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ABSTRACT

Motion estimation is a key function in scan rate conversion, ad-
vanced picture quality improvement, 2D-to-3D content conversion,
and many other video processing steps. For hardware efficiency
reasons, most motion estimation implementations are block-based.
As object boundaries commonly do not coincide with block bound-
aries, artifacts may be visible at object boundaries using the block-
based approach. Motion estimation for irregular shapes, such as
image segments, can accurately track motion boundaries, but a
straightforward translation of block-based motion estimation algo-
rithms to segment-based ones leads to inefficient hardware imple-
mentations. Therefore, this paper proposes a modified segment-
based motion estimation algorithm utilizing the efficiency of block-
based processing. We demonstrates an efficient very large in-
struction word (VLIW) application-specific instruction-set proces-
sor (ASIP) implementation of this algorithm.

1. INTRODUCTION

Motion estimation is a key technology underlying many video pro-
cessing applications such as video coding [1,3], scan-rate upconver-
sion [2], motion-compensated deinterlacing [4] and 2D-to-3D video
conversion [5, 6]. Block-based motion estimation algorithms, al-
though suffering from only block-accurate motion vectors, are pop-
ular due to ease of implementation (for achieving real-time perfor-
mance) [3]. On the other hand, image segmentation is seen as a
vital ingredient for content-based video processing, for instance in
the domain of content-based retrieval (e.g. MPEG7, [1]), object
tracking [7] and 2D-to-3D video conversion [6]. Current coding
standards such as H.264 [8] use variable block sizes and shapes to,
amongst others, reduce block-related artifacts; this can be consid-
ered as an intermediate between block-based approaches and full
segment-based approaches.

Segment-based motion estimation (SBME) replaces the fixed
blocks of traditional motion estimation algorithms with segments
having arbitrary shapes and sizes. As motion vectors are now as-
signed to segments instead of blocks, it allows for motion disconti-
nuities at their true, pixel-accurate, positions in the image (see Fig-
ure 2). Segment-based approaches (e.g. [9]) have shown the poten-
tial for highly accurate motions in a benchmark test [10]. Further-
more segments, as content-dependent entities, can be tracked over
multiple frames of a video sequence. This functionality, that blocks
can not provide, is useful for temporal filtering or other multi-frame
processing.

However, from a hardware implementation point of view,
SBME has a significant disadvantage: Since segments can be of ar-
bitrary shape and size, a straightforward implementation of a SBME
algorithm will either suffer from inefficient use of data memory
bandwidth or suffer from irregular data addressing, which also re-
sults in poor bandwidth utilization of modern memories that are
optimized for burst accesses (e.g. SDRAMs). Figure 1 illustrates
this in detail. This disadvantage often precludes the use of SBME in
real-time video applications. Here, efficient memory bandwidth uti-
lization is a must because the size of frame buffers typically requires
the use of off-chip memories, which have a limited data bandwidth
compared to the processing capabilities (and thus the data band-
width requirements) of logic chips. In this paper, we propose a

SBME algorithm that applies block-based processing to calculate
segment-based motion vectors. Thus, this modified SBME algo-
rithm achieves an efficient use of data memory bandwidth, without
sacrificing the regularity of segment data addresses. Further, the
modified algorithm exhibits massive parallelism which also facil-
itates real-time implementations. The parallelism and the block-
based memory addressing are exploited by our VLIW ASIP imple-
mentation, which has several Application Specific Units (ASUs) for
accelerating inner kernels of the algorithm in a SIMD-style fashion
and for buffering blocks of data that are used multiple times, thus
reducing the bandwidth requirements of the data memory.

For SBME, we only require from the segmentation that no mo-
tion discontinuity occurs inside a segment [5, 6]. As the motion is
determined on a segment basis, this is a chicken-and-egg problem.
However, a color or luminance segmentation (see Figure 2) in gen-
eral fulfills this requirement. A vast amount of algorithms exist for
color segmentation (e.g. [11, 12]). In this paper, we focus on the
SBME algorithm itself, assuming that an appropriate segmentation
is provided by any (e.g. one of the above) segmentation algorithm.

