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ABSTRACT

RECOGNITION AND CLASSIFICATION OF HUMAN
ACTIVITIES USING WEARABLE SENSORS

Aras Yurtman

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Billur Barshan

September 2012

We address the problem of detecting and classifying human activities using

two different types of wearable sensors. In the first part of the thesis, a com-

parative study on the different techniques of classifying human activities using

tag-based radio-frequency (RF) localization is provided. Position data of multiple

RF tags worn on the human body are acquired asynchronously and non-uniformly.

Curves fitted to the data are re-sampled uniformly and then segmented. The effect

of varying the relevant system parameters on the system accuracy is investigated.

Various curve-fitting, segmentation, and classification techniques are compared

and the combination resulting in the best performance is presented. The clas-

sifiers are validated through the use of two different cross-validation methods.

For the complete classification problem with 11 classes, the proposed system

demonstrates an average classification error of 8.67% and 21.30% for 5-fold and

subject-based leave-one-out (L1O) cross validation, respectively. When the num-

ber of classes is reduced to five by omitting the transition classes, these errors

become 1.12% and 6.52%. The system demonstrates acceptable classification per-

formance despite that tag-based RF localization does not provide very accurate

position measurements.

In the second part, data acquired from five sensory units worn on the human

body, each containing a tri-axial accelerometer, a gyroscope, and a magnetometer,

during 19 different human activities are used to calculate inter-subject and inter-

activity variations in the data with different methods. Absolute, Euclidean, and

dynamic time-warping (DTW) distances are used to assess the similarity of the

signals. The comparisons are made using time-domain data and feature vectors.

Different normalization methods are used and compared. The “best” subject is

defined and identified according to his/her average distance to the other subjects.
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Based on one of the similarity criteria proposed here, an autonomous system

that detects and evaluates physical therapy exercises using inertial sensors and

magnetometers is developed. An algorithm that detects all the occurrences of

one or more template signals (exercise movements) in a long signal (physical

therapy session) while allowing some distortion is proposed based on DTW. The

algorithm classifies the executions in one of the exercises and evaluates them

as correct/incorrect, identifying the error type if there is any. To evaluate the

performance of the algorithm in physical therapy, a dataset consisting of one

template execution and ten test executions of each of the three execution types

of eight exercise movements performed by five subjects is recorded, having totally

120 and 1,200 exercise executions in the training and test sets, respectively, as

well as many idle time intervals in the test signals. The proposed algorithm

detects 1,125 executions in the whole test set. 8.58% of the executions are missed

and 4.91% of the idle intervals are incorrectly detected as an execution. The

accuracy is 93.46% for exercise classification and 88.65% for both exercise and

execution type classification. The proposed system may be used to both estimate

the intensity of the physical therapy session and evaluate the executions to provide

feedback to the patient and the specialist.

Keywords: radio-frequency localization, radio-frequency identification, human

activity recognition, pattern recognition, classification, feature extraction, fea-

ture reduction, principal components analysis, linear discriminant analysis, P -

fold cross-validation, leave-one-out cross-validation, absolute distance, Euclidean

distance, dynamic time warping, subsequence dynamic time warping, dynamic

programming, normalization, inertial sensors, accelerometers, gyroscopes, mag-

netometers, pattern search, movement detection, physical therapy.



ÖZET

GİYİLEBİLİR DUYUCULARLA İNSAN
AKTİVİTELERİNİN ALGILANMASI VE

SINIFLANDIRILMASI

Aras Yurtman

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Billur Barshan

Eylül 2012

Farklı türde giyilebilir algılayıcılar kullanarak insan aktivitelerinin sezimi ve

sınıflandırılması ele alınmaktadır. Tezin ilk bölümünde, etiket tabanlı, radyo

frekansına dayalı bir konumlama sistemi ile insan aktivitesi tanımada çeşitli

yöntemlerin kullanımı karşılaştırmalı olarak sunulmuştur. İnsan bedeninin farklı

bölgelerine yerleştirilen etiketlerin konumları, eşzamansız ve farklı aralıklarla

örneklenmiş olarak elde edilmektedir. Bu verilere uyarlanan eğriler, düzgün

örneklenmiş ve bölütlenmiştir. İlgili sistem parametrelerinin sistem başarımına

etkisi incelenmiştir. Çeşitli eğri uyarlama, bölütleme ve sınıflandırma yöntemleri

karşılaştırılmış ve en iyi başarımı veren katışım sunulmuştur. Sınıflandırıcılar,

iki farklı bağımsız geçerlilik sınaması yöntemiyle değerlendirilmiştir. 11 sınıftan

oluşan sınıflandırma probleminde, sırasıyla P -bölmeli ve birini dışarıda bırak

bağımsız geçerlilik sınamaları kullanıldığında ortalama sınıflandırma hataları

%8.67 ve %21.30 olarak elde edilmiştir. Geçiş sınıfları dışarıda bırakılarak

elde edilen beş sınıflı sınıflandırma probleminde ise, bu hatalar %1.12 ve

%6.52’ye düşmektedir. Etiket-tabanlı konumlama sistemlerinin çok hassas

konum ölçümleri sağlamamasına karşın sonuçlar, sistemin kabul edilebilir bir

sınıflandırma başarımı sunduğunu göstermektedir.

İkinci bölümde, insan bedeninin beş noktasına yerleştirilmiş, her biri üç

eksenli ivmeölçer, dönüölçer ve manyetometre içeren beş duyucu ünitesinden

19 farklı günlük aktivite sırasında elde edilen veriler, katılımcılar arası ve

aktiviteler arası farklılıkları çeşitli yöntemlerle hesaplamak için kullanılmıştır.

İşaretlerin karşılaştırılması için mutlak, Öklit ve dinamik zaman bükmesi (DZB)

uzaklıkları kullanılmıştır. Karşılaştırmalar, zaman bölgesindeki veri ve öznitelik

vektörleri kullanılarak yapılmıştır. Farklı düzgeleme yöntemleri kullanılmış
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ve karşılaştırılmıştır. “En iyi” katılımcı, diğer katılımcılara olan ortalama

uzaklığa dayalı olarak tanımlanmış ve saptanmıştır. Bu kısımda önerilen

benzerlik ölçütlerinden biri seçilerek, eylemsizlik duyucuları ve manyetometreler

kullanılarak fizik tedavi egzersizlerini sezen ve değerlendiren özerk bir sistem

geliştirilmiştir. DZB yöntemine dayanarak belirli ölçüde bozuluma izin vererek,

uzun bir işaretin (fizik tedavi seansı) içinde bir ya da birden fazla şablon işaretin

(fizik tedavi hareketkeri) bütün olagelişlerini sezen bir algoritma öne sürülmüştür.

Bu algoritma, yürütümleri egzersiz hareketlerinden birisi olarak sınıflandırmakta,

doğru/yanlış olarak değerlendirmekte ve eğer varsa yapılan hatanın türünü

belirtmektedir. Algoritmanın fizik tedavideki başarımını belirlemek için, beş

katılımcı tarafından yürütülen sekiz egzersiz hareketinin üç farklı yapılış biçiminin

her biri için bir şablon ve on test yürütümünden oluşan ve böylece eğitim

ve test veri kümelerinde sırasıyla 120 ve 1,200 egzersiz yürütümü ile test

işaretlerinde birçok boş zaman aralığı içeren bir veri kümesi kaydedilmiştir. Öne

sürülen algoritma, bütün test kümesinde 1,125 yürütüm sezmiştir. Yürütümlerin

%8.58’i sezilememiş, boş aralıkların %4.91’i yanlışlıkla yürütüm olarak sezilmiştir.

Başarım, egzersiz ayırt etmede %93.46, hem egzersiz hem de yapılış şekli ayırt

etmede %88.65’tir. Geliştirilen sistem, hem fizik tedavi seansının yoğunluğunu

kestirmek için, hem de egzersiz yürütümlerini değerlendirerek hastaya ve uzmana

geribildirim vermek için kullanılabilir.

Anahtar sözcükler : radyo-frekanslı konumlama, radyo-frekanslı tanımlama, in-

san aktivitesi tanıma, örüntü tanıma, sınıflandırma, öznitelik çıkarma, öznitelik

indirgeme, ana bileşenler çözümlemesi, doğrusal ayırtaç çözümlemesi, P -bölmeli

bağımsız geçerlilik sınaması, birini dışarıda bırak bağımsız geçerlilik sınaması,

mutlak uzaklık, Öklit uzaklığı, dinamik zaman bükmesi, altdizi dinamik zaman

bükmesi, dinamik programlama, düzgeleme, eylemsizlik duyucuları, manyetome-

treler, örüntü arama, hareket algılama, fizik tedavi.
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Chapter 1

Introduction

With rapidly developing technology, devices such as personal digital assistants

(PDAs), smart phones, and tablet computers have made their way to our daily

lives. It is now becoming essential for such devices to recognize and interpret

human behavior correctly in real time. One aspect of this type of context-aware

systems is the recognition and monitoring of activities of daily living such as

sitting, standing, lying down, walking, ascending/descending stairs, and most

importantly, falling.

1.1 Approaches in Activity Recognition

There exist several different approaches for the recognition of human activities

in the literature [1]. The most common three approaches are based on computer

vision, radio-frequency localization systems, and inertial sensors. Earlier work in

this area is summarized below.
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1.1.1 Activity Recognition Using Visual Sensors

A large number of studies employ vision-based systems with multiple video cam-

eras mounted in the environment to recognize the activities performed by a per-

son [2–5]. In many of these studies, points of interest on the human body are

pre-identified by placing special, visible markers such as light-emitting diodes

(LEDs) at those points and the positions of the markers are recorded by cam-

eras [6]. For example, Kaluža et al. [7] considered a total of six activities including

falls using the Smart infrared motion capture system. The attributes they used

are the coordinates of the body parts in different coordinate systems and the

angles between adjacent body parts. In Luštrek et al. [8], walking anomalies,

such as limping, dizziness, and hemiplegia are detected using the same system.

Camera systems obviously interfere with privacy since they capture additional

information that is not needed by the system but that may easily be exploited

with a simple modification on the software. Hence, people act unnaturally and

feel uncomfortable when camera systems are used, especially in private places.

Other disadvantages of vision-based systems are the high computational cost of

processing images and videos, correspondence and shadowing problems, the need

for camera calibration, and inoperability in the dark. When multiple cameras are

employed, several 2-D projections of the 3-D scene have to be combined. More-

over, this approach imposes restrictions on the mobility of the person since the

system operates only in the limited environment monitored by the cameras.

1.1.2 Activity Recognition Using Radio-Frequency Local-

ization

Rather than monitoring human activities from a distance or remotely, we believe

that “activity can best be measured where it occurs” as stated in [9]. Unlike the

first approach utilizing visual sensors, the use of inertial sensors and the radio-

frequency (RF) localization-based approach directly acquire the motion data and

position data in 3-D, respectively. In the RF localization technique, the 3-D

2



positions of the RF tags worn on different parts of the body are estimated1.

Multiple antennas called readers are mounted in the environment that detect the

relative positions of small devices called RF tags (Figure 1.1). Each tag emits

RF pulses containing its unique ID for identification and localization. Active

RF tags have internal power sources (batteries) to transmit RF pulses, whereas

passive tags do not contain a power source and rely on the energy of the waves

transmitted by the readers [11]. Passive RF tags are small stickers similar to

RFID tags that can be as small as 2 mm × 2 mm in size (Figure 1.1(c)), whereas

active RF tags are much larger than the passive ones (Figure 1.1(a)). RF tags

are very inexpensive and lightweight, and thus comfortable to use on the human

body [12]. Unlike bar codes, the tag does not need to be within the line of sight

of the reader and may be embedded in the tracked object or even buried under

the skin (Figure 1.1(b)).

The operating range of most RF readers is not more than 10 m [13]. In

uncluttered, open environments, typical localization accuracy is about 15 cm

across 95% of the readings [14]. Since each tag must be detected by multiple

readers for localization, this method cannot be used in large areas because in

that case, numerous readers are needed, which would be too costly. On the other

hand, the number of RF tags that can be worn on the body is limited. In systems

that use active tags, the pulses transmitted by the tags may interfere, whereas in

systems that use passive tags, it becomes difficult for the system to distinguish

the tags that are close together.

RFID technology is a very valuable tool in a variety of applications involv-

ing the automatic detection, identification, localization, and tracking of persons,

animals, vehicles, baggage, and goods [15]. RFID systems are used for general

1Radio-Frequency Identification (RFID) is a technique involving the detection and identifica-
tion of tags (deciding which tags exist in the environment), whereas in RF localization, the tags
are both identified and localized. The tags are called “RFID tags” in the former system and
“RF tags” in the latter although they can be identical in some cases [10,11]. In this thesis, the
tags used for localization are not the same as RFID tags, hence will be called “RF tags.” How-
ever, in some texts, the term “RFID localization” is used instead of RF localization because
there are systems estimating the positions of RFID tags that are designed for identification
only [10].

3



(a) (b)

(c)

Figure 1.1: Examples of RFID tags. (a) an active RFID tag worn as
a bracelet (Syris sytag245-tm, reprinted from http://blog.aztronics.com/

?p=45), (b) an RFID tag buried under the skin (An RFID Body Mod
Most Curious, Ization Labs, reprinted from http://izationlabs.com/2009/

12/22/a-body-mod-most-curious/), (c) tiny RFID tags of size 2 mm ×
2 mm (Chip-size Passive RFID Tag, Health Care News, RFID Journal,
reprinted from http://www.rfidjournal.com/imagecatalogue/imageview/

5866/?RefererURL=/article/view/4585).
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transport logistics, toll collection from vehicles and contactless payment, tracking

of parcels and baggage, and to avoid theft of the items sold in stores or super-

markets. With the use of RFID tags, assembly lines and inventories in the supply

chain can be tracked more efficiently and products become harder to falsify. This

is particularly important for the pharmaceutical industry with increasing anti-

counterfeit measures. In the identification and tracking of animals, RFID tags

are used for tracking pets, farm animals, and rare animal species such as pandas.

They are used on contactless identity cards for access management and control of

hospitals, libraries, museums, schools and universities, and restricted zones. Ma-

chine readable identification and travel documents such as biometric passports

that contain RFID tags are becoming very common. RFID tags are also used

for key identification in vehicles, for locking/unlocking vehicles from a distance,

ticketing of mass events or public transport, and transponder timing of sporting

events.

Besides the above uses, RFID systems are also suitable for indoor localization

and mapping [16]. Reference [17] analyzes whether the use of RFID technology in

the field of robotics can improve the localization of mobile robots and persons in

their environment and determines the computational requirements. In [18], many

RFID tags are placed on the floor in a grid configuration at known positions and

a robot localizes itself by detecting the tags using its antenna. To resolve the

issues concerning security and privacy of RFID systems, reference [19] proposes

an authentication protocol based on RFID tags.

There are many studies involving activity recognition using RFID; however,

they are not based on RF localization. In the earlier work on human activity

recognition using RFID technology, activities of daily living are mostly inferred

based on the interactions of a person with the objects in its environment. RFID

antennas are worn on the body usually in the form of gloves or bracelets, and

RFID tags are fixed to the objects in the environment such as equipment, tools,

furniture, or doors (or vice versa). Then, the position of the subject and the

activity s/he is performing is estimated from the tag readings in consequence

of body-object interactions. The main limitation of these systems is that they

provide activity information only when the subject interacts with one of the
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tagged objects in its environment. Thus, the only recognizable activities are those

that involve these objects. This type of approach is followed in [20–24]. Similarly,

in [25], the authors employ RFID sensor networks based on wireless identification

and sensing platforms (WISPs) that combine passive UHF RFID technology with

traditional sensors. Everyday objects are tagged with WISPs to detect when they

are in use, and a simple hidden Markov model (HMM) is used to convert object

traces into high-level daily activities. In [26], a dynamic Bayesian network model

is presented that combines RFID and video data to jointly infer the most likely

household activity and object labels. Reference [27] combines data from RFID tag

readers and accelerometers to recognize ten housekeeping activities with higher

accuracy. A multi-agent system for fall and disability detection of the elderly

living alone is presented in [28], based on the commercially available Ubisense

smart space platform [14]. On the other hand, in (Chapter 2 of) this thesis,

human activities are recognized by using an RF localization system, where the

3-D position estimations of the RF tags are used. This technique does not require

any object interactions. Furthermore, a new approach based on curve-fitting is

applied to the non-uniform and asynchronous position measurements of the RF

tags to segment them and extract their features. This approach also solves the

problem of missing data that is encountered in RF localization systems.

