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ABSTRACT

In this paper, we present an approach for automatic clustering of
multi-dimensional dynamic trajectories corresponding to speech
data that is based on Trajectory Clustering (TC). TC uses the Expec-
tation Maximization algorithm (EM) for clustering with the mix-
tures of Multiple Linear Regression model. Since the initial val-
ues of the model parameters are critical to the clustering perfor-
mance, a successive splitting algorithm was developed to incremen-
tally increase the number of clusters. We define multipath HMM
topologies using the trajectory clusters found. Based on the hy-
pothesis that pronunciation variation in speech is more systematic
at a unit level that is longer than a phone, we used modelling units
defined in terms of Head-Body-Tail (HBT) models for connected
digit recognition for the Dutch language. It appears that multi-
path HMM topologies based on TC clusters outperform multi-path
HMM topologies based on prior knowledge about speaker gender
and speaking rate.

1. INTRODUCTION

Over the past two decades, hidden Markov models (HMMs) have
been the dominant methodology for modelling speech acoustics in
automatic speech recognition. It is known, however, that the high
degree of articulatory variation that HMMs must account for gives
rise to what is known as the trajectory folding phenomenon[1]. Un-
der the first order Markov assumption that adjacent acoustic obser-
vation vectors are independent, there is little means to impose con-
tinuity constraints on acoustic observation vector sequences during
recognition, beyond inclusion of delta and delta-delta coefficients in
the observation vectors. As a result, an actual observation sequence
can be recognized with high probability as a sequence of densities
that is physically implausible, which, in turn, increases the proba-
bility of recognition errors.

To overcome the adverse effect of trajectory folding, previous
research investigated multipath HMMs [2, 3, 4]. A multipath HMM
approach can alleviate the effect of trajectory folding if it can be
assumed that variations in acoustic observation sequences are sys-
tematic, and can be modelled separately. In a multipath HMM,
observation sequences are explicitly disallowed to switch between
parallel HMM paths. In [2] it was assumed that speaker gender
and speed of articulation cause systematic variation. These fea-
tures were used successfully to train independent paths in HMMs.
However, such a heuristically inspired classification approach can-
not discover systematic variation that is not related to meta-data
(such as gender) or to characteristics of the speech that are easily
established in the training database (e.g., speaking rate). For this
reason, an automatic method for discovering systematic variation
due to pronunciation differences directly from acoustic observation
sequences is a promising approach to multipath HMM topology
design. [3] demonstrated an automatic detection method for sys-
tematic variation in the context of continuous digit recognition, in
which the training tokens were clustered based on a Dynamic Pro-
gramming approach. In [4], training tokens were clustered based
on forced alignment scores instead of directly using the acoustic
feature vectors. Both of these automatic detection methods were
shown to be successful for automatic digit recognition.

In our work, we are developing another automatic detection ap-
proach (called Trajectory Clustering based HMMs, TCHMMs) for
developing multipath HMM topologies. In our approach, training
tokens are clustered into distinct groups in terms of polynomial tra-
jectories in acoustic feature space. In [5] the idea of polynomial fea-
ture trajectory has been applied to vowel classification, with limited
success. The best result amounted to 66% correct classification of
vowels in the TIMIT database. In [5], a mixture model for trajecto-
ries was trained that is similar to a conventional vector-based Gaus-
sian mixture model. The vector-based Gaussian mixture model has
been widely used for probabilistic clustering, and the mixture model
for trajectories can also be extended in this manner, which leads to
the Trajectory Clustering Model proposed in [6]. In this approach,
a trajectory cluster is modelled as a prototype polynomial function,
and the variability around the prototype is described as a mixture of
Gaussians.

Most conventional HMM based systems for automatic speech
recognition are based on a description of speech as a sequence of
phones. This choice for short duration units imposes an unrealistic
constraint, because only correlation of speech as short as 30-40 ms
duration can be modeled. However, recent research shows that ar-
ticulation variation in speech is more appropriately described at the
level of the syllable than at the level of the phone [7]. Systematic
variation with a typical time span as long as a syllable is difficult to
describe in terms of a sequence of (context dependent) phones. For
this reason, we investigate the use of Trajectory Clustering HMMs
(TCHMMs) that are based on longer length modelling units. For
this paper, we studied TCHMMs based on Head-Body-Tail (HBT)
model units (cf. [8]) for a connected digit recognition task.

Trajectory clustering in a high dimensional feature space is far
from trivial. Our first experiments indicated that clustering can be
impeded by the large degree of overlap in some of the features, even
if the classes are clearly distinct for other features. In this paper we
describe the method we used to tackle this problem. Furthermore,
we studied how well automatically derived cluster assignment cor-
respond to a priori classification for male and female and long and
short utterances. Finally, we compared the recognition results for
TCHMMs to a priori knowledge based Multipath models.

