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ABSTRACT
A fundamental module in modern video coders is the frame
predictor which provides the data needed to code frames
from previous ones. In PCA-based predictors, the frames are
represented as their projection in a proper basis (eigenspace)
obtained from the convariance matrix.

In this paper, we investigate the performance of several
algorithms in order to obtain an adequate eigenspace.
Experiment results show that the best performance is
obtained when the eigenspace is updated taking into account
the non-stationary nature of face images. The technique
offers a competitive alternative to P-predictive and B-
predictive frames.

1. INTRODUCTION

Principal Component Analysis (PCA) is a well-known
statistical processing technique that allows to reduce the
redundancy of the input data by projecting the data over
a proper basis. In particular, PCA has proved to be a
powerful technique for representing a set of face images
using a reduced number of coefficients. Each face image
in the training set is represented exactly in terms of a linear
combination of the eigenfaces calculated by identifying the
eigenvectors of the covariance matrix.

Recently, Piqué and Torres [6] have also argued that PCA
is a promising technique for coding faces in video sequences
and offers a very competitive alternative to B-predictive
frames. The idea is to predict the frame by calculating
the projection into the eigenspace calculated from previous
faces. The coefficients are therefore coded and transmitted.
Full faces are only coded when a poor representation is
obtained and, in this case, the eigenspace is updated using
the algorithm proposed in [1].

We focus our attention on two aspects of the coding
scheme proposed in [6]: the update algorithm and the
compression degree. We will prove that the eigenspace
update algorithm proposed in [5] is able to predict the frames
by using less coefficients than the algorithm used in [6]. As a
result, a higher compression is achieved when this algorithm
is included in the face coding scheme.

This paper is structured as follows. Section 2 shows the
video coding scheme and presents a short revision of the
two eigenspace update algorithms considered in the paper.
Section 3 provides the results of several simulations which
allow to compare the performance of the update algorithms
when they are used to predict faces in a video sequence.
Finally, Section 4 is devoted to the conclusions.
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Figure 1: Face coding scheme.

2. FACE CODING SCHEME

We consider the video coding scheme shown in Figure
1 which is formed by a frame predictor followed by a
image/coefficients coder. The 2-D image of M pixels is
treated as an 1-D vector of dimension denoted by xi, i =
1,2, ... The first image, x1 is full coded and it is used to obtain
the first eigenface, u1.

The other frames in the sequence, xi, i = 2, ..., are
projected over the eigenspace formed by the k eigenvectors,
u1, ...,uk, obtained from previous frames. That is, for the i-th
image, we compute k coefficients given by

wpi = uT
pxi, p = 1,2, ...,k (1)

Note that to evaluate the expression (1) requires M
multiplications and M−1 additions, i.e., k× (M +(M−1))
flops. In [6], the number k is equal to the number of
eigenvectors computed from the data. However, it is well
known that PCA packs the maximum average energy in few
eigenvalues. For this reason, we propose to retain only the
eigenvectors corresponding to the k largest eigenvalues. This
retained eigenvectors are afterwards used to calculate (1).

In the next step, the image is reconstructed from the
retained coefficients and the Mean Square Error (MSE) is
calculated,

e = E[(xi− x̂i)
2] (2)



where x̂i is the predicted frame

x̂i =
k

å
p=1

wpiup (3)

If the frame has been predicted with enough quality (e ≤
s ), only the coefficients will be coded. On the contrary,
when e > s , the image is coded as an intra-frame and the
eigenspace is updated. The parameter s is determined taking
into account the desired PSNR (Peak Signal Noise Ratio).

Since the frames are dynamically captured, we are
interested in updating the eigenfaces each time a new
frame is acquired. Among the existing eigenspace update
algorithms [1, 2, 4, 5], we have studied the performance
of the algorithm proposed by Chandrasekaran, Manjunath,
Wang, Winkler, and Zhang in [1] (henceforth CMWWZ) and
the proposed by Liu, Chen, and Thornton [5] (henceforth
LCT).