1.1.3 Activity Recognition Using Inertial Sensors

The third approach utilizes miniature inertial sensors whose size, weight, and cost

have decreased considerably during the last two decades. The availability of lower

cost, medium performance inertial sensor units has opened up new possibilities for

their use. In this approach, several sensor units are worn on different parts of the

body. These units usually contain gyroscopes and accelerometers, and sometimes,

magnetometers in addition. Some of these devices are sensitive around a single

axis whereas others are multi-axial (usually two- or three-axial). Two examples

are shown in Figure 1.2 and a wearable system is illustrated in Figure 1.3.

Inertial sensors do not directly provide linear or angular position informa-

tion. Gyroscopes provide angular rate information around an axis of sensitivity,

6



(a) (b)

Figure 1.2: (a) Xsens MTx [29] and (b) 3DM-GX2 [30] sensor units.

Figure 1.3: Miniature inertial sensor units worn on the body (reprinted from
http://www.xsens.com/en/movement-science/xbus-kit).
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whereas accelerometers provide linear or angular velocity rate information. These

rate outputs need to be integrated once or twice to obtain the linear/angular po-

sition. Thus, even very small errors in the rate information provided by inertial

sensors cause an unbounded growth in the error of integrated measurements.

The acquired measurements are either collected and processed in a battery-

powered system such as a cellular phone, or wirelessly transmitted to a computer

to be processed. Detailed literature surveys on activity recognition using inertial

sensors can be found in [31–35]. In the earlier work on human activity recognition,

the utilization of inertial sensors [35–38] is also considered. Although this method

results in accurate classification, wearing the sensors and the processing unit on

the body may not always be comfortable or even acceptable despite how small and

lightweight they have become. People may forget or neglect to wear these devices.

Furthermore, this approach has certain limitations: Although it is demonstrated

that it is possible to recognize activities with high accuracy (typically above

95%), the same is not true for human localization because of the drift problem

associated with inertial sensors [39,40]. In [39], it is considered to exploit activity

cues to improve the erroneous position estimates provided by inertial sensors

and have achieved significantly better accuracies in localization when performed

simultaneously with activity recognition.

In many studies on activity recognition with wearable inertial sensors, it is

observed that the classification accuracy decreases significantly when the activi-

ties of a subject are classified using the classifiers trained with the data of other

subjects [35]. However, the reason is not investigated so far. For this purpose, us-

ing the previous activity recognition dataset [35], inter-subject and intra-subject

variations in the data are investigated in detail in Chapter 3. The signals are

normalized with various methods. To compare signals, different distance mea-

sures are used. Based on the results, the subject that performs the activities in

the best way is also identified.
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1.2 Application of Activity Recognition in

Physical Therapy

A different aspect of activity recognition may be very useful in detecting and

evaluating exercise movements in the physical therapy field. The patients often

perform the prescribed exercise movements in a hospital or a rehabilitation center

for a while and they continue exercising at home, where they receive no feedback

about how correctly they perform [41]. In addition, while exercising under the

supervision of a specialist, it is common that the patients receive poor feedback

due to the number of personnel being insufficient, the difficulty of tracking several

patients at the same time, and/or subjective feedback due to negligence of the

specialists and the lack of systematic rules for many exercises [42, 43]. For this

purpose, it would be very useful and valuable if the individual exercise movements

can be evaluated automatically by an intelligent system utilizing wearable sensors,

as done in Chapter 4 in this thesis. For example, wearable miniature inertial

sensors or an RF localization system with RF tags placed on the body can be

used, both of which are much less expensive and highly portable compared to

medical devices such as biofeedback devices [44]. In addition, both systems are

easier to be placed on the body by the patient himself compared to tight garments

containing strain sensors, which are used, for example, in reference [45].

In (Chapter 4 of) this thesis, we use one of the similarity criteria proposed

in Chapter 3 to detect and evaluate the executions of physical therapy exercises

automatically using wearable sensing units. An algorithm that detects all the

occurrences of one or more template signals (exercise movements) in a long signal

(physical therapy session) while allowing some distortion is proposed based on

DTW. The algorithm classifies the executions in one of the exercises and evaluates

them as correct/incorrect, identifying the error type if there is any. The developed

system also estimates the number of (correct or all) executions, providing feedback

about not only the correctness of the executions, but also the effectiveness or

intensity of physical therapy sessions.
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The organization of this thesis is as follows: In Chapter 2, human activities

are classified using an RF localization system and various classification meth-

ods. Variations in inertial sensor data of human activities performed by different

subjects are examined in Chapter 3 and three similarity criteria are proposed.

In Chapter 4, a system that detects and evaluates physical therapy exercises by

using a novel algorithm applied to inertial sensor and magnetometer data is pre-

sented based on one of the similarity criteria proposed in Chapter 3. Finally, in

Chapter 5, conclusions are drawn and directions for future work are provided.
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Chapter 2

Human Activity Recognition

Using Tag-Based

Radio-Frequency Localization

In this chapter, human activities are classified using an RF localization system.

The work presented in this chapter is an extension of the study in reference [46].

An important issue in most RF systems is that the system measures the tag

positions asynchronously and non-uniformly at different, arbitrary time instants.

In other words, whenever the readers receive a pulse transmitted by an RF tag,

the system records its relative position along the x, y, z axes as well as a unique

timestamp and its unique ID. Although each tag transmits pulses periodically,

tags cannot be synchronized since their pulses must not interfere with each other

and thus the locations of the tags are sampled at different time instants. Further-

more, the readers sometimes cannot detect the pulses due to low signal-to-noise

ratio (SNR), interference, or occlusion. Under these circumstances, localization

accuracy may drop significantly. The detection ratio of a tag increases when it is

close to the antennas and decreases when it is near conductive objects. Thus, it is

not possible to treat the raw measurements as ordinary position vectors sampled

at a constant rate in time.
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In this study, we consider a broad set of daily activity types (11 activities)

and recognize these activities with high accuracy without having to take into

account the interaction of a person with the objects in its environment. We only

keep track of the position data of four RF tags worn on different parts of the

body, acquired by the Ubisense platform [14]. In the data pre-processing stage,

we propose a method to put the dataset in uniformly and synchronously sampled

form. After feature reduction in two different ways, we compare several classifiers

through the use of P -fold and subject-based leave-one-out (L1O) cross-validation

techniques. The variation of the relevant system parameters on the classification

performance is investigated.

In Section 2.1, details of the experimental setup and the dataset are provided.

Section 2.2 describes pre-processing of the dataset. Feature extraction and re-

duction is the topic of Section 2.3. Classifiers used for activity recognition are

listed in Section 2.4. Section 2.5 describes the performance evaluation of the

classifiers through the use of two cross-validation techniques. In Section 2.6, ex-

perimental results are presented and interpreted. Lastly, conclusions are drawn

in Section 2.7.

2.1 The System Details

The human activity recognition system employed in this study employs four active

RF tags worn on different parts of the body, whose relative positions along the

three axes are detected by a computer or a simple microcontroller via four RF

antennas mounted in the environment (see Figure 2.1) [47]. The four RF tags

are positioned on the left ankle (tag 1), right ankle (tag 2), chest (tag 3) and the

belt (tag 4).

The 3-D position data of the four RF tags worn by a subject are measured

over time while s/he is performing a fixed sequence of predetermined activities.

The operating range of the system is about 46 m. Although each tag transmits

a pulse every 0.1 s, the readers may miss some of the pulses (due to occlusion,

low SNR at large distances, etc.) and therefore, the data acquisition rate is not

12



Figure 2.1: Ubisense hardware components [14].

constant. However, the average detection rate does not vary too much and is

about 9 Hz most of the time.

The 11 activity types are numbered as follows: (1): walking, (2): falling,

(3): lying down, (4): lying, (5): sitting down, (6): sitting, (7): standing up from

lying, (8): on all fours, (9): sitting on the ground, (10): standing up from sitting,

(11): standing up from sitting on the ground.

Each subject performs a sequence of activities referred as an “experiment”

in this chapter. Each experiment consists of the following sequence of activities

with different but similar durations:

walking—sitting down—sitting—standing up from sitting—

walking—falling—lying—standing up from lying—walking—

lying down—lying—standing up from lying—walking—falling—

lying—standing up from lying—walking—sitting down—sitting—

sitting on the ground—standing up from sitting on the ground—

walking—lying down—lying—standing up from lying—walking—

lying down—on all fours—lying—standing up from lying—walking

There are five subjects, each performing the same experiment five times. Thus,
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there is a total of 5 × 5 = 25 experiments of the same scenario. The dataset

described above and used in this study is entitled “Localization Data for Person

Activity Data Set” and is publicly available at the University of California, Irvine

Machine Learning Repository [47]. The dataset is an extremely long but simple-

structured 2-D array of size 164, 860 × 8 (see Figure 2.2 for sample rows). Each

line of the raw data corresponds to one measurement, where the first element

denotes the subject code (A-F) and the experiment number (01-05), the second

element is the tag ID (the unique ID of one of the four tags), the third column

is a unique timestamp, the fourth column is the explicit date and time, the 5th,

6th and the 7th columns respectively contain the relative x, y, z position of the

tag, and the 8th column stores the event name, corresponding to one of the 11

activities performed. In the modified dataset, each activity type is represented by

its number for simplicity without loss of information. Similarly, the unique IDs of

the tags in the raw data are converted to tag numbers 1–4 for the sake of simplicity

and without loss of information. Note that, a measurement, corresponding to one

of the rows of the dataset, simply defines the relative position of a particular tag

at a particular time instant (as well as the true activity type) and is acquired by

multiple antennas. The data of each experiment are just a subset of the rows in

the raw data array. Therefore, the sequence of activities and their durations can

be extracted from the dataset. As an example, the positions of tags 1 and 3 in

the first experiment of the first subject are shown in Figure 2.3 as 3-D curves in

time. In the figure, the gray level of the curve changes from light gray to black

as time passes.

An important problem in activity recognition is the detection of the activ-

ity durations and transition times in a continuous data stream [48–51]. In the

dataset, activities 2, 3, 5, 7, 10, and 11 actually correspond to transitions between

two activities and their duration is much shorter than the others. For example,

class 5 called “sitting down” stands for the change from the state of walking to

the state of sitting. In the original dataset, these transition activities have been

assigned to ordinary activity classes so that there is a total of 11 activities. In

addition to the classification problem with 11 classes, a simplified (reduced) case

with five classes (corresponding to activities 1, 4, 6, 8, and 9) is also considered

by omitting the transition classes.
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Figure 2.3: The positions of (a) tag 1 and (b) tag 3 in the first experiment of the
first subject as 3-D curves whose gray level change from light gray to black in
time.
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2.2 Pre-processing of the Data

2.2.1 Curve-Fitting

Since the tag positions are acquired asynchronously and non-uniformly, feature

extraction and classification based on the raw data would be very difficult. Thus,

we first propose to fit a curve to the position data of each axis of each tag (a

total of 3× 4 = 12 axes) in each experiment and then re-sample the fitted curves

uniformly at exactly the same time instants. Provided that the new, constant

sampling rate is considerably higher than the average data acquisition rate, the

curve-fitting and re-sampling process does not cause much loss of information.

We assume that the sample values on the fitted curves (especially those that are

far from the actual measurement points) represent the true positions of the tags

since the tag positions do not change very rapidly. In general, the positions of

the tags on the arms and the legs tend to change faster compared to the chest

and the waist.

Three curve-fitting methods are considered in this work:

In shape-preserving interpolation, the fitted curve passes through the measure-

ment points around which it is curvy and smooth but looks almost like straight

lines in between. Hence, this method is very similar to linear (or first-order)

interpolation except that the curve is differentiable everywhere. The fitted curve

has high curvature, especially around the peaks.

The second method is cubic-spline interpolation. The curve in this method

passes through the measurement points, like the previous one, but overall is

much smoother. The fitted curve may oscillate unnecessarily in between the

measurement points and may go far beyond the peaks of the measurements, in

which case, it may not resemble (one axis of) the actual position curve of the tag.

The smoothing spline is the third method, having a single parameter ad-

justable between 0 and 1. It is observed that this method resembles shape-

preserving interpolant when the parameter is chosen about 0.5 and cubic-spline

interpolant when it is approximately 1. The parameter value should be chosen
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proportionately large with the complexity of the data, i.e., the number of avail-

able position measurements. In this study, we have used a parameter value of

1− 10−6 for smoothing spline interpolation.

Although the third method seems to provide better results than the others, it

is not feasible for long data as in this study since its computational complexity

is much higher than the others. Therefore, we preferred to use shape-preserving

interpolation because of its simplicity. Sample curves fitted to synthetic position

data using the three methods are plotted in Figure 2.4. In addition, the x position

of tag 4 in the fifth experiment of the fifth subject is plotted in Figure 2.5. Once

the 12 different curves are fitted to the 12 axes of each experiment independently,

the curves are re-sampled uniformly at exactly the same time instants.
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Figure 2.4: The three curve-fitting methods applied to synthetic position data.
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Figure 2.5: The x position of tag 4 in the fifth experiment of the fifth subject.
(a) The whole curve and (b) the zoomed-in version.
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2.2.2 Segmentation

After the curve fitting and uniform re-sampling stages, the modified dataset now

consists of 5×5 = 25 2-D arrays (each corresponding to an experiment) with each

line containing the time instant, position values along the 12 axes (three axes per

tag) at that instant and the activity being performed at that time. Note that the

number of rows is not the same in all of the experiments, since the duration of

the experiment, hence the number of equally-spaced samples may differ slightly.

The 2-D array of each experiment is first divided into intervals containing

samples corresponding to exactly one activity type. Then, each interval is divided

into time segments of equal length, typically about one second. To prevent a

segment from containing more than one activity, the following segmentation rule

is used: For each experiment, progressing vertically along the 2-D array, a new

segment is started only if the desired segment length is reached or a different

activity is encountered. Naturally, the segments immediately before the transition

points between activities and the very last segment may be shorter in length.

Classification is performed for each segment independently. While testing the

classifiers and implementing the system in real time, the system needs to know

where a new activity starts (i.e., the activity transition times). If this is not

possible so that a constant segment duration is used, a segment may be associated

with more than one activity. One can assign the longest activity contained in

that segment as the true class, but this would unfairly decrease the classification

accuracy. Since techniques for modeling activity durations and detecting the

activity transition times are available [48, 52], we performed segmentation using

the information on the true transition times so that each segment is associated

with only a single activity.
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2.3 Feature Extraction and Reduction

2.3.1 Feature Extraction

As stated above, each segment consists of many position samples in the corre-

sponding time interval; each row of the dataset comprising 13 values (one time

instant and 12 position values) as well as the true activity class. Thus, it would

take a lot of time for a classifier to be trained and evaluated using the whole

data. As an alternative, features extracted from the time segments are used for

classification.

The features extracted for each of the 12 axes are the minimum, maxi-

mum, mean, variance, skewness, kurtosis values, the first few coefficients of

the autocorrelation sequence, and the magnitudes of the five largest FFT co-

efficients. Therefore, there are (12 axes ×[11 + ceil(N/2)] coefficients per axis)

= 132 + 12× ceil(N/2) coefficients in the feature vector, N being the maximum

number of samples in a segment (N = 5 in this study). Note that the size of

the feature vector increases with the maximum number of samples in a segment

which, in turn, is the product of the sampling frequency (in Hz) and the segment

duration (in s).

2.3.2 Feature Reduction

Because of the large number of features (about 150–200) associated with each

segment, we expect feature reduction to be very useful in this scheme. The size

of the feature vector is reduced by mapping the original high-dimensional feature

space to a lower-dimensional one using principal component analysis (PCA) and

linear discriminant analysis (LDA) [53]. PCA is a transformation that finds the

optimal linear combination of the features in the sense that they represent the

data with the highest variance in a feature subspace, without taking the intra-

class and inter-class variances into consideration separately. It seeks a projection

that best represents the data in a least-squares sense. On the other hand, LDA
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seeks a projection that best separates the data in the same sense and maximizes

class separability [53]. Whereas PCA seeks rotational transformations that are

efficient for representation, LDA seeks those that are efficient for discrimination.

The best projection in LDA makes the difference between the class means as large

as possible relative to the variance.

2.4 Classification

The following are the 10 different classifiers used in this study, with their corre-

sponding PRTools [54] functions:

(1) ldc: Gaussian classifier with the same arbitrary covariance matrix for each

class

(2) qdc: Gaussian classifier with different arbitrary covariance matrices for each

class

(3) udc: Gaussian classifier with different diagonal covariance matrices for each

class

(4) mogc: mixture of Gaussians classifier (with two mixtures)

(5) naivebc: näıve Bayes classifier

(6) knnc: k-nearest neighbor (k-NN) classifier

(7) kernelc: dissimilarity-based classifier

(8) fisherc: minimum least squares linear classifier

(9) nmc: nearest mean classifier

(10) nmsc: scaled nearest mean classifier

Detailed descriptions of these classifiers can be found in [53].
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2.5 Performance Evaluation through Cross Val-

idation

Since each of the five subjects repeats the same sequence of activities five times,

the procedures used for training and testing affect the classification accuracy. For

this reason, two different cross-validation techniques are used for evaluating the

classifiers: P -fold and subject-based leave-one-out (L1O) [53].

