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ABSTRACT

A method for smoke detection in video is proposed. It is as-
sumed the camera monitoring the scene is stationary. Since
the smoke is semi-transparent, edges of image frames start
loosing their sharpness and this leads to a decrease in the high
frequency content of the image. To determine the smoke in
the field of view of the camera, the background of the scene is
estimated and decrease of high frequency energy of the scene
is monitored using the spatial wavelet transforms of the cur-
rent and the background images. Edges of the scene are es-
pecially important because they produce local extrema in the
wavelet domain. A decrease in values of local extrema is also
an indicator of smoke. In addition, scene becomes grayish
when there is smoke and this leads to a decrease in chromi-
nance values of pixels. Periodic behavior in smoke bound-
aries and convexity of smoke regions are also analyzed. All
of these clues are combined to reach a final decision.

1. INTRODUCTION

Conventional point smoke and fire detectors typically detect
the presence of certain particles generated by smoke and fire
by ionization or photometry. An important weakness of point
detectors is that in large rooms, it may take a long time for
smoke particles to reach a detector and they cannot be oper-
ated in open spaces.

The strength of using ordinary video in fire detection is
the ability to serve large and open spaces. Current fire de-
tection algorithms are based on the use of color and motion
information in video to detect the flames [1], [2]. However,
smoke detection is vital for fire alarm systems when large and
open areas are monitored, because the source of the fire and
flames cannot always fall into the field of view. On the con-
trary, smoke of an uncontrolled fire can be easily observed
by a camera even if the flames are not visible. This results in
early detection of fire before it spreads around.

Smoke gradually smoothen the edges in an image when
it is not that thick to cover the scene. This feature of smoke
is a good indicator of its presence in the field of view of the
camera. It is thus exploited in this method. Edges in an im-
age correspond to local extrema in wavelet domain. Gradual
decrease in their sharpness result in a decrease in the val-
ues of these extrema. However, these extrema values corre-
sponding to edges, do not boil down to zero when there is
smoke. In fact, they simply loose some of their energy but
they still stay in their original locations, occluded partially
by the semi-transparent smoke.

Independent of the fuel type, smoke naturally decrease
the chrominance channels U and V values of pixels. Apart
from this, it is well-known that the flicker frequency of

flames are around 10 Hz. and that this flicker frequency
is not greatly affected by either the fuel type or the burner
size [2], [6]. As a result, smoke boundaries also oscillate
with a lower frequency at the early stages of fire.

Another important feature of the smoke that is exploited
in this method is that smoke regions have convex shapes. A
group of pixels are not marked as smoke even if they satisfy
all of the above criteria, when the region bounded by those
pixels has some extensions in arbitrary directions violating
the convexity of the region.

2. SMOKE DETECTION USING THE WAVELET
ANALYSIS OF VISIBLE-RANGE VIDEO

Methods of identifying fire in video include [1], [2], [3], [10]
and [11]. The method in [3] only makes use of the color in-
formation. On the other hand, the scheme in [1] is based on
detecting the fire colored regions in the current video first.
If these fire colored regions move then they are marked as
possible regions of fire in the scene monitored by a cam-
era. In [11], a similar method is used which is based on a
color model for flame and smoke. The dynamics of flame
and smoke regions are described by frame differencing.

By incorporating periodicity analysis around object
boundaries one can reduce the false alarms which may be
due to flame colored ordinary moving objects. It is well-
known that turbulent flames flicker which significantly in-
crease the Fourier frequency content between 0.5 Hz and
20 Hz [2]. In other words, a pixel especially at the edge
of a flame could appear and disappear several times in one
second of a video. The appearance of an object where the
contours, chrominance or luminosity oscillate at a frequency
greater than 0.5 Hz is a sign of the possible presence of
flames. In [2], Fast Fourier Transforms (FFT) of tempo-
ral object boundary pixels are computed to detect peaks in
Fourier domain. In [10], the shape of fire regions are repre-
sented in Fourier domain, as well. Since, Fourier Transform
does not carry any time information, FFTs have to be com-
puted in windows of data and temporal window size is very
important for detection. If it is too long then one may not get
enough peaks in the FFT data. If it is too short than one may
completely miss cycles and therefore no peaks can be ob-
served in the Fourier domain. Another problem is that, one
may not detect periodicity in fast growing fires because the
boundary of fire region simply grows in video. In [2], FFT
analysis inside flame regions was not carried out.