Figure 1: Illustration of the inefficiency of SBME algorithm: If
all blocks within the bounding box are fetched for each segment
(green and red blocks for segment 1), this results in simple segment
data addresses for fetching the required blocks (and pixels) of the
segment; however, fetching of non-segment blocks (red blocks for
segment 1) results in inefficient use of the data memory bandwidth.
Alternatively, if only those blocks that are part of a segment are
fetched (green blocks for segment 1) irregularity of the segment data
addresses leads to computational overhead as well as inefficient use
of data memory bandwidth.

Figure 2: Left: Block-grid overlay of a frame in Renata video se-
quence. Right: Segmentation of the same frame. If segments in-
stead of blocks are used for motion estimation, motion boundaries
can be obtained with pixel accuracy.



The remainder of the paper is organized as follows. In Section 2
a straightforward translation from a block-based motion estimation
algorithm to a segment-based motion estimation algorithm is pre-
sented. Section 3 discusses modifications which enable efficient
hardware implementation. Section 4 shows an implementation of
the modified SBME algorithm which can also perform traditional
block-based motion estimation. We conclude in Section 5.

2. SEGMENT-BASED MOTION ESTIMATION

Motion estimation algorithms find for a given domain D such as a
block its best matching position in another (previous or next) frame
by minimizing a so-called match penalty (MP):

m, = argminmeMMP(m) = %"Dw(p)u1 (p+m)—Iy(p)|, (1)
P

where m is a motion vector (MV), M the set of MVs which are
evaluated, p denotes pixels, w is a weight for each pixel, / is the
current frame and /; is the frame to be matched to. Different mo-
tion estimation algorithms differ in the choices of M (e.g., a full
search algorithm tests all MVs in a certain range), the weights w
(e.g., skipping every second pixel for efficiency reasons) and the
minimization strategy.

A very successful motion estimator is the 3D recursive search
(3DRS) block-based motion estimation algorithm [2, 13], which is
fast, accurate, proven in hardware and currently “best in class” for
applications where the true motion field is required. Its main distin-
guishing feature lies in the choice for M. The blocks are processed
in scan-line order, and for each block under consideration M is very
limited: Two MVs from blocks in the neighbourhood which already
have been processed for the current frame (for spatial smoothness),
one MV of the previous frame from a block in the neighbourhood
which has not been processed yet (for temporal smoothness), m =0
(to handle the ‘no-motion’ case efficiently) and two MVs which are
equal to one of the previously mentioned MVs with a small random
perturbation (for handling motion changes).

A straightforward SBME algorithm [6] directly translates this
philosophy to segments, where the domain D now consists of all
pixels in a segment instead of all pixels in a block, and the set of
candidates M consists of M Vs of neighbouring segments. However,
it suffers from the inefficiencies discussed in the Introduction and
shown in Figure 1. Further, while in the 3DRS algorithm each block
is visited only once, for accuracy reasons it may be beneficial to
do multiple iterations over all segments. The total computational
effort for SBME is proportional to the number of iterations times
the number of candidate vectors per segment.

Key design choices for the SBME algorithm are: Which neigh-
bours should provide candidate vectors, and how many neighbours
should be used? Note that, unlike the block-based case, there is
no a-priori knowledge of the number of neighbouring segments and
their geometry. To obtain the most relevant neighbours - the ones
most likely to provide a suitable MV - the neighbours are sorted
first based on color difference to the current segment, as similarly
colored segments are more likely to belong to the same object and
hence have a similar motion. The dashed lines in Figure 3 show
the typical convergence behaviour as a function of the number of
candidates for different video sequences; it implies that selecting
maximal 5 neighbours is sufficient. Statistics on many sequences
show that this corresponds to the average number of neighbours per
segment, using our segmentation method [6]. An impression of the
sequences and their segmentation is shown in Figure 4.