In P -fold cross validation (P = 5 in this thesis), the whole set of feature

vectors is divided into P partitions, where the feature vectors in each partition

are selected completely randomly, regardless of the subject or the class they

belong to. One of the P partitions is retained as the validation set for testing,

and the remaining P − 1 partitions are used for training. The cross-validation

process is then repeated P times (the folds), so that each of the P partitions is

used exactly once for validation. The P results from the folds are then averaged

to produce a single estimate of the overall classification accuracy.

In subject-based L1O cross validation, partitioning of the dataset is done

subject-wise instead of randomly. The feature vectors of four of the subjects are

used for training and the feature vectors of the remaining subject are used in turn

for validation. This is repeated five times such that the feature vector set of each

subject is used once as the validation data. The five correct classification rates

are averaged to produce a single estimate. This is same as P -fold cross validation

with P being equal to the number of subjects (P = 5) and all the feature vectors

in the same partition being associated with the same subject.

Although these two cross-validation methods use all the data equally in train-

ing and testing of the classifiers, there are two factors that affect the results

obtained based on the same data. The first one is the random partitioning of

the data in the P -fold cross-validation technique that slightly affects the clas-

sification accuracy. Secondly, classifier 7 (dissimilarity-based classifier) includes

randomness in its nature. Therefore, both cross-validation methods are repeated

five times and the average classification accuracy and its standard deviation are

calculated over the five executions. This way, we can assess the repeatability of
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the results and estimate how well the system will perform over newly acquired

data from unfamiliar subjects.

2.6 Experimental Results

The following are the adjustable parameters or factors that possibly affect the

classification accuracy, with their default values written in square brackets:

(1) fs: sampling frequency of the fitted curves in forming the modified data

(in Hz) [default: 10 Hz]

(2) frm dur: maximum segment duration (in seconds) [default: 0.5 s]

(3) curve fit type: the curve-fitting algorithm

(1: shape-preserving interpolation, 2: cubic-spline interpolation,

3: smoothing spline) [default: 1]

(4) pri: prior probabilities of the 11 classes (i.e., activities)

(0: equal priors for each class,

1: priors calculated based on the class frequencies) [default: 1]

(5) reduc: the feature reduction type if used and the dimension of the reduced

feature space

(0: no feature reduction; + |n|: PCA with reduced dimension n;

− |n|: LDA with reduced dimension n) [default: 0]

All the classifiers are trained and tested using different combinations of the

parameters described above. Then, for each classifier, the set of parameters that

result in the lowest average classification error are determined. This process is

repeated for both cases (the complete and the simplified classification problems

with 11 and 5 classes, respectively) and both cross-validation methods (5-fold and

subject-based L1O). Average classification errors of the classifiers over the five

executions and their standard deviations are tabulated in Table 2.1. It is observed
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that the k-NN classifier (with k = 5) is the best one among the 10 classifiers

compared in this study and outperforms the other classifiers in all cases. For

the complete classification problem with 11 classes, the k-NN classifier has an

average classification error of 8.67% and 21.30%, whereas for the reduced case

with five classes, these numbers are 1.12% and 6.52% for 5-fold and subject-

based L1O cross-validation, respectively. Note that since the partitions are fixed

in subject-based L1O cross validation, this technique gives the same result if

the complete cycle over the subject-based partitions is repeated. Therefore, its

standard deviation is zero except for classifier 7 that includes randomness. For

the k-NN classifier, the cumulative confusion matrices obtained by summing up

the confusion matrices of each run in all of the five executions are presented in

Tables 2.2 and 2.3 for the 11-class and 5-class problems, respectively, using the

two cross-validation techniques.

The parameters listed above significantly affect the classification accuracy.

Therefore, for each parameter, the tests are run by varying that parameter while

keeping the remaining ones constant at their default values. The variation of

the average classification error with each of these parameters is shown in Fig-

ures 2.6–2.10 for the two cross-validation methods and for both the complete and

simplified classification problems (total of four cases). All the error percentage

values presented in these figures are the average values over the five executions.

Because the k-NN classifier (classifier 6) outperforms all of the other classifiers,

the average classification error of only this classifier is shown in the figures. As

expected, the 11-class classification problem results in larger errors compared to

the 5-class problem. From the results, it can be observed that in all cases, 5-fold

cross validation provides better results than subject-based L1O. This is because

in the first case, the system is trained and tested with a random mixture of dif-

ferent subjects’ data, whereas in the second, it is trained with the data of four of

the subjects and tested with the data of the remaining subject which is totally

new to the system.
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cumulative confusion matrix of classifier 6 (k-NN) for 5-fold (average classification error: 8.67%)

(fs = 10, frm dur = 0.5, curve fit type = 3, pri = 1, reduc = 0)

true estimated labels

labels 1 2 3 4 5 6 7 8 9 10 11 total

1 10,057 177 158 171 113 45 298 45 23 56 52 11,195

2 139 606 18 124 16 94 42 0 62 16 3 1,120

3 139 14 1,752 146 3 6 64 65 30 1 15 2,235

4 126 108 131 17,556 14 7 310 45 6 6 11 18,320

5 124 34 6 30 321 96 22 0 4 13 0 650

6 41 59 6 19 60 8,758 3 0 20 67 7 9,040

7 305 45 54 305 10 13 5,691 5 5 1 11 6,445

8 30 1 52 76 0 0 7 1,612 0 0 2 1,780

9 16 42 26 5 2 9 9 0 3,729 0 52 3,890

10 74 19 0 12 9 54 10 0 0 332 0 510

11 50 2 9 11 0 5 3 0 54 0 846 980

total 11,101 1,107 2,212 18,455 548 9,087 6,495 1,772 3,933 492 999 56,165

cumulative confusion matrix of classifier 6 (k-NN) for subject-based L1O (average classification error: 21.30%)

(fs = 10, frm dur = 0.5, curve fit type = 1, pri = 1, reduc = −10)

true estimated labels

labels 1 2 3 4 5 6 7 8 9 10 11 total

1 10,645 30 65 15 30 195 190 0 5 10 10 11,195

2 305 340 10 135 10 115 170 5 25 0 5 1,120

3 215 20 510 415 15 80 850 85 0 10 35 2,235

4 40 100 220 16,665 0 30 575 350 285 0 55 18,320

5 180 20 25 5 110 190 95 0 0 25 0 650

6 310 30 45 20 85 8,390 135 0 10 0 15 9,040

7 685 110 355 1,385 50 235 3,110 215 75 25 200 6,445

8 5 10 50 625 5 20 370 630 10 0 55 1,780

9 0 50 0 135 5 175 60 0 3,380 0 85 3,890

10 180 5 30 0 40 150 80 0 5 20 0 510

11 110 0 0 25 20 60 200 5 140 0 420 980

total 12,675 715 1,310 19,425 370 9,640 5,835 1,290 3,935 90 880 56,165

Table 2.2: Cumulative confusion matrices for classifier 6 (k-NN) for the 11-class
problem. The confusion matrices are summed up for the five executions of the
5-fold (top) and subject-based L1O (bottom) cross validation.
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cumulative confusion matrices of classifier 6 (k-NN)

(fs = 10, frm dur = 0.2, curve it type = 1, pri = 1, reduc = 0)

5-fold (avg. classification error: 1.12%) subject-based L1O (avg. classification error: 6.52%)

true estimated labels estimated labels

labels 1 4 6 8 9 total 1 4 6 8 9 total

1 27,041 10 226 7 6 27,290 26,850 15 350 50 50 27,290

4 39 45,051 15 206 4 45,315 405 42,905 470 1,040 495 45,315

6 145 3 22,296 10 11 22,465 1,050 25 21,030 285 75 22,465

8 59 361 74 3,885 1 4,380 270 735 795 2,540 40 4,380

9 10 0 29 0 9,591 9,630 90 75 775 0 8,690 9,630

total 27,294 45,425 22,640 4,108 9,613 109,080 28,665 43,755 23,420 3,890 9,350 109,080

Table 2.3: Cumulative confusion matrices for classifier 6 (k-NN) for the 5-class
problem. The confusion matrices are summed up for the five executions of the
5-fold (left) and subject-based L1O (right) cross validation.
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2.6.1 Effect of the Sampling Frequency (fs)

When the sampling frequency is set too low, in particular, 6 Hz, the classification

accuracy is surprisingly acceptable. This is because the movement of the RF tags

is not very fast, and the classification performance does not degrade much when

the high-frequency components are removed.

The average classification error increases slightly with increasing sampling rate

(Figure 2.6). For instance, with fs = 400 Hz, noting that the dimension of the

feature space also increases with the number of samples in a segment, the data

becomes too complicated that it misleads most of the classifiers. This is because

the position measurements are quite noisy; hence, selecting a high sampling rate

may cause over fitting, which in turn degrades the classification accuracy of the

system. A suitable value of fs is determined as 10 Hz and is set to be the default

value.
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Figure 2.6: Effect of the sampling frequency on the average classification error of
the k-NN classifier (classifier 6).
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2.6.2 Effect of the Segment Duration (frm dur)

Since a single event or activity is associated with each segment, the segment

duration is another parameter that affects the accuracy. Results for segment

duration values between 0.2 s and 1 s are shown in Figure 2.7. Although the

smallest segment duration gives slightly better results in most cases, the system

should make a decision five times in a second with this segment duration, which

increases the complexity. In fact, even a very short segment consisting of a single

position measurement (one row of the dataset) is sufficient to obtain the body

posture information since it directly provides the 3-D positions of the tags on

different body parts at that instant. Compromising between complexity and

accuracy, a segment duration of 0.5 s is selected as the default value without

much loss in the classification accuracy in each of the four cases.
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Figure 2.7: Effect of the the segment duration on the average classification error
of the k-NN classifier (classifier 6).
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2.6.3 Effect of the Curve-Fitting Algorithm

Referring to Figure 2.8, it is observed that shape-preserving interpolation and

cubic-spline interpolation give very similar results for subject-based L1O whereas

the smoothing spline interpolation leads to poorer classification accuracy. The lat-

ter is the best curve-fitting method in the particular case of 5-fold cross-validation

with 11 classes. Thus, shape-preserving interpolation is chosen as the default

curve-fitting method.
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Figure 2.8: Effect of the curve-fitting method on the average classification error
of the k-NN classifier (classifier 6).
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2.6.4 Effect of the Prior Probabilities

Classification errors for the individual classes can be obtained from the confusion

matrices provided in Tables 2.2 and 2.3. The average probability of error is calcu-

lated by weighting the classification error of each class with its prior probability.

In this study, prior class probabilities have been chosen in two different ways. In

the first, prior probabilities are taken equal for each class, whereas in the second,

prior probabilities are set equal to the actual occurrence of the classes in the data.

Figure 2.9 illustrates the effect of prior probabilities on the average classification

error. It is observed in the figure that the error for the case with equal priors

is larger. This is because the transition classes (Section 2.2.2) rarely occur in

the dataset and their probability of occurrence is extremely low. However, the

classification errors for these classes are larger. When a weighted average is cal-

culated using the actual class probabilities, those terms with large classification

error contribute relatively less to the total average error.
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Figure 2.9: Effect of the prior probabilities on the average classification error of
the k-NN classifier (classifier 6).
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2.6.5 Effect of Feature Reduction

Since there is a large number of features (depending on the sampling frequency

and the segment duration), two common methods (PCA and LDA) are used for

feature reduction. All the results up to this point, including Figures 2.6–2.9, are

obtained without feature reduction.

Figure 2.10(a) shows the average classification error when PCA is used with

different reduced dimensionalities (from 1 to 100) as well as the case without

feature reduction (168). It can be observed that the intrinsic dimensionality of

the feature vectors is about 10, which is much smaller than the actual dimension.

Figure 2.10(b) corresponds to the cases where LDA is used with reduced di-

mension from 1 to 10 for 11 classes and from 1 to 4 for 5 classes (note that reduced

dimension must be less than the number of classes in LDA). For the complete

classification problem with 11 classes, LDA with dimension 10 outperforms all

other cases including the ones without feature reduction validated by subject-

based L1O. Including too many features not only increases the computational

complexity of the system significantly, but also confuses the classifiers, leading to

a less accurate system (this is known as “the curse of dimensionality”).

For the 11-class problem, LDA with dimension 10 performs better than PCA

when L1O is used and worse when 5-fold cross validation is employed. For the

simplified problem with 5 classes, the results change similarly with feature reduc-

tion. With subject-based L1O, LDA with dimension four outperforms PCA with

higher dimensions as well as the case without feature reduction. When 5-fold

cross-validation is used, PCA with dimension 20 is the best one. Hence, LDA

with dimension four is preferable because its performance seems to be less depen-

dent on the subject performing the activities. Therefore, it can be stated that

LDA is more reliable if the system is going to be used with subjects who are not

involved in the training process. On the other hand, if the system is going to

be trained for each subject separately, PCA results in a more accurate classifier,

even at the same dimensionality with LDA.

33



1235710 20 30 40 50 70 100 168*
0

5

10

15

20

25

30

35

40

45

50

dimension of the reduced space (*: without feature reduction)

av
er

ag
e 

cl
as

si
fic

at
io

n 
er

ro
r 

(%
)

 

 
11 classes, 5−fold
11 classes, L1O
5 classes, 5−fold
5 classes, L1O

(a)

1 2 3 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

dimension of the reduced space

av
er

ag
e 

cl
as

si
fic

at
io

n 
er

ro
r 

(%
)

 

 
11 classes, 5−fold
11 classes, L1O
5 classes, 5−fold
5 classes, L1O

(b)

Figure 2.10: Effect of feature reduction with (a) PCA and (b) LDA on the average
classification error of the k-NN classifier (classifier 6).

34



2.7 Conclusion

In this study, a novel approach to human activity recognition is presented using

a tag-based RF localization system. Accurate activity recognition is achieved

without the need to consider the interaction of the subject with the objects in its

environment. In this scheme, the subjects wear four RF tags whose positions are

measured via multiple antennas (readers) fixed to the environment.

The most important issue is the asynchronous and non-uniform acquisition

of the position data since the system records measurements whenever it detects

a tag, and the detection frequency is affected by the SNR and interference in

the environment. The asynchronous nature of the data acquired introduces some

additional problems to be tackled—only one tag can be detected at a given time

instant; hence, the measurements of different tags are acquired at different time

instants in a random manner. This problem has been solved by first fitting a

suitable curve to each measurement axis along time, and then re-sampling the

fitted curves uniformly at a higher sampling rate at exactly the same time instants.

After the uniformly-sampled curves are obtained, they are partitioned into

segments of maximum duration of one second each such that each segment is

associated with only a single activity type. Then, various features are extracted

from the segments to be used in the classification process. The number of features

are reduced using two feature reduction techniques.

Ten different classifiers are investigated and their average classification er-

rors are calculated for various curve-fitting and feature reduction techniques and

system parameters. In calculating the average classification error, two different

cross-validation techniques, namely P -fold with P = 5 and subject-based L1O,

are used. Omitting the transition classes, the complete pattern recognition prob-

lem with 11 classes is reduced to a problem with five classes and the whole process

is repeated. Finally, the set of parameters and the classifier giving the best result

is presented for each problem and for each cross-validation method.

For the complete problem with 11 classes, the proposed system has an aver-

age classification error of 8.67% and 21.30% when the 5-fold and subject-based
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L1O cross-validation techniques are used, respectively. This relatively large er-

ror is caused by the transition activities of much shorter duration that are more

difficult to recognize. When these activities are discarded, the reduced system

with five classes has an average probability of error of 1.12% and 6.52% when

5-fold and subject-based L1O cross validation are used, respectively. Hence, the

performance significantly improves with the removal of the transition activities,

as expected. The system proposed here demonstrates acceptable performance for

most practical applications.
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Chapter 3

Investigation of Personal

Variations in Activity

Recognition Using Inertial

Sensors and Magnetometers

3.1 Introduction and Related Work

The use of wearable miniature inertial sensors and magnetometers in activity

recognition has pervaded due to their high portability and low cost. This ap-

proach has many advantages over vision-based systems [2–5] and often provides

high classification accuracy in activity recognition [35, 36]. On the other hand,

independent of the method used for human activity recognition, the acquired

data for classification significantly varies between subjects in various ways. More

specifically, miniature inertial sensor signals vary in amplitude and speed for dif-

ferent subjects according to their personal styles and anthropometry (i.e., phys-

ical attributes). The change in time is often nonlinear and may be difficult for

an artificial system to perceive. Therefore, in general, the classification accuracy
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degrades significantly if activities of a subject are attempted to be recognized us-

ing another subjects’ training data, as in the subject-based leave-one-out (L1O)

test [35].