This paper is further organized as follows. Section 2 describes
the theoretical framework of the Trajectory Clustering Model. In
Section 3, the experimental set-up is described that we used to arrive
at different Multipath HMM topologies for connected Dutch digit
recognition. Section 4 discusses our results. Finally, in Section 5,
we summarise our main conclusions.

2. TRAJECTORY CLUSTERING MODEL
2.1 Mixture of Regression Model

The underlying idea of speech trajectory clustering is the Mixture of
Regression Model [6]. In this model, the speech realizations are as-
sumed to be drawn from several components of mixture Gaussians,
where the mean of each component density is a ploynomial function
of time. For speech realization j with the length of N, the matrix
form of the regression equation for component k in D dimensional
acoustic feature space can be written as
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Y is the feature vector matrix, which is N; x D; X is an
N; x (p+1) matrix whose second column contains the frame num-
bers corresponding to the feature vector in Y j, and p is the highest
order of the regression model, in our case p = 3; P is a matrix of
regression coefficients; Ey is N; X D residual error matrix which
is assumed to be zero-mean multivariate Gaussian with covariance
matrix 3.

With the standard regression assumption that the error is con-
ditionally independent at different x points along the trajectory, the
probability that a complete trajectory is generated by component k
is:

YJ|x]79k ka YJ |x] ) 2

Here, 6 includes both the parameters of the regression model g (x)
and the error covariance matrix ey.

Once P(y |x;, 6x) is computed for all K components, the mem-
bership probability % j;, which corresponds to the posterior prob-
ability that trajectory y;(i) is generated by component k, can be
expressed as:
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where wy is the weight of the mixture densities. The trajectory
will be assigned to the component yielding the highest membership
probability.

With this notation, the reestimation equation for the EM algo-
rithm can then be defined as:
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in which Y = [Y] Y, and X = [X] Xl so
that Y contains all the feature vectors of the data set, one real-
ization after another, corresponding to the frame numbers in X.
H; = diag([hj, h},]), where h’ is a row vector consist-
ing of N; copies of the membership probability /. The estimated
parameters are then used to compute new values of & j; for the next
step in the iteration. This iterative reestimation procedure is re-
peated until convergence is reached.

2.2 EM Implementation: Successive Splitting

One of the issues for EM algorithm is how to compute the initial
values for the model parameters. In a series of initial experiments
with Trajectory Clustering, we initialized model parameters by ran-
domly assigning observed speech trajectories to one of K clusters.
The clusters we obtained indicated that the parameter estimation

procedure is heavily dependent on the initial cluster assignments:
Different initial assignments of speech trajectories lead to different
clusters after EM estimation. Looking at the observed trajectories
together with the clusters that were trained, we found that there is
a high degree of overlap for some of the dimensions of the acous-
tic feature vectors, whereas for other dimensions distinct trajectory
clusters were clearly visible. Apparently, the high degree of dis-
crimination in some of the coordinates of the acoustic feature vec-
tors can be masked by the high degree of overlap in other feature
coordinates, to the extent that the trajectory clusters found after EM
training can be dominated by the non-discriminant feature coordi-
nates.

One way to address this issue could be to emphasize the highly
discriminant feature coordinates (and de-emphasize the less dis-
criminant feature coordinates) during clustering. However, such an
approach would have to rely on prior knowledge about what feature
coordinates are most discriminant. We sidestepped the problem of
identifying the most discriminant feature coordinate by means of a
procedure in which the number of clusters is increased incremen-
tally. Therefore, we start by computing the best fitting polynomial
function for the complete data set. Then, the polynomial function is
split by adding and subtracting a fraction of the estimated standard
deviation. The newly obtained polynomial functions are then used
to compute the initial values of the parameters of the model with
two clusters. The splitting is iterated, each time splitting the cluster
with the largest wy, until K clusters are obtained.

3. METHOD AND MATERIAL

In order to test the performance of TCHMM, a number of com-
parison experiments were carried out on a connected Dutch digit
recognition task. In what follows, the type of speech material, the
method for feature extraction, and the design of the model topolo-
gies are briefly described.

3.1 Speech Material

The speech material for our experiments was taken from the Dutch
POLYPHONE corpus, the Dutch SESP corpus and the Dutch
CASIMIR corpus [9]. For each of the three corpora, speech was
recorded over the public switched telephone network in the Nether-
lands. Speech signals were recorded from a primary rate ISDN tele-
phone connection. Among other things, the speakers were asked to
read several connected digit strings. The number of digits in a string
varied between 1 to 14. For training we used a set of 9,753 strings
containing 61,592 digits. Care was taken to balance the training
material with respect to:

(1) an equal number of male and female speakers,

(2) an equal number of speakers from each of the 12 provinces in
the Netherlands, and

(3) an equal number of tokens per digit.