The SBME algorithm then becomes:

o Step 1 (choice of candidate MV’s): select candidate MVs for
each segment of the current frame;

o Step 2 (motion estimation kernel): evaluate MP (see equa-
tion (1)) for each segment and for each candidate MV of a seg-
ment;

o Step 3 (convergence check): perform global convergence
check; go to Step 1 if convergence fails; otherwise, provide the
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Figure 3: Required average number of iterations until convergence
for 30 frames of Renata, Obst and Flikken sequences (left to right)
as function of used number of neighbours for the parallel SBME
algorithm (solid line) compared to the sequential one (dashed line).
Due to the simple constant translational motion in the Renata se-
quence, convergence is fast.

Figure 4: Example frames of the sequences and their segmentation
which are referred to in this paper (Renata, Obst and Flikken).

best matching MV per segment. Convergence has been reached
when the average match penalty for all segments does not im-
prove anymore. In practice the number of iterations should be
bounded to a maximum in order to guarantee real-time perfor-
mance.

In Step 1, the candidate MVs are: The current segment MV, the
current segment MV with a random update; and 5 neighbouring
segment MVs with 50% of these vectors having random updates. In
the first iteration, also m = 0 is tried.

3. MODIFICATIONS FOR IMPLEMENTATION
EFFICIENCY

This section discusses two modifications which, together, allow for
an efficient hardware implementation: Segment-based parallelliza-
tion and block-based computations. They allow to address the inef-
ficient use of data memory bandwidth explained in the Introduction.

Parallelization. One of the key features of the SBME algo-
rithm is that, as in the original 3DRS algorithm, the chosen best
candidate MV for the segment under consideration is a candidate
MV for some neighbouring segments in the same iteration. This
key feature enables the convergence of this algorithm in relatively
few iterations (typically 4-6 iterations; see Figure 3). However, it
also makes the algorithm inherently sequential. Often, parallel im-
plementations are a must to meet real-time requirements in video
applications. For the block-based 3DRS this is not a major issue,
especially not in a streaming environment, but due to the multiple
iterations for SBME and the irregular shape of the segments this
issue needs to be addressed here.

To enable parallelization, we do not take the MVs of neigh-
bouring segments from the current iteration as candidates, but from
the previous iteration. Since this removes the intra-iteration depen-
dency between segments of a frame, parallel evaluation of the match
penalties for all segments is possible. Figure 3 shows the conver-
gence behaviour for the parallel approach compared to the sequen-
tial approach discussed previously. The number of iterations until
convergence increases by 1 or 2, but the number of candidate MVs
per segment need not be increased. Because the modified algorithm
is easily parallelizable (up to all segments at once), a significant
gain of the overall computation time can be achieved. For example,
the use of 4 processing elements already leads to a gain of roughly
a factor of 3 compared to the original SBME algorithm (the other
factor of 1.25 being lost in the additional required iterations).



Efficient use of data memory bandwidth and regular ad-
dressing. As mentioned before, this is a main requirement for effi-
cient hardware implementation. Note that in each iteration, for all
segments and all their candidate MVs the match penalty (1) needs
to be evaluated. As there are no intra-frame dependencies in the
choice of the MVs for a segment, the order in which the absolute
difference of pixel pairs is computed is irrelevant. This allows the
use of block-based kernels for SBME as follows: We evaluate all
pixels of each block of a frame and evaluate all blocks successively.
This approach is typical to conventional block-based motion esti-
mation implementations. However, in this case a single block B
may overlay multiple segments S|, S,, ..., Sy. Thus, for pixels in B
belonging to S|, different candidate MVs may have to be evaluated
than for pixels belonging to S,. This is, however, straightforwardly
possible by evaluating expression (1) n times per block with every
time a different set of candidate MVs, and setting weight w(p) = 0
the i’th time for all pixels not belonging to segment S;. Again, since
processing each block in an iteration is independent of the results of
other blocks, massively parallel implementations can be realized.
The results of the MP evaluation for all sub-segments (the part of a
segment in a single block) are accumulated for each candidate MV
and for each segment of the frame, as segments typically overlay
multiple blocks. With this approach, all pixels belonging to a block
are effectively used; the price for this is an accumulation buffer for
the MP for all candidate vectors of all segments.