The flames of a fire may not always fall into the visible
range of the camera monitoring a scene covering large areas
like plane hangars or open spaces. Fire detection systems
should tackle with such situations by successful detection



Figure 1: Original frame and its single level wavelet subim-
ages.

of smoke without flame. In this paper, temporal and spatial
wavelet analysis are carried out for the detection of smoke.

3. DETECTION ALGORITHM

Smoke detection algorithm consists of five steps: (i)moving
pixels or regions in the current frame of a video are de-
termined, (ii)the decrease in high frequency content corre-
sponding to edges in these regions are checked using spatial
wavelet transform. If the edges loose their sharpness without
vanishing completely (iii)the decrease in U and V channels
of them are checked, (iv)flicker analysis is carried out using
temporal wavelet transform. Finally (v)shape of the moving
region is checked for convexity.

Moving pixels and regions in the video are determined by
using a background estimation method developed by Collins
et.al. [8]. In this method, a background image Bn+1 at time
instant n + 1 is recursively estimated from the image frame
In and the background image Bn of the video as follows:

Bn+1(k, l) =
{

aBn(k, l)+ (1−a)In(k, l) (k, l) stationary
Bn(k, l) (k, l) moving

(1)
where In(k, l) represent a pixel in the nth video frame In, and
a is a parameter between 0 and 1. Moving pixels are deter-
mined by subtracting the current image from the background
image and thresholding. A recursive threshold estimation is
also described in [8]. Moving regions are determined by us-
ing connected component analysis. Other methods like [9]
and [7] can also be used for moving pixel estimation.

It is necessary to analyze these moving regions further
to determine if the motion is due to smoke or an ordinary
moving object. Smoke obstructs the texture and edges in the
background of an image. Since the edges and texture con-
tribute to the high frequency information of the image, en-
ergies of wavelet subimages drop due to smoke in an image
sequence. Based on this fact we monitor wavelet coefficients
as in Fig.1 and we detect decreases in local wavelet energy,
and detect individual wavelet coefficients corresponding to
edges of objects in background whose values decrease over
time in video. It is also possible to determine the location of
smoke using the wavelet subimages as shown in Fig.2.

Let wn(x,y) = |LHn(x,y)|2 + |HLn(x,y)|2 + |HHn(x,y)|2
represent a composite image containing high-frequency in-
formation at a given scale. This subband image is divided
into small blocks of size (K1,K2) and the energy e(l1, l2) of
each block is computed as follows

e(l1, l2) = ∑
(x,y)∈Ri

wn(x + l1K1,y + l2K2) (2)

Figure 2: Frame with smoke and its single level wavelet
subimages. Blurring in the edges is visible.

where Ri represents a block of size (K1,K2) in the wavelet
subimage. If the wavelet subimages are computed from the
luminance (Y) image then there is no need to include the
chrominance wavelet images. If wavelet transforms of R, G,
and B color images are computed then the energy e(l1, l2) is
computed using all of wavelet subimages of the R, G, and
B color images. In our implementation, subimages are com-
puted from the luminance image and the block size is taken
as 8 by 8 pixels.

The above local energy values computed for the wavelet
transform of the current image are compared to correspond-
ing local high-frequency energies computed from the wavelet
transform of the background which contains information
about the past state of the scene under observation. If there
is a decrease in value of a certain e(l1, l2) then this means
that the texture or edges of the scene monitored by the cam-
era no longer appear as sharp as they used to be in the current
image of the video. Therefore, there may be smoke in the im-
age region corresponding to (l1, l2)th block. One can set up
thresholds for comparison. If a certain e(l1, l2) value drops
below the pre-set threshold a warning is issued.