2.1 The CMWWZ algorithm

The CMWWZ algorithm computes the eigenspace by
performing the Singular Value Decomposition (SVD) on the
image matrix, instead of the covariance matrix. The set
of images Xi−1 = [x1, ...,xi−1] is represented as Xi−1 =
Ui−1∆i−1V

T
i−1 where ∆i−1 contains the eigenvalues, and

Ui−1 and Vi−1 are the eigenvector matrices. For a new
captured image xi, the SVD is recalculated

[Ui−1∆i−1V
T
i−1xi] = Ui∆iV

T
i (4)

The size of the matrices can be reduced by taking only
the largest eigenvalues and the corresponding eigenvectors.
Figure 2 contains more details of the algorithm. Note also
that we do not include the steps related with matrix V
because it is not used in the face coder scheme presented in
Section 2.

Given the frame xi, the eigenvector matrix Uc and the
eigenvalues matrix ∆c, compute
1. y←UT

c xi

2. a′← xi−Ucy

3. a← a
′

‖a′‖

4. A←
[

∆c y

0 aT xi

]

5. Compute the eigenvectors, U′, and eigenvalues, ∆, of A.
6. U← [Uc a]U′.
7. Let Uc equal the first k columns of U.
8. Let ∆c equal the leading k× k principal submatrix of ∆

.

Figure 2: The CMWWZ algorithm.

2.2 The LCT algorithm

The LCT algorithm is based on estimating the covariance
matrix taking into account the variations on the first and
second-order statistics of the image signals. The mean and
the covariance are estimated using the following expressions

m̂i = amm̂i−1 +(1−am)xi

Ĉi = avĈi−1 +(1−av)(xi−m̂i)(xi−m̂i)
T (5)

where am and av are the decay parameters. Since the matrix
Ĉi is calculated at time i, we can perform the SVD to obtain
the eigenvectors. Then, we keep only k eigenvectors. Note
as well that the covariance matrix Ĉi−1 can be approximated
by using the k retained eigenvectors (and eigenvalues) at time
i−1, i.e.,

Ĉi ≈ avUi−1Di−1U
T
i−1 +(1−av)(xi−m̂i)(xi−m̂i)

T

= BiB
T
i (6)

where B = [
√

avUi−1∆
1/2
i−1

√
1−av(xi − m̂i)]. The

matrices Ui−1 and ∆i−1 contain, respectively, the k
eigenvectors and eigenvalues retained at time i− 1. Figure
3 summarizes the algorithm (the initialization step has not
been included). Note that the last step is needed because we
compute the eigenvectors of matrix A =BT

i Bi instead of (6).

Given the frame xi, the eigenvector matrix Uc, the
eigenvalues matrix ∆c and the estimated mean m compute
• m← amm+(1−am)xi

• B← [
√

avUc∆
1/2
c
√

1−av(xi−m)]

• A←BT B

• Compute the eigenvectors, U′, and eigenvalues, ∆, of A.
• Let U′c equal the first k columns of U′.
• Let ∆c equal the leading k×k principal submatrix of ∆.

• Uc←BU′c∆
− 1

2
c .

Figure 3: The LCT algorithm.

3. EXPERIMENT RESULTS

This section compares the performance of the eigenspace
update algorithms explained above to predict faces in a
video sequence. The results presented here have been
obtained using the “Miss America” video sequence formed
by frames of M = 3,072 pixels and 25 frame/sec but
similar results have been observed considering other video
sequences. As a previous step, the faces have been aligned
using the technique required in the extraction of MPEG-7
face recognition descriptors [3].

The first set of experiments is oriented to show the
importance of the decay parameter a = am = av used in
the LCT algorithm. Using a training sequence formed by
the first 10 frames of the video sequence, we have computed
the eigenspace for several values of a . The frame #11 has
been predicted from k retained eigenvectors (k = 2,3, ..,9).
Figure 4 shows the PSNR between the original frame and the
predicted one. Note that a good PSNR has been obtained
when the decay parameter is greather than 0.6. On the
contrary, a small value of a produces an important reduction
on the quality. This bad behavior is more apparent when the
number of retained eigenvectors is small.