All models were evaluated with an independent set of 10,000
test utterances comprising 80,016 digits. The independent test set
was balanced according to the same criteria as the training material.
None of the original utterances used for training or testing had a
high background noise level.

3.2 Acoustic Features Extraction

We computed 16 Mel-frequency log-energy coefficients using a 25
ms Hamming window shifted with 10 ms steps and a pre-emphasis
factor of 0.98. Based on a Fast Fourier Transform, 16 filter band
energy values were calculated, with the filter bands triangularly
shaped and uniformly distributed on a Mel-frequency scale. In ad-
dition, we also computed the total log-energy values for each frame.
These signal processing steps were performed using HTK3.1. Next,
Mel-frequency cepstra were computed from the raw Mel-frequency
log-energy coefficients using the DCT. Channel normalization was
done by means of cepstrum mean subtraction over the entire utter-
ance. Finally, we computed the first and second order time deriva-
tives and added these to the 12 channel normalized Mel-frequency



cepstral coefficients. Together with log-energy and first and second
order delta log-energy we obtained 39 dimensional transformed fea-
ture vectors.

3.3 Acoustic Model Topologies

In this work, we made use of Head-Body-Tail (HBT) models as the
baseline system. In this approach each digit is split up into three
parts. The middle part of the word — the body — is assumed to be
context-independent. The first part — the head — and the last part
— the tail — are dependent of the previous and subsequent digit (or
silence), respectively. Thus, for each digit one context-independent
body model and 11 context-dependent head and tail models were
trained. The head and tail models consisted of three states, whereas
the number of states in body models is based on the mean duration
of the digit as observed in the train corpus. In addition to digit
models, one silence and one noise model, both consisting of 3 states,
were built. All the HMM paths have the standard left-to-right no-
skip topology.

In this paper we investigate the feasibility of TCHMM for find-
ing structure in dynamic speech data. Therefore, we constrained
ourself to clustering the speech segments corresponding to the body
parts of the digits in the training corpus. These segments were ob-
tained by decoding the training material with the baseline version of
the HBT recognizer. Then, for each cluster a separate Body model
was trained. Merging the models for the clusters into one Body
model with parallel paths yields what we call Multipath models.
Other Multipath models were trained on the basis of information
about speaker gender and articulation rate. In all experiments we
followed the same procedure:

(1) bootstrap the transcription by forced alignment with the baseline
HBT models;

(2) cluster the training tokens of the body units into groups;

(3) relabel the modelling units in the transcription according to the
resulting clusters;

(4) define an independent HMM path for each cluster;

(5) set the numbers of states in parallel HMMs as the minimum
duration, i.e. the number of frames, as observed in the resulting
clusters.

To build Multipath models based on a priori knowledge, we
examined the classification criteria with respect to the gender of
the speakers, duration of the realizations and the combination of
both. Many previous experiments with gender dependent models
have shown significant improvement in recognition performance.
This shows that gender is one of the major sources of variation in
speech acoustics. Thus, we built gender dependent Multipath mod-
els with two equal length HMM paths. Articulation rate is known
to be another important source of acoustic variation, because fast
and slowly uttered words are likely to have different co-articulation
patterns. In this work, the median of the duration distribution of
the body unit was taken as the threshold value to divide the training
tokens into short and long realizations. Duration dependent Mul-
tipath models with two different length HMM paths were trained
based on this classification. Finally, we trained 4-path gender and
duration dependent models, according to the combination of gender
and duration classifications. The training tokens were first split into
two groups with respect to the gender criterion, and each group was
further split with respect to the duration criterion.

Rather than using the a priori knowledge of training material,
TCHMM allows us to build Multipath models on the basis of a
classification supported by acoustic data. Considering that the de-
pendence between frames is explicitly modelled in trajectory clus-
tering, we only used 12 MFCCs as the acoustic feature vector in
TCHMM clustering. Since the Trajectory Clustering method used
in this study requires that the number of clusters is set a priori, we
formed up to 16 clusters for the 10 sets of Body segments. Thus, we
obtained 16 sets of TCHMM Body models. The number of states in
the separate paths for all kind of Multipath models range from 6 to
23.

Table 1: Association between knowledge based classification and
2-path TCHMM for the Body unit of the Dutch digit /nul/.

Cluster 1 Cluster 2
female-short 1146 130
female-long 1732 57
male-short 91 1418
male-long 156 1556
total 3125 3161

Table 2: Association between knowledge based classification and
4-path TCHMM for the Body unit of the digit /nul/.