To the best of our knowledge, inter-subject variability of sensor data in ac-

tivity recognition has not been examined so far, although it is investigated in

detail in vision-based systems [55–57]. In [58], the intra-subject variation of the

accelerometer data of the activity checklist performed by seventeen male patients

having chronic obstructive pulmonary disease is studied and observed to be low.

For this reason, we calculate the average inter-subject variations of the sensor

data for each activity by applying different similarity measures to time-domain

signals. Based on this inter-subject distance, we propose a method to identify

who performs the activities in the best way. This is analogous to the method

used in post-stroke rehabilitation where a system providing real-time feedback to

neurological patients undergoing motor rehabilitation is developed by applying a

modified version of dynamic time warping (DTW) to the data acquired from a

sensorized long-sleeve shirt containing strain sensors [41]. In that system, refer-

ence data is captured while the subject is performing the movements correctly

and incorrectly in a supervised manner. Then, during the exercises, the system

is able to distinguish the type of movement as well as how accurately the subject

executes it in real-time with a reasonable error.

The work reported in this chapter is the extended form of our earlier research

presented in [59, 60]. Data acquired from five sensor units worn on the human

body, each containing a tri-axial accelerometer, a tri-axial gyroscope, and a tri-

axial magnetometer, during 19 different human activities are used to calculate

inter-subject and inter-activity variations. Different methods are used and the

results are summarized in various forms. Absolute, Euclidean, and DTW dis-

tances are used to assess the similarity of the signals. The comparisons are made

based on the raw data, their normalized versions, and feature vectors extracted

from the raw data. First, inter-subject distances are averaged out per activity

and per subject. Based on these values, the ‘best’ subject is defined and iden-

tified according to his/her average distance to the others. Then, the averages

and standard deviations of inter-activity distances are presented per subject, per
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sensor unit, and per sensor type. The effect of removing the mean value and the

use of different distance measures on the results are discussed.

Organization of this chapter is as follows: In Section 3.2, the dataset is de-

scribed briefly. The distance measures and normalization methods are presented

in Sections 3.3 and 3.4. Then, identification of the best subject is explained (Sec-

tion 3.5.1), average inter-subject distance is calculated per activity (Section 3.5.2),

and average means and standard deviations of inter-activity distances are inves-

tigated per subject, per sensor unit, and per activity, separately (Section 3.5.3).

The chapter is concluded in Section 3.7.

3.2 Dataset

The dataset used in this study is the same as the one used in reference [35]. In

the experiments, 8 different subjects wearing 5 miniature sensor units performed

19 activities, each lasting 5 min. The physical characteristics of the subjects can

be found in [36]. The activities are the following:

Sitting (A1), standing (A2), lying on back side (A3), lying on right

side (A4), ascending stairs (A5), descending stairs (A6), standing

in an elevator still (A7), moving around (A8), walking in a park-

ing lot (A9), walking on a treadmill with a speed of 4 km/h in flat

position (A10), walking on a treadmill with a speed of 4 km/h in

15◦ inclined position (A11), running on a treadmill with a speed of

8km/s (A12), exercising on a stepper (A13), exercising on a cross

trainer (A14), cycling on an exercise bike in, horizontal position (A15),

cycling on an exercise bike in vertical position (A16), rowing (A17),

jumping (A18), playing basketball (A19).

Therefore, in the dataset, for each of the 8 subjects and 19 activities, there are

45 (5 units× 9 sensors) time-domain signals of length 5 min, sampled at 25 Hz,
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and consisting of 7,500 samples each. The units of the signals differ because a

mixture of different sensor types is used.

Each time-domain signal is represented with x...(t) or its sampled version

x...[n], i.e.,

xp,a,u,s[n] = xp,a,u,s(t)
∣∣∣
t= n

25

(3.1)

where 0 ≤ t ≤ 300 sec, 1 ≤ n ≤ 7,500, p ∈ [1, 8] is the subject index, a ∈ [1, 19]

is the activity index, u ∈ [1, 5] is the unit index, and s ∈ [1, 9] is the sensor in-

dex. The number of subjects, activities, sensors, and units are Np = 8, Na = 19,

Nu = 5, and Ns = 9, respectively.

Feature vectors are calculated based on the time-domain signals to reduce the

amount of data, in exactly the same way as in [35]. Since each activity of each

subject is recorded for 5 min, and the recording is divided into 5-second segments,

a total of Nk = 60 (= 5×60
5

) feature vectors are extracted for each activity of each

subject. Each feature vector consists of specific properties of the same 5-second

segment of all the 45 time-domain signals of a particular activity of a particular

subject. The features for (each segment of) each axis are the following: the min-

imum, maximum, mean, variance, skewness, kurtosis, autocorrelation sequence,

and the peaks of the discrete Fourier transform (DFT) with the corresponding

frequency values. Feature vectors are denoted by vp,a{k}, where k ∈ [1, 60] is the

segment index.
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3.3 Distance Measures

Three common distance measures are used to calculate the distance between the

two sequences x[n] and y[n]:

(1) absolute (taxicab) distance:

dabs (x[n], y[n]) =
N∑
i=1

|x[i]− y[i]| (3.2)

(2) Euclidean distance:

dEuc (x[n], y[n]) =

√√√√ N∑
i=1

(x[i]− y[i])2 (3.3)

(3) DTW distance1:

dDTW (x[n], y[n]) = DTW (x[n], y[n]) (3.4)

Here, x[n] and y[n] are the discrete-time sequences with 1 ≤ n ≤ N , and

dD(x[n], y[n]) is the distance between them, D being one of the three distance

measures. Note that the two sequences must be of the same length for absolute

and Euclidean distances, whereas there is no such constraint in DTW distance.

Therefore, DTW distance is applicable to the more general case where x[n] and

y[n] have different lengths.

In the DTW distance measure, the sequences x[n] and y[n] are matched by

“elastically” transforming their time (or sample) axes such that they are most

similar to each other. In this way, the local minima, the local maxima, and similar

shapes in the sequences are matched to each other as much as possible. Then,

the Euclidean (or another type of) distance is calculated between the matched

1See Appendix A for the DTW algorithm.
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(a)

(b)

Figure 3.1: Comparison of the Euclidean and DTW distance measures. (a) The
Euclidean distance compares the samples at the same time instants, whereas (b)
the DTW distance compares the samples that belong to similar shapes with each
other to minimize the distance.

sequences to obtain the DTW distance. The DTW algorithm is summarized in

Appendix A. See Figure 3.1 for an illustration that compares the Euclidean and

DTW distance measures.

3.4 Normalization

Although the sensors used in data acquisition are calibrated, the measurements

may still be biased, resulting in a constant error in the time-domain signals.

Hence, even if the mean values of the signals provide information about the

activities, they may not be correct due to sensor biases. In addition, the DTW

distance measure depends mostly on the shape of signals. Therefore, the first
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type of normalization involves removing the mean values:

xp,a,u,s[n] = xp,a,u,s[n]−mean
n

xp,a,u,s[n] (3.5)

If a signal is compared with a biased version of itself, the distance between

them may be very different depending on which distance measure is used. Suppose

that the aforementioned sequences are x[n] and y[n] = x[n] + e[n], 1 ≤ n ≤ N ,

where e[n] ≡ E > 0 is the constant bias error between the sequences. Then,

according to the three distance functions, the distance between x[n] and y[n] is

dabs (x[n], y[n]) =
N∑
i=1

|E| = NE (3.6)

dEuc (x[n], y[n]) =

√√√√ N∑
i=1

E2 =
√
NE2 =

√
NE (3.7)

dDTW (x[n], y[n]) ≤ NE (3.8)

Therefore, the distance between a sequence and its biased version is directly

proportional to the amount of bias E and also depends on the sequence

size. As a numerical example, for N = 100 and E = 0.01, dabs (x[n], y[n]) = 1,

dEuc (x[n], y[n]) = 0.1, and dDTW (x[n], y[n]) ≤ 1.

In addition to removing the mean values, the variance of the signals can also

be normalized to 1 by scaling them with their standard deviation. Thus, the

second normalization type is obtained by

x̃p,a,u,s[n] =
1

stdn xp,a,u,s[n]
xp,a,u,s[n]. (3.9)

The third normalization type corresponds to limiting the sequence to the

interval [−1, 1] by shifting and scaling the signal, which is common especially

before applying DTW:

xp,a,u,s[n] = 2
xp,a,u,s[n]−minn xp,a,u,s[n]

maxn xp,a,u,s[n]−minn xp,a,u,s[n]
− 1 (3.10)
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3.5 Inter- and Intra-Subject Variations in Ac-

tivity Recognition Using Inertial Sensors

and Magnetometers

3.5.1 Identifying the ‘Best’ Subjects

In this section, the average distance between the whole data of one subject and

all other subjects is calculated to identify the ‘best’ subjects in terms of their

similarities to the others. The three different distance measures are applied to

both raw (i.e., unnormalized) and normalized time-domain signals in different

ways as well as raw and zero-mean feature vectors. The complete data is used

unless the calculations last too long; i.e., if the relatively slow distance function,

namely DTW, is used (the percentage of data used in the calculations is always

explicitly specified).

3.5.1.1 Comparison Algorithm

A measure of similarity of two subjects based on their activity data in the time

domain is proposed as follows: For each activity and for each sensor of each unit,

the distances between the time-domain signals of the subjects are calculated and

averaged out for all activities, sensors, and units. Then, their mean is considered

as ‘the distance between the two subjects,’ resulting in:

dtime-domain
intra-subject, D (p1, p2) =

1

NaNuNs

∑
a

∑
u

∑
s

dD (xp1,a,u,s[n], xp2,a,u,s[n]) (3.11)

where D is one of the distance measures.

To compare two subjects based on their feature vectors, the distance between

the feature vectors of the two subjects are averaged out for all instances, i.e.,

dfeatures
intra-subject, D (p1, p2) =

1

Nk

∑
k

dD (vp1,a{k},vp2,a{k}). (3.12)
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To identify those subjects that are most similar to the others in terms of the

average distance sense, the distances between all the subject pairs are calculated.

Then, for each subject, the distances from him/her to all other subjects are

averaged out, resulting in the average distance of the subject to the others. If the

time-domain signals are used, this is given by:

dtime-domain
avg-subject, D (p) =

1

Np − 1

∑
p1 6=p

dtime-domain
intrasubject, D (p, p1) (3.13)

If the feature vectors are used, the corresponding expression is:

dfeatures
avg-subject, D (p) =

1

Np − 1

∑
p1 6=p

dfeatures
intrasubject, D (p, p1) (3.14)

The subject with the smallest distance to all the others in the average distance

sense, i.e., the person who performs the activities most similar to the others in

the average distance sense is considered to be the ‘best’ person in this scheme:

Best Subjecttime-domain
D = arg min

p
dtime-domain

avg-subject, D(p) (3.15)

or

Best Subjectfeatures
D = arg min

p
dfeatures

avg-subject, D(p) (3.16)

if time-domain signals or feature vectors are used, respectively.

Although the best subject may not be the person who performs the activities

most correctly, s/he is the one in the middle; at least s/he is not performing

them in any extreme way. For instance, if the dataset contains only the walking

activity and the subjects differ only in their walking speed, this approach would

identify the subject who walks nearest to the average speed among all subjects

as the ‘best’ one.

3.5.1.2 Percentage of Data to Use

When DTW is used to calculate the distances, the calculations last approximately

100 times longer than the cases where the absolute or Euclidean distances are
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used. For that reason, and because there are many instances of each activity in

the dataset, calculations are sped up by using a small percentage of the data in

the DTW case.

In time-domain signals, noting that the computational complexity of DTW is

proportional to the product of the lengths of the two sequences to be compared

(and thus the length square if the two sequences have the same length), only the

initial part (a particular percentage in length) of the time-domain sequences are

considered in the distance comparisons. For instance, if 5% of the data will be

used, only the first 375 samples (i.e., the first 15 seconds) of the signals will be

used in calculating DTW distances since the original time-domain signals are all

5 min or 7,500 samples long.

On the other hand, when feature vectors are used, only the first l feature

vectors of each subject and activity are considered, where l =
⌈
60 p

100

⌉
with p

being the percentage of data to be used.

If some subset of data will be used as explained above, all the formulas given

in Section 3.5.1.1 need to be modified slightly: If time-domain signals are used,

only the index n needs to be restricted to crop the signal. If feature vectors are

used, the index k will change from 1 to the number of segments l to be used

(instead of from 1 to Nk).

3.5.1.3 Results

The results are summarized in Figure 3.2. It is observed that when the time-

domain signals normalized between −1 and 1 are compared by using the absolute

and Euclidean distance measures, subject 1 is identified as the best subject [Fig-

ure 3.2(a) and (b)]. When they are compared by using the DTW distance mea-

sure, subject 2 is identified as the best [Figure 3.2(c)]. On the other hand, when

the feature vectors normalized between −1 and 1 are used, subjects 3 and 5 are

identified as the best subjects [Figure 3.2(d)–(f)]. The effect of normalizing the

data is also observed in the figure. Normalization decreases the average distance

between the data of one subject with the others by a factor of about 5,000. This
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Figure 3.2: Average distance of each subject to the others in terms of the
(a), (d): absolute, (b), (e): Euclidean, and (c), (f): DTW distances. Raw and
normalized (a)–(c): time-domain signals, (d)–(f): feature vectors are used. The
subject number with the smallest distance (for the signals normalized between
−1 and 1) is enclosed in brackets.
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is more visible when the DTW distance is used because for the DTW algorithm

to wrap the two signals correctly, they must be of the same scale. When the mean

values and amplitudes of the signals differ too much, DTW cannot match their

similar parts because DTW cannot scale or shift the signal’s amplitude values,

it only wraps their time (or sample) axes. For this reason, the DTW distance

measure applied to the raw signals is not expected to provide accurate results,

but it is still shown in the figure for completeness.

3.5.2 Average Inter-Subject Distance per Activity

In this section, the distances between all distinct subject pairs are calculated

and averaged out for each activity. The three distance functions are applied to

both raw and normalized time-domain signals. That is, the average inter-subject

distance for the activity a in terms of the distance measure D is

davg-activity, D (a) =
1

Np

1

Np − 1

∑
p1

∑
p2 6=p1

[
1

Nu

1

Ns

∑
u

∑
s

dD (xp1,a,u,s[n], xp2,a,u,s[n])

]
(3.17)

where the term in the square brackets is the average distance between the two

subjects p1 and p2 for the activity a and is then averaged out for each distinct

subject pair, resulting in the average inter-subject distance for the activity a.

The results are shown in Figure 3.3 in terms of the three distance measures

applied to the raw and three types of normalized data. Average inter-subject

distances of the zero-mean signals of activities A1–A4 are smaller than the other

activities even though their unnormalized versions have larger distance values

than some of the other activities. The reason is that these activities are completely

stationary unlike the others; thus, the inter-subject differences in the signals are

mostly caused by the bias and drift errors of the sensors. Hence, when the mean

values are removed from the signals, they become very similar and the distance

significantly decreases.
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Figure 3.3: Average distance between all distinct subject pairs for each activity
in terms of the (a) absolute, (b) Euclidean, and (c) DTW distances calculated
using the raw and three types of normalized time-domain data.
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In the figure, the distances of activities A18 and A19 (corresponding to jump-

ing and playing basketball, respectively) are much larger than the other activi-

ties, because they have a random nature and thus cannot be compared well in

the time-domain—it is better to use the statistical properties of the signals for

comparison. Consequently, the distances of these activities are much larger than

the others in the DTW case, because DTW cannot match these random activities

of different subjects (even if it can match to some extent, it gives high penalty to

big differences in time shifts, ending up with a large distance), while it can easily

match quasi-periodic activities, leading to smaller distances, as expected.

3.5.3 Average Mean and Standard Deviation of Inter-

Activity Distances for Each Subject, Unit, Sensor

In this section, inter-activity distances (i.e., distances between different activities)

are calculated using normalized time-domain signals only, with subjects, units,

and sensors kept the same in the distance calculations. Thus, all the distance

values used in this section are calculated by

dinter-activity, D (p, a1, a2, u, s) = dD (xp,a1,u,s[n], xp,a2,u,s[n]) , (3.18)

where D is the distance function, (a1, a2) is the activity pair, and p, u, s are

the subject, unit, and sensor numbers, respectively. That is, the average distance

between time-domain signals belonging to one activity and another are calculated

over all subjects, units, and sensors.