For the case of k = 6 eigenvectors, Figure 5 shows the
PSNR obtained when 20 frames are predicted using the
initial eigenspace which has been computed from the first 10
frames. The eigenspace has not been updated for the other
frames. Once again a good prediction has been obtained
when a > 0.6. Note as well that the performance decays
for frames far to the training set.
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Figure 4: PSNR obtained by predicting the frame #11 using
k eigenvectors obtained using the LCT algorithm with decay
parameters a = am = av.
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Figure 5: PSNR obtained by predicting 20 frames from k = 6
eigenvectors obtained using the LCT algorithm.
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Figure 6: Comparison between the LCT and the CWWMZ
algorithm when the frame #11 is predicted from k
eigenvectors.

Algorithm Number of updates Coefficients
CMWWZ 47 k = 6
LCT, a = 0.9 39 k = 6
LCT 30 k = max = 1, ...,30

Table 1: Number of updates performed by the CMWWZ and
the LCT algorithms to code a video sequence of 140 frames.
Note that each update implies to transmit an intra-frame.

In the next experiment, we have compared the prediction
performance of both LCT and CMWWZ algorithms. Figure
6 shows the PSNR obtained when the frame #11 is predicted
from k eigenvectors. Note that the LCT converges faster to
the optimum value. This result is more apparent for a = 0.6.

The last experiment is oriented to show the behavior
of the video coding scheme presented above. The initial
eigenspace has been updated in order to achieve a minimum
PSNR of 30 dB (s = 65). Figure 7 shows the PSNR obtained
by predicting the 140 frames on the sequence using k = 6
eigenvectors: part (a) has been obtained using the CMWWZ
algorithm and part (b) corresponds to the LCT algorithm
with a = 0.9. We have marked the points corresponding to
intra-frame coded by using baseline JPEG with a quality of
83%. Although the achieved PSNR is similar, note that there
exists an important difference in the number of transmitted
intra-frames. From Table 1 we conclude that the CMWWZ
algorithm needs to update the eigenspace 8 times more than
the LCT algorithm.

For comparison purpose, Figure 7 (c) plots the PSNR
obtained using the LCT algorithm when k is equal to
the maximum number of eigenvectors, i.e., the number k
increases one unit at each update. In this case, any PCA
algorithm provides the same performance. Comparing this
results with the obtained for k = 6 (see also Table 1), we can
say that the LCT algorithm needs to update the eigenspace
9 times more for k = 6 than for k = max (i.e, from k = 1 to
k = 30). This increase is compensated by a reduction in the
computational cost of the frame predictor in both the coder
and the decoder size. Recall that to evaluate (1) requires
k× (M +(M−1)) flops.

Finally, Figure 8 shows the frame #81 of the video
sequence and the reconstructed frames obtained using JPEG
with a quality of 83%, the LCT algorithm with a = 0.9
and k = 6, and the CMWWZ algorithm with k = 6. It is
apparent that the best quality has been obtained using the
LCT algorithm.

4. CONCLUSIONS

This paper presents a PCA-based video coding technique
where the frames are represented as its projection in the
space formed by the eigenvectors of the covariance matrix.
Since the frames are dynamically acquired, we have used
the algorithm proposed in [5] to update the eigenspace
according to changes in the first and second-order statistics.
Comparing the simulation results with the obtained using
[1] (also used in [6]), we can say that the LCT algorithm
needs less coefficients to achieve the same PSNR (about
seven coefficients by frame). This result implies higher
compression with less computational cost.
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(b) LCT algorithm with k = 6 and a = 0.9.
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(c) LCT algorithm with k = max
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Figure 7: PSNR obtained using eigenspace update algorithms to predict 140 frames. Marked points correspond to intra-frames.
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