Since processing resources are typically restricted, we need to
make sure that there is a reasonable upper bound to », the number
of times a block is processed (e.g., 4 times). As the upper bound of
n for a block can be quite high (worst case: number of pixels in the
block), we have to do a pre-processing step:

o Step 0 (segmentation refinement): lay a block (say, 16-by-16
pixels) grid on the segmented current video frame (see Fig-
ure 1); ensure that each block contains contributions from not
more than four segments (note that this depends on the chosen
block-size and segmentation method).

In practice, we select for each block B those four segments which
have the largest sub-segments within B, and set w(p) = 0 for the
pixels of all other segments in B. While this may seem a significant
modification, analyzing many segmented frames revealed however
that in our implementation, few blocks in a frame have contributions
from more than four segments; on average 0.2-0.3% of pixels are
excluded.

The above steps of the modified SBME algorithm ensure the
following:

e all pixels of a block accessed from the data memory are used by
the motion estimation process and hence this scheme ensures
efficient use of data memory bandwidth;

e accesses to the data memory are block oriented, again ensur-
ing efficient usage of the bandwidth of this (typically off-chip)
memory.

The penalty of more iterations to convergence for the modified
SBME algorithm is far out-weighed by the benefits of the modi-
fications. In the following section we present a processor imple-
mentation of the modified SBME algorithm.

4. IMPLEMENTATION

The VLIW ASIP. Figure 5 depicts an application specific
instruction-set processor (ASIP) based on a very large instruction
word (VLIW) processor architecture template. This processor im-
plements the modified SBME algorithm. Apart from several gen-
eral purpose functional units like an arithmetic-logic-unit (ALU),
a multiplier (MULT) and an address-computation-unit (ACU), this
ASIP also contains a number of so-called Application Specific
Units (ASUs), tailored for accelerating the inner kernels of video
signal processing algorithms in general, and SBME in particular.
For SBME, we use a processing block size of 16x 16 pixels, which
we refer to as macro-blocks (MB) to avoid confusion with the 8 x 8
blocks stored in memory. However, other block sizes are possible
as well. The granularity for synchronisation between the system

controller and the ASIP coprocessor has been chosen as one line of
MBs, which is a good trade-off between memory sizes and synchro-
nization overhead.
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Figure 5: An application specific instruction-set processor for
SBME. See main text for details and abbreviations.

We discuss the implementation and the ASUs based on the fol-
lowing pseudo code of the modified SBME algorithm:

For each block of block line:
Fill macroblock cache
Fill MB wcache
Fill LO cache with complete search-area
For all sub-segments:
For all vectors:
Read candidate vector
Initialize Application Specific Units
Read first block line from LO cache
Supply first block line to BI
For 16 block lines:
Read block line from macroblock cache : R
Read weights from MB wcache c W
Read block line from LO cache
Supply block line from LO cache to BI
Read interpolated line from BI ;P
Supply results R, W, P to SAD unit
Read block-SAD result from SAD unit
Store block-SAD result and accumulated weight

For clarity and compactness of exposure, bilinear interpolation
(BI) is not discussed in this paper.

The outer loop of the pseudo-code iterates over all the macro-
blocks in a line. Within this loop body, all three caches (LO cache,
MB cache and MB wcache) are filled from the off-chip memory.
All inner loops re-use the same cached data. The loop over all vec-
tors (maximum 8 in our implementation) is similar to block-based
algorithms. We now discuss the specific ASUs:

Macroblock cache (MB cache): This cache stores the pixel data
of the macro-block of 16 x 16 pixels from the current frame ({,).

Macroblock weight cache (MB wcache): This block is very sim-
ilar to the MB cache. It stores sub-segment mask data and pixel
weight data for the current MB. The sub-segment mask data consists
of 2 bits per pixel, indicating to which of the up to 4 sub-segments
within the MB that pixel belongs. During the loop which iterates
over the (up to) 4 sub-segments within a macro-block, the current
sub-segment ID (cssid) is fed to the MB wcache to generate the bi-
nary mask w, . required by the SAD unit. The pixel weight data
w(p) is currently not used, but can be handled transparently through
the MB wcache as well.