It is also well-known that wavelet subimages contain the
edge information of the original image. Edges produce local
extrema in wavelet subimages [4], [5]. Wavelet subimages
LH, HL and HH contains horizontal, vertical and diagonal
edges of the original image, respectively. If smoke covers
one of the edges of the original image then the edge initially
becomes less visible and after some time it may disappear
from the scene as the smoke gets thick. Let the wavelet co-
efficient HLn(x,y) be one of the wavelet coefficients corre-
sponding to the edge covered by the smoke. Initially, its
value decreases due to the reduced visibility, and in subse-
quent image frames it becomes either zero or close to zero
whenever there is very little visibility due to thick smoke.
Therefore locations of the edges of the original image is de-
termined from the significant extrema of the wavelet trans-
form of the background image in our system. Slow fading
of a wavelet extrema is an important clue for smoke detec-
tion. If the values of a group of wavelet coefficients along a
curve corresponding to an edge decrease in value in consec-
utive frames then this means that there is less visibility in the
scene. In turn, this may be due to the existence of smoke.
An instantaneous disappearance or appearance of a wavelet
extremum in the current frame cannot be due to smoke. Such
a change corresponds to an ordinary moving object cover-
ing an edge in the background or the boundary of a moving
object and such changes are ignored.

In order to determine the decrease in visibility of the
edges, we set two thresholds 1 > T1 > T2 > 0. For a decrease
in visibility to occur, at a given scale, the composite image



Figure 3: A two stage filter bank.

value wn(x,y) corresponding to an edge in the current image
at location (x,y) and the composite image value wbn(x,y)
similarly calculated for the background image at the same
location, must satisfy T1wbn(x,y) > wn(x,y) > T2wbn(x,y).
Since T2 > 0, we guarantee to have edges that are not totally
invisible due to semi-transparent nature of initial smoke.

Color information is also used for identifying smoke in
video as the third step. Initially, when the smoke starts to
expand, it is semi-transparent thus it preserves the direction
of the RGB vector of the background image. This is another
clue for differentiating between smoke and an ordinary mov-
ing object. By itself, this information is not sufficient be-
cause shadows of moving objects also have the same prop-
erty. As the smoke gets thicker, however, the resemblance
of the current frame and the background decreases and the
chrominance values U and V of the candidate region in the
current frame become smaller than corresponding values in
the background image. Only those pixels with lower chromi-
nance values are considered to be smoke.

The flicker in smoke is also used as an additional in-
formation. The candidate regions are checked whether they
continuously appear and disappear over time. Flames flicker
with a characteristic frequency of about 10 Hz independent
from the source of the fuel and the burner dimensions [6].
This, in turn induces a less frequent flicker in the smoke
boundaries with a frequency range of 1-3 Hz. FFT is used
to estimate the unusual activity in [2]. In this paper we de-
scribe a wavelet domain approach which is used to determine
the temporal high-frequency activity in a pixel. A two-stage
filterbank is used for a pixel which satisfy the conditions in
steps (i), (ii) and (iii) as shown in Fig.3. Input xn[k, l] to the
filterbank is a one-dimensional signal representing the tem-
poral variations at location [k, l]. The signal xn[k, l] is the
luminance (Y component) of the image. We examine the
wavelet subsignals dn[k, l] and en[k, l] at 5 Hz image capture
rate. In a stationary pixel, values of these two subsignals
should be equal to or very close to zero because of high-pass
filters used in subband analysis. If there is an ordinary mov-
ing object going through pixel [k, l] then there will be a sin-
gle spike in one of these wavelet subsignals because of the
transition from the background pixel to the object pixel. If
the pixel is part of a smoke boundary then there will be sev-
eral spikes in one second due to transitions from background
to smoke and smoke to background. Therefore, if |en[k, l]|
and/or |dn[k, l]| exceed a threshold value several times in a
few seconds then an alarm is issued for this pixel.

The number of wavelet stages that should be used in
smoke flicker analysis is determined by the video capture
rate. In the first stage of dyadic wavelet decomposition we
obtain the low-band subsignal and the high-band wavelet
subsignal dn[k, l] of the signal xn[k, l]. The subsignal dn[k, l]
contains [1.25 Hz, 2.5 Hz] frequency band information of
the original signal xn[k, l] in 5 Hz video frame rate. In the
second stage the lowband subsignal is processed once again

Figure 4: Sample images from test videos. Smoke regions
are successfully detected. Edge points satisfying all the con-
ditions defined by the method are marked.

using a dyadic filterbank and the subsignal en[k, l] is ob-
tained containing [0.625 Hz, 1.25 Hz] frequency band infor-
mation of the original signal. This means that by monitor-
ing the wavelet subsignals en[k, l] and dn[k, l] one can detect
0.625 to 2.5 Hz fluctuations in the pixel [k, l].