The results will be separately summarized to compare subjects, units, and

sensors because there are 61,560 distance values (8 subjects×171 activity pairs×
5 units×9 sensors) in total. (Note that there are normally 19×19 activity pairs,

forming a 19 × 19 matrix. However, since distance functions are commutative,

the matrix is symmetric. In addition, the diagonal elements are zero because the

distance of a signal to itself is always zero. Hence, the essential part is only the

upper-triangle with 19(19−1)
2

= 171 elements, corresponding to the distances of the

171 distinct activity pairs.)
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The rows and columns of the 19× 19 activity pair matrix Dactivity pair, p,u,s, of

a particular subject p, a particular unit u, a particular sensor s are indexed by

the different activities. Then, the (a1, a2)th element of the matrix is

(Dactivity pair, p,u,s)a1,a2
= dinter-activity, D (p, a1, a2, u, s) (3.19)

Note that, because of the redundancy explained above, only the upper-triangular

part of the matrix needs to be taken into account in the calculations. Then, the

mean and standard deviation of (the elements in) the upper-triangular part of

the activity pair matrix can be calculated for each subject, sensor and unit. The

mean is given by

Dactivity pair, p,u,s = mean
a1,a2

(upper-triangular part of Dactivity pair, p,u,s) (3.20)

and the expression for the standard deviation is

D̃activity pair, p,u,s = std
a1,a2

(upper-triangular part of Dactivity pair, p,u,s) . (3.21)

3.5.3.1 Average Mean and Standard Deviation of Inter-Activity Dis-

tances per Subject

To summarize the results with respect to the subjects, the mean and the standard

deviation values belonging to different sensors and units are averaged out for each

subject. That is,

D
avg., subject

activity pair, p = mean
u,s

(
Dactivity pair, p,u,s

)
(3.22)

and

D̃avg., subject
activity pair, p = mean

u,s

(
D̃activity pair, p,u,s

)
. (3.23)

The results are shown in Figure 3.4. It is observed that the 6th subject has

the smallest average inter-activity distance (i.e., the average distance between

different activities). It is interesting to note that the 6th subject also performs
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Figure 3.4: Average mean and standard deviation of inter-activity distances for
each subject in terms of the (a) absolute, (b) Euclidean, and (c) DTW distances
calculated using zero-mean time-domain data.
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the activities in the “best” way on the average according to the description given

in Section 3.5.1.

3.5.3.2 Average Mean and Standard Deviation of Inter-Activity Dis-

tances per Unit

To summarize the results with respect to the units, the mean and standard devi-

ation values belonging to different subjects and sensors are averaged out for each

unit. That is,

D
avg., unit

activity pair, u = mean
p,s

(
Dactivity pair, p,u,s

)
(3.24)

and

D̃avg., unit
activity pair, u = mean

p,s

(
D̃activity pair, p,u,s

)
. (3.25)

The results are shown in Figure 3.5. As expected, the sensor measurements

vary the most in the units placed on the legs (RL and LL) where the acceleration

can be large, and the least in the torso (T) unit.

3.5.3.3 Average Mean and Standard Deviation of Inter-Activity Dis-

tances per Sensor

To summarize the results with respect to the sensors, the mean and standard

deviation values belonging to different subjects and units are averaged out for

each sensor. That is,

D
avg., sensor

activity pair, s = mean
p,u

(
Dactivity pair, p,u,s

)
(3.26)

and

D̃avg., sensor
activity pair, s = mean

p,u

(
D̃activity pair, p,u,s

)
. (3.27)

The results are shown in Figure 3.6. It is observed that there are differences

up to the order of 100 in the average intra-class distances, because the mea-

surement units, sensitivities, and the operating ranges of the three sensor types
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Figure 3.5: Average mean and standard deviation of inter-activity distances for
each unit in terms of the (a) absolute, (b) Euclidean, and (c) DTW distances
calculated using zero-mean time-domain data.
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(accelerometer, gyroscope, and magnetometer) are different. In addition, the fig-

ure gives information about the axes of the sensors. For the accelerometers, the

x-axis has greater difference among the activities, whereas the z- and y-axes of

the gyroscopes and magnetometers are the most varying ones, respectively.

3.6 Discussion

It is observed that the type of normalization used significantly affects the results

of the comparisons. For instance, the method proposed for identifying the best

subject (see Section 3.5.1) results in different ‘best’ subjects for the three normal-

ization types and the raw time-domain data. In addition, the average similarity of

the data between different activities also differs for the three normalization types

(see Section 3.5.3). For example, activity A8 (moving around) has the smallest

inter-subject distance in terms of signals normalized between −1 and 1, whereas

activity A4 (lying on right side) has the smallest inter-subject distance in terms

of the zero mean signals for the absolute distance measure. These results also

differ depending on whether the time-domain signals or their features are used.

For instance, subjects 2 and 5 are identified as the ‘best’ subjects in terms of the

DTW distance measure applied to the time-domain signals and feature vectors,

respectively, both normalized between −1 and 1. The use of time-domain signals

can be considered to be more suitable for quasi-periodic or stationary activities

such as sitting (A1) or ascending stairs (A5), and the feature vectors are suitable

for those activities with random elements such as moving around (A8) or playing

basketball (A19). Although the average distance values that provide information

about the similarity between the signals are very different in terms of the three

distance measures, the sorting of the distance values rarely changes, indicating

that the distance measures do not alter the comparison results as much as the

normalization type.

The data of the standing activity (A2) varies the least between the subjects

in the aforementioned dataset because this activity is quite stationary, the body

posture is mostly the same in all subjects, and the anthropometry of the subjects
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Figure 3.6: Average mean and standard deviation of inter-activity distances for
each sensor in terms of the (a), (d), (g): absolute, (b), (e), (h): Euclidean, and
(c), (f), (i): DTW distances calculated using zero-mean time-domain data. The
sensor numbers are 1–9 from left to right in the whole figure.
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does not affect the sensor signals significantly (see Section 3.5.2). On the con-

trary, relatively random activities such as jumping (A18) and playing basketball

(A19) have much greater inter-subject distance because the signals in the time

domain are not very suitable for comparing random activities. This fact supports

the argument that the random signals are compared better in terms of their fea-

tures. Another reason is that the sub-activities in these random activities such

as dribbling in playing basketball do not happen at the same time instants in the

different subjects’ experiments, hence yielding a large distance value in compar-

ing them in the time domain. Although the DTW distance tries to match them

to obtain the highest similarity, it gives penalty to the unmatched subsequences

and large amounts of warping, still resulting in a relatively large distance.

The average distance between the activities of subject 6 is the smallest among

all the eight subjects, whereas that distance is the largest for subject 7 (see Sec-

tion 3.5.3.1). This shows that subject 7 performs the activities in a more exagger-

ated way; i.e., with a larger amplitude, whereas subject 6 does the opposite. The

inter-activity distances of the sensor units on the legs are the largest, whereas the

torso unit has the smallest variation among the activities. The obvious reason is

that the legs move much more than the arms and the torso in the activities of the

aforementioned dataset (see Section 3.5.3.2). The inter-activity variations of the

three axes of each of the three sensors are also quite different (see Section 3.5.3.3).

For example, the z-axes of the accelerometers do not vary much when compared

to the x-axes. However, different sensors cannot be compared with each other

because of their different scales and measurement units. For instance, it is not

reasonable to claim that the gyroscope signals vary less than the accelerometer

signals from the provided results.

Note that, although the proposed method to identify the best subject seems

to evaluate the performances of the subjects, it may not always be the case

because physical attributes of subjects and their personal styles in performing

the activities significantly affect the results. In other words, these results mainly

show how similar each subject performs the activities compared to all the others.
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3.7 Conclusion

In this part of the thesis, inter-activity and inter-subject distances are investi-

gated based on the dataset that our research group has acquired in [35]. Distances

between the signals of distinct subjects in the dataset are presented by averaging

out for each activity and subject. A description of the ‘best’ subject is pro-

vided and the best subject is identified according to the inter-subject distances.

Absolute, Euclidean, and DTW distance measures are used comparatively. The

calculations are repeated for raw signals, zero-mean signals, and feature vectors.

The effects of the three distance measures and removing the mean values are

discussed. Moreover, the inter-activity distances are presented by averaging out

for each subject, unit, and sensor.

Measuring the similarity between two or more subjects in a particular activity

may be useful in a setting where a subject is training the others to perform some

activity, such as in sports, dance figures, teaching to use a tool or an instrument,

or teaching rehabilitation exercises to a patient. The trainer performs the activity

properly but during the learning stage, the trainees will frequently deviate from

the proper motion. The approach presented here could be used as a measure of

the errors or deviations of the trainees during the learning process. In particu-

lar, in post-stroke rehabilitation, DTW is applied to the measurements obtained

from strain sensors placed on the upper limb in order to measure the accuracy

of the movements [41]. However, since physical attributes of the subjects may

significantly affect the results, the trainees can be forced to perform the correct

movements once if possible, and those measurements can be taken as the refer-

ence. In this way, during the training session, the measurements of the trainee

will be compared with his/her own reference data, and the similarity (opposite

of distance in this method) will be given as a feedback so as to improve his/her

performance. In the next chapter, we investigate this problem and apply one of

the distance measures provided here to physical therapy exercises.
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Chapter 4

Automated Evaluation of

Physical Therapy Exercises Using

Multi-Template Dynamic

Time-Warping on Wearable

Sensor Signals

Physical therapy is an important type of rehabilitation in the treatment of various

disorders. It usually requires exercising in a hospital or a rehabilitation center

under the supervision of a specialist [61]. In many situations, after learning how

to do the exercise movements correctly, the patients need to perform the exercises

at home because they may not be able to go to the hospital frequently, they may

not want to be in the hospital environment, or the physical or personnel capac-

ity of the hospital may not allow them to do so [41]. Even if the patients are

able to undergo physical therapy sessions in the hospital, the specialists cannot

follow each patient continuously during their exercise sessions. This is because

the specialists often alternate between at least several patients or they may have

other tasks to do in between, resulting in poor feedback [42]. Moreover, different

specialists often provide different feedback to the patients due to their subjective
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evaluation and the lack of systematic rules and guidelines for performing exer-

cises [43]. For instance, some specialists may allow a larger amount of deviation

from the ideal movement the patient needs to execute. Therefore, the problem is

not only the lack of feedback in at-home physical therapy, but also the lack of an

objective and accurate feedback mechanism in physical therapy even if performed

under the supervision of a specialist [41].

Another aspect in physical therapy is the amount of exercise the patient per-

forms. The “amount” is often measured in terms of the number of executions of

an exercise, or worse, the duration of the exercise session, both of which may be

misleading. In the former, the patient may perform the exercises in lower ampli-

tude or in a quicker way resulting in less effective therapy. In the latter, different

patients usually perform different number of executions in the same duration. In

the past studies, to obtain more accurate information about the effectiveness of

an exercise session, the intensity is estimated based on the duration of the active

time [62] or the energy expenditure [63] of the patient. Both of these methods

fail if the patient performs the exercises incorrectly. The exercises need to be

evaluated objectively to assess the effectiveness of the session. Furthermore, it is

also very difficult for a specialist to estimate the therapy intensity of a patient

because s/he needs to count the number of correct executions of the exercises,

which is difficult even when s/he is responsible from only a single patient and im-

possible when there are several patients monitored by the same specialist. Hence,

accurate estimation of the intensity of an exercise session is also an important

problem.

To solve the aforementioned problems, an autonomous system is developed

that detects all the executions of one or multiple exercise(s) in an exercise session,

evaluates each execution as correct or incorrect, and classifies the type of error if

there is any, based on one of the comparison methods of different inertial sensor

and accelerometer signals presented in Chapter 3. The system also quantifies the

similarity between each execution and the ideal execution using a modified ver-

sion of the DTW distance measure used in Chapter 3, and outputs how good the

patient performs. For this reason, small and lightweight sensor units that contain

inertial sensors and magnetometers need to be worn by the patient during the
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therapy sessions. The sensors are inexpensive and can be easily carried and worn

by the patient, allowing at-home rehabilitation. For the system to detect the

correct and incorrect executions of the exercise movements and the error types,

the patient first executes the exercises in the correct way and in two different

incorrect ways under the supervision of a specialist. Then, the system compares

the detected executions with the supervised recordings to evaluate them. Once

individual executions are detected and evaluated, statistical information includ-

ing but not limited to the total number of executions the patient performs, the

number of correct executions, the accuracy of the executions, and the active and

the idle intervals in the physical therapy session can easily be determined. This

can be used as feedback for the patient as well as the specialist, to whom the

results can be sent remotely.

The most important advantage of the proposed methodology is that the pa-

tient does not need to push a button before each execution, or even select the

exercise that s/he will perform. This makes the system usable in a physical

therapy session of any duration, theoretically consisting of unlimited number of

executions. In the experiments, it is observed that this autonomous methodol-

ogy causes rare misdetections (MD) and false alarms (FA), which are tolerable

considering that the system is much easier to use compared to the systems in

other studies such as [64]. In addition, since the system proposed in this thesis

does not use information on the sensor types, the number of sensors and units,

and the sensor placement on the body, any sensor configuration that captures

the movements sufficiently can be directly used with this algorithm without any

modifications or adjustments. This is a significant advantage over many previous

studies employing a 3-D human body model to evaluate the exercises, because

in these studies such as [42, 65–67], the types, positions, and orientations of the

sensors on the body are previously determined—the system needs to be modi-

fied considerably in case of a change in the sensor configuration. In addition,

these types of systems often require separate rule-based methods to evaluate the

correctness of the exercise executions, which makes them extremely difficult to

configure for newly added exercise types. However, in our system, if a new exercise

needs to be added, the only requirement is to record the templates of the differ-

ent execution types of that exercise performed by the patient. This can be easily
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done by a physiotherapist, not an engineer who develops the system. Consider-

ing that there are numerous physical therapy exercises for different disorders, the

“unsupervised” architecture of the algorithm allows flexibility in hardware type,

hardware configuration, and exercise type.

The proposed methodology can be applied to all the patients who are assigned

one or more exercise(s). Cardiopulmonary, neurology, orthopedics, and pediatry

are the most common areas where rehabilitation treatment is used [68]. In par-

ticular, about the 110,000 people who experience a stroke, more than 75% require

rehabilitation in the whole of U.K. [67]. Hence, there are many patients who can

benefit from such a system.

The subsequence DTW algorithm (see Section A.3) applies the DTW to the

template signal and the best-matching subsequence of the test signal. In order to

search for different templates in a continuous and long test signal while allowing

some flexibility, a novel algorithm, namely multi-template multi-match dynamic

time-warping (MTMM-DTW) is developed as an extension of the subsequence

algorithm. The algorithm allows template signals of different durations, and a

test signal of any duration. It is highly adaptable to be used in different schemes

because how much flexibility it will allow in the signals, how aggressive it will be

in detecting the occurrences, how much overlapping it will allow in between the

occurrences, and how short the matched subsequences may be are all adjustable

as desired. Moreover, the algorithm only uses the two outputs (the distance and

sample indices of the matched subsequence) of the subsequence DTW algorithm;

thus, MTMM-DTW can be executed with any modifications and variations in

the subsequence DTW, allowing even more flexibility.

This chapter is organized as follows: In Section 4.1, the related work is summa-

rized. In Section 4.2, the extensions of the standard DTW algorithm (provided in

Appendix A) including the MTMM-DTW algorithm are explained. Experiments

and their results are presented in Section 4.3. Finally, conclusions are drawn in

Section 4.4.
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4.1 Related Work

Several different sensor technologies are used in physical rehabilitation, including

inertial [42, 43, 61, 62, 64–66, 69–79], visual [65, 66, 70, 71, 80], strain [41, 45] and

medical [43] sensors. However, many studies are based on estimating the activi-

ty/therapy intensity [61, 62, 74] or the energy expenditure [63] using the sensors

rather than determining the accuracy of the physical therapy exercises. In nu-

merous studies, a 3-D real-time human body model is built in order to observe

the movements [42,65–67,74,80,81]. A major purpose of monitoring the patients’

body movements is that the patients are aimed to do the given exercises to com-

plete necessary tasks in video-game-like virtual environments, making exercise

sessions more enjoyable [67, 76].

