.2 Denoising and Compression

Wavelet denoising of noisy signals is straightforward.
Various methods have been proposed differing usually in
the way the threshold is selected and the measure of
information and entropy.  Wavelet based denoising can be
simply expressed as a three step procedure:-
• Wavelet decomposition
• Thresholding of details coefficients based on some

criterion
• Reconstruction of thresholded coefficients.

Compression schemes are very similar to denoising
schemes except that soft thresholding or averaging is
usually done as opposed to hard thresholding in denoising
algorithms where certain values are set to absolute
zero.[7]

Denoising and compression in this case is achieved
inherently in the algorithm.  From (8) we can see that we
try to minimize e0 which represents the error in
approximation.  Assuming actual fs contains noise which
is non-gaussian and made up of very high frequency
transients (typical of the signal at hand).  These will not be
recovered by the algorithm if the noise frequency is higher
than what the scaling functions can isolate at level J.

Thus, by careful choice of the scaling function and the
value of  {min (J)}, noise reduction can be achieved.  It
can be shown that noise frequencies that fall below the
threshold and gets recovered should be taken as
information bearing. [8]  As there are no existing noise
models in load consumption signals, these assumptions
have to be specified.

It can also be shown that compression is realised and the
compression ratio approaches M/2min(J) as M becomes
large where min(J) is the finest resolution level used in
the algorithm.

We have chosen the use of a wavelets based MRA
technique over more established methods like polynomial
spline or Fourier methods as it affords a richer detailed
content where sampling is denser whilst still allowing for
global trends to be represented throughout the signal.  The
wavelet based MRA technique also allows for time-
varying signals (and hence real-time analysis) while
supporting the representation of trends at varying scales.
This is a very important feature especially in the analysis
of power consumption signals for forecasting as the
capability of forecasting in varying time frames is desired.

The Symlets family of wavelets [9] are chosen because
they are smooth and near-to symmetrical functions,
making it very suitable for recovery of non-uniformly
undersampled data.  They possess the most vanishing
moments for a given support width.  This means that a
zero coefficient is obtained for derivatives of the signal of
the order upto the number of vanishing moments.  This is
intuitively appealing to compression as it derives the most
zeros  The Order 8 Symlets used here is compactly
supported on a width of 15 and has a corresponding filter
length of 16 with 8 vanishing moments and are the most
symmetrical of popularly used wavelets.  The Symlet8 is
also orthogonal and biorthogonal.  These features make it
a good candidate as a denoising tool and trend evolution
extraction apparatus for the expected signal features to be
encountered in this scheme.

4.  INITIAL TRIALS

We use a short sample of 60 minutes during a busy lunch
hour at an urban area.  The original signal (fig.2a ) is
sampled at a typical 1 minute interval.  Figure 2b shows
20 irregularly spaced samples obtained and used in this
study.  This represents a very high dropout rate of 66.67%.
We apply the recovery algorithm outlined above and fig.
2c shows the recovered signal superimposed on the
available samples.  It is visually discernible that the
overall trend of the signal is preserved together with some
detailed features where the sample is available.  Figure 2d
shows the denoised and compressed signal using the
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symlet8 wavelet.  The error signal, taken as the difference
between original 60-sample signal and the final
denoised/compressed signal is plotted in fig. 2e.  We
define a measure of error using the Nominal Mean Square
Error as:

The NMSE in this sample study is 5.536 × 10-2 or 5.5%
which is good considering the dropout rate is 66.67%.

5.  CONCLUSION

Wavelet applications in electrical load consumption
forecasting signal analysis tool are presented.  The scheme
builds upon a published wavelet multi-resolutional basis
fitting reconstruction algorithm to build in denoising and
enhanced compression rates for the recovery and

processing of electrical load consumption signal collected
over the power network.  Initial results have pointed to the
immense potential for this scheme to be used in
preprocessing of irregularly sampled signals to form an
integral part of input data into a load forecasting system.
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Fig 2a-e: Initial study using a 60-sample signal
with a dropout of 67%.