Cluster 1  Cluster2  Cluster 3  Cluster 4
female-short 417 737 82 40
female-long 602 1120 23 44
male-short 53 32 972 452
male-long 95 51 572 994
total 1167 1940 1649 1530

4. EXPERIMENTAL RESULTS

The first experiment is to evaluate the TCHMMs with reference to
the a priori knowledge based models. Tables 1, 2 and 3 show the as-
sociation between the a priori classification and the trajectory clus-
tering for the body part of the digit /nul/ (zero). The column cate-
gories in the tables represent the a priori classification with respect
to the combination of Gender and Duration criteria, and the row
categories represent the clusters derived from Trajectory Clustering.
Each cell shows the number of tokens coexisting in the correspond-
ing row and column categories. ;From Table 1 we see, that, when
the trajectories of realizations are automatically divided into 2 clus-
ters, the numbers of tokens in the two clusters are approximately
equal, and the observed variability reflects the gender difference.
From Table 2, the discriminability for gender is still visible in the 4-
path TCHMM. The physical interpretation of the two-way division
of the gender-based clusters is not yet completely evident. Thus,
TCHMM has discovered structure in the training data that cannot
be covered by a priori knowledge based classification. In Table 3,
differences between Cluster 1 and Cluster 2 seem to suggest that
there is a low degree of correlation with long and short realizations
of female utterances. Moreover, the tokens in Cluster 7 and Cluster
8 show that the variability present in some female-long and male-
long realizations are considered as important by Trajectory Clus-
tering. The similar associations between priori classification and
trajectory clustering are found in other digits beside /nul/.

The comparison of the recognition performance of TCHMM
and the a priori knowledge based models is shown in Fig. 1. In this
figure, the Word Error Rates are presented as a function of the total
number of Gaussian mixtures per system. From Fig. 1, we see that
for the digit recognition task all Multipath models perform substan-
tially better than the baseline model. The 2-path TCHMM performs
as good as 2-path gender dependent models, which is predictable
from the high association of these subsets of training tokens. Sub-
stantial improvement of WER is found for both 4-path TCHMM
and 4-path gender and duration dependent model compared to 2-
path gender dependent model. The similarity of the recognition
performance between these 4-path models gives us evidence that
the variability uncovered by trajectory clustering is as important as
duration variability in this speech data set. The lowest WER found
in 4-path TCHMMs has a relative reduction of 16.8% over the base-
line model.

Fig. 2 shows the recognition performance of TCHMMs with



Table 3: Association between knowledge based classification and 8-path TCHMM for the Body unit of the digit /nul/.

Cluster 1  Cluster2 Cluster3 Cluster4 Cluster5 Cluster 6 Cluster7  Cluster 8
female-short 293 492 321 34 18 40 8 70
female-long 463 311 304 12 6 40 646
male-short 30 27 50 542 275 524 61 0
male-long 66 21 88 282 461 244 541 9
total 852 851 759 865 766 814 650 725
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Figure 1: Digit recognition results comparing TCHMM derived and
a priori knowledge based Multipath models.

different number of separate paths. From Fig. 2, we see that no
substantial improvement on WER could be observed if the number
of Gaussian mixtures exceed 15,000 for baseline HBT model and
for TCHMMs with up to 8 paths. Most probably, lack of training
data for the separate HMM paths causes this under-training. The
substantial improvement of performance is found among the mod-
els with 4 Gaussian mixtures per state as the number of separate
paths increases. This shows that Trajectory Clustering is effective
in uncovering relevant variability in speech data and results in the
sharper models. However, when the number of mixtures increased,
under-training occurs due to the small size of the trajectory clusters.
16-path TCHMM with 16 Gaussian mixtures gives the lowest WER
of 1.47% . But, the difference on WER compared to the 4-path
TCHMM with 16 Gaussians is not significant.

5. CONCLUSIONS

In this paper, a new approach was investigated for automatic clus-
tering of the training tokens in a connected digit database to define
Multipath HMM topologies. We introduced a probabilistic mixture
regression model for speech observation sequences, and showed
how an incremental cluster splitting strategy sidestepped the ini-
tialization sensitivity problem in EM framework. A number of ex-
periments were carried out on a connected digit recognition task
for Dutch. The best recognition result presented in this work was
obtained in 16-path TCHMM with 16 Gaussian mixtures per state.
This indicates that TCHMM is a very effective method to identify
pronunciation variation.

Future research will be aimed at improving TCHMM perfor-
mance by using the derivatives of MFCCs during clustering. Fur-
thermore, we will apply TCHMM in the Head and Tail parts of HBT
model, where the contextual variability is dominant.

Figure 2: Digit recognition results for TCHMMs with different num-
ber of separate paths.
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