Another approach is biofeedback, which helps the patient and the specialist

better observe the patient’s body [82]. Biofeedback devices transform the sensor

measurements of the body to hearable sound, a blinking LED, or an observable

shape on the screen [83]. For example, for muscle strengthening or relaxation,

electromyography signals measuring muscle tension are used [84]. Although there

are portable solutions, most biofeedback devices are immobile and costly and are

mostly used in hospitals or rehabilitation centers [44]. In addition, most devices

do not evaluate the performance of the patient, or evaluate the results using a

simple threshold, hence require the evaluation of the feedback by a specialist or

sometimes the patient himself [44], both of which can be highly subjective. There-

fore, biofeedback devices cannot take place of the specialist in most situations. In

addition, since they provide the result of the performed action as feedback, the

patient may not know what to do in order to obtain the desired result. In partic-

ular, biofeedback devices for muscle strengthening or relaxation do not guide the

patients to perform a recommended movement or evaluate the movement itself;

instead, they output the state of the muscle. Hence, biofeedback devices cannot

be used to monitor/evaluate the accuracy or the amount of exercises the patient

does.

Here, we provide a summary of those studies aiming to estimate the accuracy

of physical therapy exercises or classify them as correct/incorrect:
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Fergus et al. [42] developed a system that collects and stores the motion data

of the patient, utilizing body area and sensor networks including inertial sensors.

The system shows the body motions on a 3-D human body model either in real-

time or using the stored data. The proposed approach for telerehabilitation is

that the physiotherapists monitor the body motions remotely to measure the

patient’s progress [42]. However, the proposed solution is impractical and does

not significantly improve the inspection time since the system itself does not

provide any information about movement capability, movement accuracy or the

patient’s progress [42].

Taylor et al. [73] built a classifier that labels incorrect exercises prescribed for

knee osteoarthritis, a degenerative disease of the knee joint, using five body-worn

tri-axial accelerometers. Three exercises are performed by nine healthy subjects

rather than patients who have the disease. The exercises are performed in the cor-

rect way as well as with a particular error such as “performing fast” or “knee not

fully extended.” The errors are different for each exercise and are mostly labeled

by non-experts [73]. Several features extracted from the accelerometer data are

used in the AdaBoost classifier to classify the exercises as being correct or having

a particular error. Classification results are presented by using within-subject,

across subjects, and subject-based L1O cross-validation techniques. However,

multiple errors are not allowed by the methodology used and the classification

accuracy is about 70% in most cases, which is not very good.

In [78], an Android application estimating the accuracy (i.e., score) of bal-

ancing board exercises using the internal accelerometer and magnetometer of a

smartphone is developed. In this project, a complex rule-based algorithm is pro-

posed to obtain a score value closest to the score given by an expert and the

difference between the human and automatic scores is less than 10 points in

more than 75% of the exercises on a 0 to 100 scale [78]. However, the proposed

methodology does not yield an optimal solution, and different rule-based scoring

algorithms are used for different exercise types.

In myHeart neurological rehabilitation concept [45], the accuracy of the arm

movements in physical therapy are determined by using strain sensors. Healthy
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subjects wearing garments with printed strain sensors imitated how post-stroke

patients perform both correct and incorrect movements for each of the seven

exercise types under the supervision of a doctor. Open-end variant of the DTW

algorithm is used to compute the similarity between the recorded signal and pre-

recorded correct template. The system decides that the activity is performed

correctly if the similarity is greater than a threshold, which can be determined

individually for each subject [78]. During the exercise, the system continuously

compares the measured signals with the first part of the template and gives real-

time feedback to the patient about the movement accuracy. The classification

accuracy is 85% on average. The disadvantage of the system is the difficulty of

wearing the garment—since the garment must be tight-fitting, it would usually

be very difficult for a post-stroke patient to wear, especially when compared to

the inertial sensor units that can be worn as bracelets or other accessories.

In [41], strain sensors worn on the arm are used again to provide real-time feed-

back to neurological patients undergoing motor rehabilitation. Seven exercises are

executed by a healthy subject wearing a left-handed sensorized long-sleeve shirt

both correctly and incorrectly at various speeds. The system checks whether

the measured signals “match at most once a prefix of one of several stored ref-

erences, used as templates” [41] in order to detect which activity is performed.

Then, the classifier selects a class among the correct class (including different

execution speeds) and the incorrect classes “movement too small,” “typical com-

pensatory action 1,” and “typical compensatory action 2.” The dissimilarities

between the strain signals are measured as DTW distances using the open-end

DTW algorithm and they are fed to a 1-NN classifier both in exercise recogni-

tion and correctness/error type classification. The disadvantage of the proposed

system is again the difficulty of wearing the sensorized shirt.

m-Physio platform [64] classifies the physical rehabilitation activities as cor-

rect/incorrect using accelerometers. In m-Physio, the smartphone iPhone con-

taining a tri-axial accelerometer is mounted on the patient’s leg or arm depending

on the exercise he performs. The accuracy of the exercises is determined by the

ordinary DTW algorithm applied to the accelerometer signals to compare the
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exercise performed with the pre-recorded template. Four steps are involved in

the m-Physio platform [64]:

• exercise capture: The patient performs the rehabilitation exercises correctly

under the supervision of a specialist and the accelerometer signals of (one

instance of) each exercise are stored as templates. The specialist also deter-

mines four parameters for each exercise type: the movement’s minimum and

maximum exercise duration, the sampling frequency of the accelerometer,

and the amount of smoothing applied to the measured signals.

• exercise training: The patient performs the exercises under the supervision

of a specialist several times and the system provides feedback as correct/in-

correct/too short in time/too long in time on the iPhone screen for each

repetition. The specialist checks whether the patient performs the exer-

cises accurately and whether the system provides accurate feedback. S/he

returns to the previous step to revise the parameters or record a new tem-

plate if necessary.

• personal rehabilitation: In this step, the patient performs the exercises with-

out the need for a specialist and the system provides feedback to the patient

on the iPhone screen as correct/incorrect/too short in time/too long in time.

This way, the patient is able to learn if he is performing the movements

correctly. When he performs incorrectly, he has an opportunity to improve

during the training session. In addition, the system records and uploads

the patient’s statistics to a centralized database.

• web application: The specialist remotely checks the patient’s status us-

ing the web interface connected to the centralized database and contacts

him/her when necessary.

However, before and after the patient performs each execution of an exercise, he

has to touch the iPhone screen to mark the start and the end of each exercise,

which is not practical. This is not only necessary to determine the movement

duration, but also because the similarity measure used to compare the signals
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(DTW) penalizes the additional unmatched parts in the beginning and at the

end of the signals. Another disadvantage of the m-Physio platform is the need to

determine the aforementioned four parameters in the exercise capture phase. The

specialist determines them by trial and error, which may easily alter the accuracy

of the system.

In summary, in the previous studies, either the executions of the exercises are

cropped manually, the subject marks each execution by pressing a button, or the

subject performs each execution when s/he is informed by the system by a sound

or on-screen notification. In addition, no idle time periods are involved in the

studies evaluating the executions. There exist studies that estimate the active

duration of the patient in an exercise session (for example, [62, 63]), but they

neither detect the executions of activities nor evaluate them; they simply estimate

the intensity of the session. On the other hand, once the exercise movements are

recorded, the system proposed in this thesis automatically detects the movements

as well as the idle time periods, if there are any, during an exercise session,

independent of the number of exercise types. The system also classifies each

movement as one of the exercise types and evaluates it, indicating the error type

if there is any. The patient neither needs to press a button in the beginning

and the end of each execution nor select the exercise he is going to perform. A

physiotherapist is needed only while recording the movements in order to make

sure that the patient performs the exercise correctly or with a predetermined

error. Then, the patient can perform the exercises anywhere provided that he

properly wears the sensors, and can observe how well he performs. Since the

system also counts the executions, it can be used to notify the patient when he

completes the advised number of repetitions in a given time interval. The results

may also be checked by an expert to observe the patient’s progress.

4.2 Modifications to the DTW Algorithm

In this chapter, we propose to use a modified version of the DTW algorithm,

namely multi-template multi-match DTW (MTMM-DTW), which is suitable for
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detecting the occurrences of multiple exercise templates in a recorded signal. This

makes it possible to identify correct and incorrect executions of an exercise (in-

cluding two commonly occurring types of error), the counting of the exercises,

and their classification over 8 most commonly assigned arm and leg exercises,

which are selected by consulting a physiotherapist at the Gülhane Military Med-

ical Academy, Turkish Armed Forces Rehabilitation Centre [85].

For the detection of multiple occurrences of multiple templates, an approach

based on DTW is selected because the DTW algorithm (see Appendix A) is much

more flexible than the absolute and Euclidean distance measures in comparing

two signals since it tries to match the similar parts of the signals. This may be

beneficial when the variation in different executions of the same physical therapy

exercise is considered. The speeds or durations of some parts of the exercise

movement may change, which should be tolerable. For instance, if the exercise

contains a phase at which the patient waits for 5 s, the distance should not increase

significantly when the patient waits for 4 or 6 s. On the other hand, at the same

time, the distance measure should not tolerate differences in the amplitude, which

occurs, for example, when the patient waits for 5 s in a different position. If the

absolute or Euclidean distance measures are used, both variation types affect the

distance value and it is not possible to allow one of them while penalizing the

other. However, the DTW algorithm naturally compensates linear or nonlinear

changes in the time (or sample) axis but not changes in amplitude, which is

desired in this scheme.

Firstly, the single-template multi-match DTW (STMM-DTW) algorithm that

is developed to detect possibly multiple occurrences of a template signal in a

long signal is described. Then, the MTMM-DTW algorithm that is developed to

detect possibly multiple occurrences of multiple template signals in a long signal

is presented.
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4.2.1 Single-Template Multi-Match DTW (STMM-

DTW)

In the standard DTW and the subsequence DTW algorithms, summarized in

Appendix A, the sequences x and y do not have to be of the same length. The

standard DTW matches their first and last samples to each other, possibly warp-

ing the time (or sample) axes in between to obtain maximum overall similarity.

See Figure 3.1(b) for an illustration. On the other hand, the subsequence DTW

algorithm matches the subsequence of y that is the most similar to the template

signal x. Therefore, the subsequence DTW can be used to search for a segment

that resembles the template in a much longer test signal. It may also be desirable

to detect all of the subsequences in y similar to x in a setting where the template

signal may occur more than once in the test signal. The STMM-DTW algorithm

serves this purpose and is provided below. It is similar to the “Compute Similar

Subsequences” algorithm in reference [86].

Algorithm 1 single-template multi-match DTW (STMM-DTW)

1: N ← length(x)
2: M ← length(y)
3: Mleft ←M {Mleft is the maximum number of successive unmatched samples in y}

4: while Mleft ≥ N/τ {τ is the threshold factor} do
5: Compute DTWsubsequence(x,y) and save DTWsubsequence, m1, and m2

6: y(m1 : m2)←∞ {the ∞-valued samples can never be used in the next DTW executions}

7: if m2 −m1 + 1 ≥ N/τ {the last matched subsequence is sufficiently long} then
8: Add the last match to the list.
9: else

10: Ignore the last match. {the last matched subsequence is too short}

11: end if
12: Mleft ← the maximum number of successive finite samples in y
13: end while

In the STMM-DTW algorithm, the subsequence DTW algorithm is executed

multiple times to obtain multiple subsequences. However, a restriction can be im-

posed on the matches: The length of each matched subsequence must be at least
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N/τ , where N is the length of x and τ is the threshold factor. (This restriction

may be omitted by setting τ = 0.)

The algorithm first executes subsequence DTW and checks whether the

matched subsequence satisfies the length condition. If so, the results are added

to the list of matched subsequences and the values of the matched subsequence

of y are set to infinity in line 6 to prevent this part from matching again in the

subsequence DTW executions that follow. This procedure is repeated until the

maximum number of successive samples in y that were not matched goes below

M/τ , in which case the next matched subsequences will not satisfy the length

condition.

In the STMM-DTW algorithm, the matched subsequences are not allowed

to overlap with each other. This restriction may be loosened to allow some

overlap by replacing line 6 by y(m̃1 : m̃2)←∞ where m̃1 = (1− σ)m1 + σm2

and m̃2 = σm1 + (1− σ)m2 with σ ∈ (0, 1] being the ratio of the matched subse-

quences that are allowed to overlap in the beginning and at the end with another

subsequence. If σ = 1, overlapping is not allowed.

The advantages of the STMM-DTW algorithm are that (1) the number of

subsequences, their locations on the sample axis, and the length of the test signal

y need not be known, (2) the template and test signals x and y may be multi-

dimensional, (3) trivial false matches with a subsequence of length much smaller

than the template signal may be ignored by setting the threshold factor τ , and (4)

the amount of overlapping between the matched subsequences can be adjusted

as desired. Hence, the STMM-DTW algorithm can be used to determine the

busy or idle time periods (in the sense that the known template occurs or not),

to estimate the number of occurrences of the template in the test signal, and

to determine the time instants and the durations of all the occurrences of the

template.
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4.2.2 Multi-Template Multi-Match DTW (MTMM-

DTW)

The STMM-DTW detects possibly multiple occurrences of a single template sig-

nal x in the test signal y. However, in some applications, it may be necessary to

search for a number (K) of different template signals x(1), x(2), . . ., x(K) in y. To

this end, the MTMM-DTW algorithm is newly proposed in this study.

Algorithm 2 multi-template multi-match DTW (MTMM-DTW)

1: M ← length(y)
2: for k = 1→ K do
3: Mleft(k)←M

{Mleft is the maximum number of successive unmatched samples in y for the kth template x(k)}

4: ỹ(k) ← y {the test signal y replicated as ỹ(k) to be used for each template x(k)}

5: end for
6: while Mleft(k) ≥M/τ, ∀k {τ is the threshold factor} do

7: compute DTWsubsequence

(
x(k), ỹ(k)

)
and save DTW

(k)
subsequence, m

(k)
1 , and m

(k)
2

for ∀k
8: k∗ = arg mink′∈{1,...K}

1

length(x(k))
DTW

(k′)
subsequence

{find matched subsequence of the template having the minimum DTW distance per sample of the template}

9: if m
(k∗)
2 −m(k∗)

1 + 1 ≥M/τ {the last matched subsequence is sufficiently long} then
10: add the last match with template number k∗ to the list

11: ỹ(k)
(
m

(k∗)
1 : m

(k∗)
2

)
←∞, ∀k

{prevent the matched samples from being matched in the next DTW executions for all templates}

12: else
13: ignore the last match {the last matched subsequence is too short}

14: ỹ(k∗)
(
m

(k∗)
1 : m

(k∗)
2

)
←∞

{prevent the last matched subsequence from being matched to the same template in the next DTW executions}

15: end if
16: for k = 1→ K do
17: Mleft(k) ← the maximum number of successive finite samples in y for

the kth template x(k)

18: end for
19: end while

The MTMM-DTW algorithm detects possibly multiple occurrences of all of

the template signals in the test signal. Since the multiple templates can have very

different durations and the DTW distance is the cumulative distance obtained by

71



summing the pairwise costs between the samples of the warped template and the

test signals, the DTW distances of the subsequences matched to different template

signals should be normalized by the template lengths (i.e., the number of samples

in the template signals) in order make a fair comparison. To this end, when the

subsequence DTW algorithm is executed separately for each template (in line 7),

the DTW distances of the subsequences matched to a particular template are

divided by the length of that template (in line 8). Then, the subsequence with

the minimum normalized DTW distance is selected, and checked if it satisfies

the length condition: The matched subsequence length (in samples) must be

at least the same as the length of the matching template (in samples) divided

by the threshold factor τ , similar to the length criterion in the STMM-DTW

algorithm. If the subsequence satisfies the length criterion, the subsequence’s

DTW distance, sample interval in the test signal and the matching template

number are saved as an item in the list of matched subsequences. Then, the

matched samples of the test signal are set to ∞ to prevent them from matching

again to any template in the DTW executions that follow (in line 11). On the

other hand, if the subsequence does not satisfy the length criterion, it is ignored

(i.e., not saved to the list), and the samples in the test signal corresponding to

this subsequence are set to∞ only for the template matched to this subsequence in

order to prevent the same subsequence from being matched to the same template

in the DTW executions that follow. Otherwise, exactly the same subsequence

is going to be matched to the same template in all of the following iterations

since subsequence DTW always finds the best matching subsequence and does

not contain any randomness. The sample range of the test signal is not the same

for all of the template signals because if the subsequence does not satisfy the

length criterion, there are three possibilities in the following DTW execution:

another subsequence matching with the same template at a different location

in the test signal may be found (1) satisfying or (2) not satisfying the length

criterion, or (3) a subsequence matching with another template (at the same or

different location) in the test signal may be found. Therefore, the last matched

subsequence must be “invisible” to the template signal matching to it (without

satisfying the length criterion) in order for it to be able to match to subsequences

at different positions [cases (1) and (2)], but at the same time “visible” to other
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templates to allow them finding another match in the same position (since the

previous match is ignored) [case (3)].