Level 0 cache (L0 cache): This cache stores the entire search
area required by the algorithm. The size of the search area depends
on the maximum allowed length of the MVs. Its purpose is to al-
low a line, consisting of 16 pixels, at an arbitrary position within
the search area, to be retrieved very efficiently without the need to
access the data memory. The current LO cache size is limited to
48x 32 pixels.

Sum of Absolute Differences (SAD): This ASU calculates the
sum of absolute differences! of up to 16 pixels in parallel. The cor-
responding pixels are provided by the MB cache and the LO cache,
respectively. What separates our SAD unit from designs for block-
based algorithms, is that it has a third input which is supplied by the
MB wcache. It is used to specify which pixels are part of the current

'We use the term SAD to denote any sum of absolute differences of pixel
values. The term MP is reserved for the SAD of a complete segment.
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Figure 6: Flow chart of the pixel processing performed by the
ASUs. Bilinear interpolation is not discussed in this paper and can
be considered a ‘no-operation’ here.

sub-segment (indicated by cssid), by means of a binary maskw, ..
By sequentially processing consecutive lines, the SAD for an entire
macro-block is calculated:

15 15

SAD(cssid) = Z Z |1y (6, 0) = I (e )| w0 (6, 3 essid)
y=0x=0

Figure 6 depicts the flow of data between the various ASUs. All
ASUs operate with a throughput of 16 pixels per cycle, but because
of pipelining (both inside and between ASUs) the loop takes slightly
more than 16 cycles to execute. Note that when bilinear interpola-
tion (BI) is added, it will process the output of the LO cache before
it is sent to the SAD unit. This increases the latency by two cycles
and requires an increase of the line size in the LO cache to 17 pix-
els. Once Bl is included, MVs can be calculated with quarter-pixel
accuracy instead of the current pixel accuracy.

After the SAD has been calculated in the inner loop, it is writ-
ten into buffers to be sent back to the system controller. Note that
selection of the best candidate cannot be performed by the ASIP it-
self, because the best candidate for a sub-segment is not necessarily
the best candidate for the entire segment. The SADs of all sub-
segments first have to be integrated by the system controller, to get
the MPs for the entire segment. These MPs are then used to select
the best candidate for the entire segment.

Results. The SBME ASIP was designed using the A|RT
toolset, now marketed as OptimoDE by ARM Ltd. [14]. Table 1
summarizes the synthesis results of the design. For this simulation,
a CIF input sequence was used. The maximum number of iterations
per frame was set to 12. Caching was applied to exclude candidate
MVs that had already been tried in previous iterations. This reduced
the amount of calculations required by approximately 75%.

IC technology: 0.18um
Conditions: 25°C, 1.8V
Area: 2.48 mm?
Clock frequency: 100 MHz
Power: 70.5 mW

Execution time: 55 ms/frame

Table 1: Synthesis and netlist-level power simulation results.

From these results we can conclude that the current design is ca-
pable of handling CIF video sequences at approximately 18 frames
per second. With a number of additional optimizations we expect
this can be improved to about 60 frames per second.

5. CONCLUSIONS

Motion estimation is a key function in many video applications.
Unlike the block-based motion-estimation algorithm where the mo-
tion vectors are block-accurate, segment-based motion estimation
(SBME) provides higher accuracy (especially at object/occlusion
boundaries), but the irregular shapes and sizes of segments are dis-
advantageous for a hardware implementation.

In this paper, we have proposed a modified SBME algorithm
that results in an efficient use of data memory bandwidth and
exhibits massive parallelism which is essential for real-time im-
plementations. Furthermore, we presented an implementation of
the modified SBME algorithm, which can also perform traditional
block-based motion estimation. This implementation is based on
a VLIW ASIP, that contains several Application Specific Units to
accelerate inner kernels of the modified SBME algorithm, and re-
duce the data bandwidth requirements of the (typically off-chip)
data memory used for frame buffers.

This indicates that with slight modifications, an irregular and
seemingly hardware-unfriendly algorithm such as SBME can still
be implemented efficiently, by making use of a block-based en-
gine. As such, the hardware implementability does not have to be a
show-stopper for the introduction of advanced algorithms, such as
advanced image enhancement and 2D-to-3D conversion algorithms,
to mainstream video processing.
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