At the last step, the convexity in the shape of the smoke
regions is checked. Smoke of an uncontrolled fire expands
in time which results in regions with convex boundaries.
Boundaries of the moving regions that contain candidate
smoke pixels are checked for their convexity along equally
spaced vertical and horizontal lines. In our implementation
we take five horizontal and five vertical lines and carry out
the analysis on them. Analysis simply consists of checking
whether the pixels on each of the lines belong to the moving
region or not. At least three consecutive pixels on the lines
intersecting moving regions must belong to the background,
in order to have the moving region violate the convexity con-
dition. If along any one of the lines, convexity is not met, the
smoke pixels in that region are discarded.

These clues are then combined to give a final decision. If
all of the above mentioned criteria are satisfied for a pixel, the
moving region comprising that pixel is determined as smoke.

4. EXPERIMENTAL RESULTS

The proposed method (Method1) is implemented in a lap-
top with an AMD AthlonXP 2000+ 1.66GHz processor and
tested for a large variety of conditions including real-time
and off-line videos containing only smoke, both flame and
smoke, and videos with no smoke or flame.

The computational cost of the wavelet transform is low.
The filterbank in Fig.3 have integer coefficient low and high
pass Lagrange filters. The same filters are used for a single
level wavelet decomposition of image frames in the spatial
wavelet analysis step. Smoke detection is achieved in real-
time. The processing time per frame is about 10 msec for
frames with sizes of 320 by 240 pixels.

Sample images showing the detected smoke regions are
presented in Fig.4. Edge points satisfying all of the condi-
tions are marked inside the detected regions. Detection re-
sults for some of the test sequences are presented in Table
1. Smoke is successfully detected in all of the shots con-



Table 1: Detection results of Method1 for some live and off-
line videos.

Table 2: Smoke and flame detection time comparison of
Method1 and Method2, respectively. Smoke is an early in-
dicator of fire. In Movie 11 and 12, flames are not in the
viewing range of the camera.

taining smoke. No false alarms are issued in live tests and
off-line videos recorded in the day time. A false alarm is
issued in Movie 9 which is recorded at night. A parking
car is captured from its front in this video. The driver in-
tentionally varies the intensity of the front lights of the car.
The light beams directed towards the camera at night defines
artificial edges around them. These edges appear and disap-
pear continuously as the intensity of the lights change. The
U,V channel values of the pixels decrease as the light intensi-
ties are lowered, since everywhere in the scene is dark other
than the car lights. In this way, car lights at night mimic
the smoke characteristics in the day time and a false alarm
is issued. Method1 is developed based on the day time char-
acteristics of smoke. The proposed method assumes a well
lighted scene, it is not intended for night use.

In videos containing both smoke and flame, Method1 is
compared with the flame detection method proposed in [12]
(Method2). The comparison results in some of the test se-
quences are presented in Table 2. At the early stages of fire,
smoke is released before flames become visible. Method1
successfully detects smoke in such situations earlier than
Method2. Hence, early detection of fire is possible with the
proposed smoke detection method. In Movies 11 and 12,
flames are not in the viewing range of the camera. A fire
detection system without smoke detection capability fails in
detecting the fire before it spread around.

5. CONCLUSION

A method for detecting smoke in video is developed. The
algorithm is mainly based on determining the edge regions
whose wavelet subband energies decrease with time. These
regions are then analyzed along with their corresponding

background regions with respect to their RGB and chromi-
nance values. The flicker of the smoke and convexity of
smoke regions are also set as clues for the final decision.

The method can be used for detection of smoke in movies
and video databases as well as real-time detection of smoke.
It can be incorporated with a surveillance system monitoring
an indoor or an outdoor area of interest for early detection
of fire. It can also be integrated with the flame detection
method in [12] in order to have a more robust video based
fire detection system.
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