In the MTMM-DTW algorithm, the matched subsequences (associated either

with the same template or different templates) in y cannot overlap with each

other. Similar to the STMM-DTW algorithm, this restriction can be loosened by

replacing the sample range
(
m

(k∗)
1 : m

(k∗)
2

)
in lines 11 and 14 by

(
m̃

(k∗)
1 : m̃

(k∗)
2

)
where m̃

(k∗)
1 = (1− σ)m

(k∗)
1 + σm

(k∗)
2 and m̃

(k∗)
2 = σm

(k∗)
1 + (1− σ)m

(k∗)
2 with

σ ∈ (0, 1], where σ is the ratio of the matched subsequences that are allowed

to overlap in the beginning and at the end with other subsequences. Overlapping

is not allowed if σ = 1.

The advantages of the MTMM-DTW algorithm are similar to the STMM-

DTW: (1) The number of templates, the number of subsequences, their positions

on the sample axis, and the length of the test signal y need not be known, (2) the

template and the test signals x and y may be multi-dimensional, (3) trivial false

matches with length much smaller than the matching template signal may be

avoided by setting a threshold factor τ , (4) the amount of overlap between the

matched subsequences can be adjusted as desired, and (5) the algorithm can

detect all the occurrences of the templates in the test signal and classify the

detected subsequences. With these properties, the algorithm can be used for

several different purposes: classification of a signal given multiple template signals

(pattern recognition), detecting the occurrences of all the templates in the test

signal with their time instants and durations, estimating the number of repetitions

of all the templates in the test signal, or all of them. Note that, knowing only

the template signals and the test signal, MTMM-DTW automatically extracts

the samples inside the test signal, forming the test dataset, and also classifies the

detected subsequences. To reduce possible false alarms or misdetections, the local

weights wd, wh, wv (see Section A.2), the threshold factor τ (see algorithm 2),

and the overlap ratio σ (explained in the preceding paragraph) can be adjusted

specific to the application.

A similar algorithm is proposed in reference [87] that recognizes multiple tem-

plates in a lengthy signal. However, that algorithm assumes that the long signal
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consists of templates connected in a continuous manner, where there are neither

idle periods nor unmatched intervals, and applies open-end DTW (see section A.3)

sequentially to the long signal to detect the templates. Indeed, it divides the long

signal into intervals where each interval is classified as one of the templates. Thus,

it is not as flexible as the MTMM-DTW algorithm proposed here.

4.3 Experiments and Results

4.3.1 Physical Setup

Body-worn sensor units containing inertial sensors and magnetometers are used to

capture the body motions. Five MTx units manufactured by Xsens Technologies

[29] are fixed to different positions on the subject’s body. Each unit contains

a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer.

The ranges of the accelerometers in units 4 and 5 are ±5g, and in units 1–3 are

±18g, where g = 9.807 m/s2 is the gravitational constant. The ranges of all the

gyroscopes and magnetometers are ±1200◦/s and ±75 mT, respectively.

Two different sensor configurations are used to capture leg and arm move-

ments because the exercises considered in this thesis require only arm or only leg

movements. In the first configuration [shown in Figure 4.1(a)], which is focused

on leg movements, units 1 and 2 are placed on the outer sides of the left and right

ankles and units 4 and 3 are placed on the outer sides of the left and right knees,

respectively. Unit 5 is placed on the torso. The second configuration [shown

in Figure 4.1(b)] is designed to capture right arm movements, where unit 1 is

placed on the outer side of the right knee, unit 2 is placed on the wrist, unit 3

is placed on the inner side of the upper arm above the elbow, unit 4 is placed

at the top of the right shoulder, and unit 5 is placed on the torso. Since these

sensor configurations are designed to capture only the right arm and the right leg

movements, they are not symmetrical on the human body. The system does not

use the knowledge of sensor placement or sensor orientations and does not rely on

rule-based algorithms; therefore, the sensor units can be placed anywhere on the

74



body to properly capture the movements of specific exercises, provided that the

configuration is the same in recording the templates and exercising. Moreover,

additional units or sensors can be used, or some redundant units or sensors may

be excluded if desired. For this reason, the proposed system is highly flexible and

modular, especially when compared with the systems modeling the human body

and evaluating the exercises based on rule-based algorithms.

All of the sensors are calibrated by using the default calibration procedure of

the system and sampled at 25 Hz. Therefore, there are 9 sensors× 5 units = 45

discrete-time signals recorded in the experiments. The units of accelerometer

and gyroscope signals are m/s2 and rad/s, respectively. The unit of the magne-

tometers is stated to be “arbitrary units normalized to earth field strength” by

the manufacturer [29]. Hence, the magnetometer signals are expected to vary

between −1 and 1 as long as there are no external magnetic field sources.

4.3.2 Exercises

The exercises considered in this thesis were suggested and approved by a medical

doctor, namely physical therapy specialist Assoc. Prof. Dr. İlknur Tuğcu, at the

Gülhane Military Medical Academy, Turkish Armed Forces Rehabilitation Cen-

tre [85]. They are the most commonly assigned exercises to patients, mostly for

orthopedic rehabilitation. A brief description of each exercise is provided below:

1. while sitting on a high flat surface, raising the right leg, waiting for 5 s with

the right knee kept straight, and returning to the initial position

2. while sitting upright on a stool and the arms hanging downwards, bending

the upper body 30◦ to the front, waiting for 5 s, and returning to the initial

position

3. while lying flat on the back on a flat surface, raising the right leg from the

hip joint with the right knee and left leg kept straight, waiting for 5 s, and

returning to the initial position
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Figure 4.1: Sensor placement on the human body. (a) The first and (b) the
second configuration that focus on the right leg and the right arm movements,
respectively. The Xsens MTx sensor units are shown as boxes with the arrows
and the cables being z and −x direction of the sensors, respectively. The y axis
can be found considering that right-handed coordinate systems are used.

76



4. while lying flat on the left side on a flat surface, raising the right leg from

the hip joint with the right knee and left leg kept straight, waiting for 5 s,

and returning to the initial position

5. while lying flat with the face downwards on a flat surface, raising the right

leg from the hip joint with the right knee and the left leg kept straight,

waiting for 5 s, and returning to the initial position

6. while sitting on a chair, keeping the right arm straight with the right hand

being close to the right knee and the palm facing upwards, raising a 1-kg

weight held in the right hand upwards from the elbow joint, waiting for 5 s,

and returning to the initial position

7. while standing upright with the right arm kept straight and hanging down-

wards, raising a 1-kg weight held in the right hand to the right side from the

shoulder joint while keeping the elbow joint straight, waiting for 5 s with

the right arm being in a horizontal position, and returning to the initial

position

8. while lying flat with the face downwards on a flat surface, the right arm

being out of the surface in a horizontal position, with the right arm making

an angle of 90◦ with the trunk and the right forearm hanging downwards,

the elbow joint at 90◦, raising the right forearm upwards to make the elbow

straight, waiting for 5 s and returning to the initial position
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4.3.3 Experiments

The experiments are designed to test whether the proposed MTMM-DTW algo-

rithm is able to

1. detect the exercises within a long signal recorded in a typical exercise ses-

sion, and hence determine the idle time periods and estimate the number

of repetitions of the exercise(s),

2. classify each exercise type,

3. determine whether the exercise is performed properly or not, and classify

the error type if there is any.

Two commonly occurring errors that patients make during exercise sessions

are the following:

1. they perform the movements too fast that they do not wait for the required

amount of time in a certain position in order to quickly complete the number

of repetitions they need to perform in a day or during an exercise session,

or

2. they perform the exercises in low amplitude; that is, they do not completely

execute the movement. This may be caused by physical incapability (such

as after a stroke) or by negligence, carelessness, etc.

In the following, these will be referred as type-1 and type-2 errors, respectively.

Therefore, there are three execution types for each experiment: (1) correct, (2)

with type-1 error, (3) with type-2 error.

Since the proposed system works by matching the subsequences in a long signal

that are similar to the provided templates, all execution types of each exercise

must be recorded (by the same subject to increase the accuracy) beforehand,

which is called the training phase. To this end, each patient first performs all

three execution types of each exercise he is assigned under the supervision of a
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specialist and the templates are recorded. Then, the system uses these templates

to evaluate the exercises he performs without any supervision. If the patient is

unable to execute the exercises in the training phase because his/her muscles have

not sufficiently developed yet or if s/he feels too much pain, the specialist is able

to apply external force to make the patient execute the exercises [85].

To evaluate the performance of the system completely, all of the occurrences

of the exercise(s) in an experiment simulating an exercise session must be known

including the time interval, the exercise type and the execution type (correct,

type-1 error, type-2 error). However, noting down all the information in each

experiment is cumbersome because then either this detailed information needs to

be recorded in MATLAB to evaluate the accuracy, or the whole system needs to

be evaluated manually. For this reason, the experiments are conducted in a more

systematic fashion.

In an experiment, simulating a typical real-world exercise session, the subject

repeats one of the assigned exercises correctly for 10 times, and then waits until

the 100th second of the experiment. During the waiting time, the subject neither

performs an exercise nor moves too much, hence is considered to be in the “idle”

state. Starting at the 100th second, he repeats the same exercise for 10 times

with type-1 error, and again waits idly, this time until the 160th second. Then,

the subject executes the exercise 10 times with type-2 error, and the experiment

ends without any more idle time periods. Therefore, an experiment in the test

set consists of 10 executions of an exercise for each execution type in addition to

the varying durations of the idle time intervals in between. In Figure 4.2, typical

training and test recordings are illustrated. In Figure 4.2(a), the outputs of the

sensors in unit 2 belonging to the templates for the three execution types are

shown. Manually selected templates in a separate recording are highlighted in

Figure 4.2(a). In Figure 4.2(b), the experiment for exercise 1 performed by the

third subject is depicted. Two idle time periods are observed in the experiment

shown in Figure 4.2(b).

The reason for the need of the subject being stationary in this time period

is that the system searches a known movement (i.e., all three execution types of
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Figure 4.2: Recording of the templates and the experiment for exercise 1 per-
formed by subject 3. (a) The three templates (highlighted with thick lines) for
correct, type-1 error, and type-2 error execution types of exercise 1, (b) the ex-
periment consisting of 10 repetitions of exercise 1 for the three execution types
and idle time periods in between. Only the sensor outputs of unit 2, which is the
most important one in this exercise, are shown.
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subject gender age weight (kg) height (cm)

1 female 55 73 169
2 male 61 85 180
3 male 23 95 180
4 female 48 55 158
5 male 53 98 175

average 60% male 48.0 81.2 172.4

Table 4.1: Physical properties of the subjects who performed the experiments.

every exercise) throughout the experiment since it also performs exercise classifi-

cation.

For the experiments, each of the 5 subjects, whose physical properties are

given in Table 4.1, performed the 8 experiments each corresponding to a different

physical therapy exercise. Since there are totally 5 × 8 = 40 experiments, each

containing 30 executions, the dataset consists of 5 × 8 × 30 = 1,200 exercise

executions as well as some idle time periods in between.

Note that, the dataset is not perfect in the sense that all the executions may

not strictly belong to a particular execution type. For example, an execution

of an exercise with type-1 error may not be sufficiently fast to be classified as

type-1 error, but at the same time it may not be executed completely correctly

to be classified in the “correct” execution type; that is, some samples in the

dataset may belong to more than one class. Because the execution types may

be subjective, different physiotherapists may label them differently. Another

problem in acquiring the dataset is the following: In the experiments, the subjects

are asked to perform a particular execution type of an experiment, instead of

making a physiotherapist label each execution as correct, type-1 error, or type-

2 error. However, the subjects may not perform all the repetitions very well

due to tiredness or just by lack of concentration or interest. For instance, all of

the 10 correct executions of an exercise may not be perfect, as some executions

may be close to type-1 error because of their speeds and some other may be

similar to type-2 error because of their amplitudes. Although we tried to reduce
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this problem as much as possible by repeating the whole experiment if a clear

execution error is noticed, all of the executions are still not perfect.

4.3.4 Movement Detection and Classification

The MTMM-DTW algorithm described in Section 4.2.2 is applied to the dataset

for the detection and evaluation of physical therapy exercises. For each subject,

the template recordings for the three execution types of each exercise are used as

the template signals x(1), x(2), . . ., x(K) with the number of templates K being

24 (= 3 execution types× 8 exercises). The test signal y is the recording of the

same subject’s experiment of the exercise, consisting of 30 executions and two

idle time intervals. Then, the MTMM-DTW algorithm detects the executions in

the recorded signal and classifies them.

There are 45 signals (9 sensors× 5 units) for each recording in the dataset.

However, they cannot simply be viewed as a multi-dimensional signal because

their units are different (see Section 4.3.1). Therefore, the signals are normalized

before being used in the MTMM-DTW algorithm. The normalization is done such

that all of the axes of accelerometer, gyroscope, and magnetometer signals have

unit variance on the average in the whole dataset, including all the 8 exercises

performed by the 5 subjects. To this end, the accelerometer signals are divided by

the average standard deviation of the accelerometer signals in the dataset; hence,

the x, y, and z-axes of the accelerometers in all 5 sensor units are multiplied by

the same coefficient. This is repeated for gyroscope and magnetometer signals.

Note that the signals are normalized before (not in) the MTMM-DTW algorithm;

thus, the normalization coefficients of the 45 signals are the same for the template

and the test signals; i.e., the template and test signals are jointly normalized and

are on the same scale.

In applying MTMM-DTW, uniform local weights are used

(i.e., wd = wh = wv = 1). The threshold factor is selected as τ = 2 to al-

low each matched subsequence have at least half of the duration of the matching

template. The σ parameter (described on p. 73) is selected to be 0.95 to allow
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the matched subsequences overlap up to 5% of their durations in the beginning

and at the end. In addition, the matched intervals having a DTW distance (per

sample of the matching template) less than 10 are omitted, because they are not

sufficiently similar to the matching template.

4.3.5 Experimental Results

The success of the proposed MTMM-DTW algorithm is measured in different

aspects: the number of executions the algorithm detects, misdetection (MD)

and false alarm (FA) rates, specificity and sensitivity values, and accuracy in

classifying the exercises and/or the execution types, all of which are summarized

for the 5 subjects in Table 4.2 and for the 8 exercises in Table 4.3.

1,125 executions are detected in the whole dataset containing 1,200 executions.

This shows that the system makes −6.25% error in counting the exercises. As

observed in Table 4.2, the number of detected executions for each subject vary

between 194 and 255, where the correct number is 240. Table 4.3 shows that

the number of detected executions vary between 115 and 160 for each of the

8 exercises. The variation in the exercises is due to the fact that some exercises

inherently contain movements of lower amplitude compared to the others. For

example, in exercises 4 and 5, the leg movements are small due to the difficulty

of the exercise, and the system can only recognize 85% and 77% of the exercises,

respectively. Considering that the algorithm tries to detect both the correct and

erroneous movements of two types (executed fast or in low amplitude), it is more

difficult to recognize the executions executed in low amplitude. This increases

not only the number of MDs, but also the number of FAs because the templates

belonging to the low-amplitude executions of the exercises are more similar to

the signals in the idle time intervals.

The number of false negatives (idle intervals that are incorrectly recognized

as an exercise execution) are simply the number of FAs; that is, the number

of exercise executions incorrectly detected in the idle intervals. However, the

number of true negatives are also needed to calculate the FA rate, specificity and
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accuracy values. In order to calculate the number of true negatives (idle intervals

that are not recognized as an exercise execution), first the number of samples in

the idle intervals are estimated by dividing the interval’s duration by the duration

of the correctly executed template of the exercise in each experiment, obtaining

the number of negative (idle) samples. Then, the number of true negatives is

calculated by subtracting the number of FAs from the number of negatives. In

this way, the idle time intervals can be counted as negative samples.

The average MD and FA rates1 are 8.58% and 4.91%, respectively, for the

whole dataset (see Tables 4.2 and 4.3). The overall sensitivity and specificity

rates are 91.42% and 95.09%, respectively, in the whole dataset.

The recognized executions and the correctness of their evaluation by the sys-

tem are shown in Figure 4.3. In the figure, the detected executions in the 8

experiments, each containing actually 30 executions of an exercise as well as idle

time intervals, are shown as bars along the time axis. The widths of the bars

indicate the durations of the executions and the heights show the DTW distance

between the executions and the matching templates. That is, the shorter is the

bar, the more similar is the matched subsequence to its template. The idle time

intervals in between the different execution types of the exercises are clearly ob-

served in the figure, where four FAs occur: two in the first experiment, one in

the fifth and one in the seventh experiment. (The figure does not show whether

the matched subsequences are FAs. The actual executions and the MDs are also

not shown.)

The cumulative confusion matrix that contains the three execution types A–C

of exercises 1–8 is shown in Table 4.4. It is obtained by summing up the confusion

matrices of the 5 subjects. The last column and the last row indicate the number

1The MD and FA rates are calculated as

MD rate =
number of MDs

number of positives
=

number of false negatives

number of positives

and

FA rate =
number of FAs

number of negatives
=

number of false positives

number of negatives
.
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Figure 4.3: Detection and classification of exercise executions in all of the 8 ex-
periments performed by subject 5 corresponding to the 8 exercises. Each detected
execution is shown as a bar whose width is the execution’s duration and height is
the DTW distance between the detected subsequence and the matching template.
The bar is red if the execution is classified as an incorrect exercise, blue if the
execution is classified as the correct exercise but incorrect execution type, and
green if the the execution is classified as correct execution type of the correct
exercise. Note that FAs and MDs are not shown.
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of MDs and FAs in each class, respectively. The total number of MDs and FAs

are 103 and 74, respectively.

Although the proposed system does not have the knowledge of exercises and

execution types; that is, it only recognizes the 24 classes (1A, 1B, 1C, 2A, ...,

8C), the exercise and execution type classification can be considered separately.

The matrix elements corresponding to the correct exercise classifications are em-

boxed in the confusion matrix. These elements contain both correct and incorrect

execution type classifications.

Combining the three execution types A, B, and C of each exercise, the 8× 8

confusion matrix of the 8 exercises are obtained and shown in Table 4.5. It is

observed that the system never incorrectly classifies the exercise the executions

belong to, but it misses some executions or detects some additional executions,

yielding MDs and FAs. This shows that the proposed system can also be used

in activity recognition provided that the activities are periodic. In case that the

periods of the same activity vary too much, multiple templates can be used for

one activity to overcome this problem, as is done in this thesis to classify the

execution types of the exercises.

The overall accuracy of the system in exercise classification only2 is 93.46%,

whereas the overall accuracy in both exercise and execution type classification3

is 88.65%. The two accuracy values are summarized for the subjects and exer-

cises in Tables 4.2 and 4.3, respectively. From these tables, it is observed that

the performance of the system varies considerably between the subjects and the

exercises. For example, the accuracy in exercise and execution type classification

2The accuracy of exercise classification is calculated as

number of correct exercise classifications + number of true negatives

number of positives + number of negatives
.

3The accuracy of exercise and execution type classification is calculated as

number of correct exercise and execution type classifications + number of true negatives

number of positives + number of negatives
.
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estimated classes
1 2 3 4 5 6 7 8 MD total

tr
u
e

cl
a
ss

e
s

1 150 0 0 0 0 0 0 0 0 150
2 0 139 0 0 0 0 0 0 11 150
3 0 0 133 0 0 0 0 0 17 150
4 0 0 0 126 0 0 0 0 24 150
5 0 0 0 0 110 0 0 0 40 150
6 0 0 0 0 0 146 0 0 4 150
7 0 0 0 0 0 0 150 0 0 150
8 0 0 0 0 0 0 0 143 7 150

FA 10 19 6 3 15 9 3 9 74
total 160 158 139 129 125 155 153 152 103 1274

Table 4.5: Cumulative confusion matrix of all of the 8 exercises (1–8) summed up
for all of the 5 subjects. The number of MDs and FAs are shown in an additional
column and row, respectively.

varies between 80.69% (subject 1) and 94.62% (subject 5) for the 5 subjects,

and 77.01% (exercise 5) and 94.73% (exercise 6) for the 8 exercises. This shows

that the proposed methodology depends on the types of exercises as well as the

performing subjects. Therefore, the accuracy of the system can be increased by

adjusting the parameters (such as the threshold factor and the overlap ratio in

the MTMM-DTW algorithm and the local weights in the DTW algorithm) for

specific exercises of specific subjects. However, this is not done in this thesis in

order to make the system easy to use—the template signals can be recorded by

a physiotherapist and then the patient can immediately use the system without

any additional tuning.

Note that the computational complexity of the multi-template algorithm is

directly proportional to the number of templates used (see Section 4.3.6), so

one might use only the three templates of the performed exercise to increase

efficiency, in which case the system is assumed to have the information of the

exercise the patient is trying to perform, and hence the patient is required to

select the exercise in the beginning. In addition, this simplification has a chance

to increase the accuracy of the system.

The system proposed here is flexible and adaptable because it does not re-

quire previously defined rules, it does not limit the number of templates, and it
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does not impose constraints on the sensor signals. Therefore, one might remove

the templates of the incorrect executions. Then, the system would match the

incorrect executions to the correctly executed template signals. In this case, the

correctness of the matched executions can be determined based on a threshold

applied on their DTW distance. If the distance is large, which means that the

execution is not sufficiently similar to the template, the execution is classified as

incorrect. Another approach may be using both the incorrect templates and a

threshold: if an execution is matched to the correct template with a large DTW

distance, the feedback would be incorrect execution. This method would be more

robust against unknown errors or movements.

4.3.6 Computational Complexity

The computational complexity of the DTW and the subsequence DTW algo-

rithms is directly proportional to the product of the lengths of the two sequences.

The same is true for the STMM-DTW and MTMM-DTW algorithms since they

both use the subsequence DTW algorithm. The computational complexity of the

MTMM-DTW algorithm is also directly proportional to the number of templates.

However, the algorithm repeats a particular process until a condition is reached;

thus, its efficiency differs for different signals of the same length. Consider, for

instance, two test signals with the first one containing only one occurrence of a

long template signal and the second containing 10 occurrences of a short template

signal. The computational complexity of the MTMM-DTW algorithm is expected

to be higher when the latter signal is used compared to the case with the former

signal because there are at least 10 executions of the subsequence DTW algorithm

in the latter case, whereas there may be a few subsequence DTW executions in the

former case. Therefore, the proposed method does not have low computational

complexity. Nevertheless, the algorithm is efficient enough to be used in real time

on a laptop with quad-core processor at 2 GHz (Core i7 2630QM) and 8 GB of

RAM even when it runs in 32-bit MATLAB. The efficiency increases about 200

times if the subsequence DTW algorithm is programmed in C. If a graphical pro-

cessing unit (GPU) is also used in addition to the central processing unit (CPU),
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the computational complexity increases further up to 29 times [88]. When a field

programmable gate array (FPGA) is used instead of a PC, the subsequence DTW

algorithm runs up to 4,500 times faster than its version programmed in C [88],

which makes the real time implementation possible even on a low-cost PC or a

portable device. To increase the efficiency further, the number of templates at a

physical therapy session can be decreased by requiring the patient to select the

exercise s/he is going to perform in the beginning of the session and using the

templates of (all the execution types of) that exercise.

4.4 Conclusion

In this chapter, a novel algorithm, MTMM-DTW, is proposed to detect all of the

occurrences of multiple templates in a signal. The proposed algorithm is flexible

because (1) there is no limit for the number of occurrences, number of templates,

and durations of signals, (2) the occurrences may be allowed to overlap with each

other at a desired level, (3) each of the template signals may be of any length

since the DTW distance is normalized with respect to the template durations in

the algorithm, (4) the signals may be single- or multi-dimensional, (5) the local

weights can be adjusted to favor specific directions in warping the signals, (6) the

length of each matching subsequence can be restricted relatively to the template

durations to avoid short matches, and (7) any suitable distance function can be

used as a dissimilarity measure.

The proposed algorithm is applied to an important problem in physiotherapy:

automatically detecting the individual executions of given exercise movements in

a physiotherapy session and evaluate them to provide feedback to the patient and

the doctor. For this purpose, the patient wears five sensor units containing inertial

sensors and magnetometers. The system is trained by the patient performing the

assigned exercises in both correct an incorrect ways under the supervision of a

specialist. No adjustments specific to patient are needed. Then, the patient can

execute the exercises on his/her own, wearing the sensor units in the same way

as s/he did in the training phase, and the system provides feedback about the
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correctness of each execution as well as some statistical information such as how

many executions s/he has performed and how many of them were correct for each

exercise type. In other words, the system automatically detects the executions

in the exercise session, classifies each of them as one of the exercise types, and

further classifies them as correctly or incorrectly executed, indicating the error

type if there is any.

The success of the system is evaluated with experiments covering eight

types of exercise performed by five subjects. Each subject performed

each of the three execution types of each exercise once in the training

phase and 10 times in the test phase, yielding a dataset consisting of

120 (in the training phase) + 1,200 (in the test phase) = 1,320 executions in ad-

dition to idle time intervals. With the proposed methodology, 1,125 movements

are detected. 93.46% of the 1,200 executions in the test set are classified as the

correct exercise and 88.65% of which are classified correctly in both the execution

type and the exercise. The algorithm misses 8.58% of the performed executions

and detects 4.91% executions in excess. Considering these outcomes, the perfor-

mance of the proposed method is acceptable, especially in counting the exercises,

which is an important problem in addition to the evaluation of the exercises be-

cause counting the executions of the patient can be cumbersome. In addition,

the automatic evaluation of executions is very important to obtain an objective

result because even direct observation of the exercise session by an expert may

lead to a subjective result [62,63].

The main advantages of the system are that (1) the patient does not need to

push a button to indicate the beginning and the end of the exercise executions,

wait for a signal to start an execution, nor select the exercise s/he is going to

perform, (2) there is no need for the system to be configured for different exercise

movements or different patients; the only need is the recording of the template

executions of each exercise performed by each patient, (3) the system works in-

dependent of the sensor types and placements; hence, any sensor configuration

reflecting the movements properly may be directly used without making any ad-

justments, provided that the configuration is the same in recording the template

signals and using the system.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The scope of theis thesis includes the detection and classification of activities of

daily living (ADLs) using two different types of wearable sensors. First, ADLs are

classified using tag-based RF localization (in Chapter 2). Secondly, variations in

the inertial sensor and magnetometer data of human activities are investigated (in

Chapter 3) with respect to the subjects, activities, units, and sensors. Finally,

Physical therapy exercises are detected, classified and evaluated using inertial

sensors and magnetometers (in Chapter 4). All the measurements are acquired

directly on the human body in 3-D because we believe that “activity can best

be measured where it occurs” [9]1. Positions of the RF tags placed on the body

are estimated in an RF localization system, whereas the measurements of ac-

celerometers, gyroscopes, and magnetometers reflect the movements of certain

body parts in systems utilizing body-worn inertial sensors. The former requires

antennas placed in the environment, but the latter can be used anywhere pro-

vided that the processing of the data is performed on the body or the data is

1This is still valid for RF localization because the positions of the RF tags mounted on
the body are estimated, although it requires external antennas placed on the environment and
external processing.
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transmitted wirelessly to an external unit to be processed. This is not very dif-

ficult or costly when inexpensive, computationally powerful, and power-efficient

portable systems such as mobile phones are considered.

Although both RF localization and inertial sensor-based systems are wearable,

the nature of theses systems and their way of data acquisition are very different.

In the former system, the tag positions are estimated and there is often a high-

frequency noise that can be filtered out without losing much information. In

addition, the performance of the system does not change as time passes. However,

accelerometers and gyroscopes provide rate of velocity and angle, respectively,

instead of the position or angle at that time. Theoretically, the rate information

the inertial sensors provide can be converted to the actual values by integrating

them (twice for accelerometers to obtain the position information and once for

gyroscopes to obtain the orientation information). However, the measurement

errors grow with time unboundedly despite how small they are and the output

tends to drift [39,40]. Furthermore, the bias error at the output of these sensors

is not constant but changes with the operating temperature of the unit. It is

observed that a very high classification accuracy is obtained in activity recognition

with inertial sensors despite that they provide rate information [35] because it may

be thought that daily human activities can also be distinguished by the changes

in the body positions instead of directly the positions of the body parts or the

body posture. Acceptable performance is obtained with position measurements,

too, in classifying ADLs (see Chapter 2).

The main problem in activity recognition using RF localization is the asyn-

chronous position measurements of the RF tags and missing samples that cause

the sampling rate to become non-uniform. This problem is resolved by fitting a

curve to the samples and re-sampling the curves uniformly and synchronously.

Then, their features can be extracted ordinarily. Although this curve-fitting ap-

proach is not mathematically optimal in any sense, acceptable results in classifi-

cation are obtained by using it.

Classifying and evaluating physical therapy exercises is quite different from

activity recognition. In this case, current positions and orientations of body
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parts seem to be more useful than the velocity rate and angular rate information

measured by inertial sensors. For instance, consider a physical therapy exercise

consisting of raising the right leg, waiting, and returning to the initial position

while lying on a flat surface. The exercise should be evaluated as correct both

if the subject completely releases his/her leg so that his/her leg hits strongly to

the surface (case 1) or if he/she slowly lowers his leg so that it touches slowly

the surface (case 2). The only difference in the position (in particular, height

in this movement) of the leg is that the sharp corner in the former case is more

rounded in the latter case. This difference would not be significant if the positions

are estimated with an RF localization system, as desired. However, since the

accelerometer measures the second derivative of the position, this sharp corner

in the position curve causes two high peaks with opposite amplitudes in the

acceleration data in case 1, whereas there are no such peaks at all in case 2. A

similar situation occurs in gyroscope signals. This behavior may be observed in

Figure 4.2 as peaks in the acceleration and gyroscope data. Note that, this does

not happen in the magnetometer signals because they reflect the exact values of

the magnetic field at that instant. Therefore, using an RF localization system

can also be considered for the evaluation of physical therapy exercises.

Another factor that reduces the accuracy of the system that is used in physical

therapy is the unsupervised classification compared with the activity recognition

system. In the latter, most of the classifiers are trained to obtain the best accuracy

in the test set, and the feature reduction process weights and combines feature

values for the best representation (PCA) or separability (LDA). On the other

hand, in the former system, the MTMM-DTW algorithm matches each exercise

execution to the most similar template in terms of DTW distance, as in the 1-NN

classifier. In addition, feature reduction is not applied (indeed, the features are

the signals themselves) to map the samples to a new space for better classification.

This unsupervised manner makes the classification process uncontrollable except

for specifying some parameters.

Each physical therapy exercise is assumed to have three execution types (one

correct and two incorrect) in this study. Also, the two errors are assumed to be

the most common errors made by the patients, namely movement executed too
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fast and movement executed too low in amplitude, referring to a specialist [85].

Sometimes, it is difficult to classify which execution type the executions belong

to because some executions may resemble two classes simultaneously and the

evaluation may be subjective. For instance, an execution may have a little shorter

than the correct one, which may be evaluated as correct or incorrect (fast) even by

two specialists. Furthermore, other types of errors may also be involved. These

factors also make it difficult to label the true classes of the executions in the

experiments, reducing the classification accuracy. For this reason, even if the

system does not make any errors, the accuracy cannot be 100% due to the fact

that the true classes of some samples are ambiguous.

The main contributions of this thesis are as follows: In Chapter 2, a new

approach based on curve-fitting is proposed to solve the asynchronous and non-

uniform sampling of the tag positions. Despite that this method is not optimal

in any sense, the results demonstrate that high classification accuracy can be

obtained with this method. In Chapter 3, the variations in the activity data for

the subjects and activities are investigated through the use of distance measures,

which has not been studied for inertial sensors before. In addition, the effects of

different types of normalization and distance measures are demonstrated. Finally,

in Chapter 4, a system that detects and evaluates the executions of the physical

therapy exercises is developed based on one of the similarity criteria proposed

in Chapter 3. There is no such comprehensive and accurate system that only

requires recording three template executions for each exercise in the training phase

and then automatically detects the executions without any external help using

inexpensive and practical inertial sensors. For this purpose, a novel algorithm is

developed as an extension to DTW to detect the occurrences of one or multiple

signals in a long signal. This algorithm is quite flexible and adjustable that it

may be potentially applied to other areas. The most important advantage of our

system compared to the other systems in the literature is that our algorithm does

not use the information of physical properties of the subjects, a set of rules that

defines the exercise movements, sensor types, sensor orientations and positions on

the body, and the number of axes, sensors, or units. The only requirement is that

these need to remain the same in recording the templates and using the system.

This simplicity also makes it easy to add a new exercise type, a new sensor, or to
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change some or all of the sensors by a non-expert without re-programming the

system.

5.2 Future Work

In the study involving activity recognition using RF localization presented in

Chapter 2, activity recognition through tracking of the body parts can be ex-

plored using the asynchronously and non-uniformly acquired RFID data in its

raw form. Features can be directly calculated from the non-uniformly acquired

samples with special techniques and then classification can be performed. HMMs

can be used for activity spotting and detecting the transition instants accurately.

Variable segment durations that are truncated at the activity transition points

can then be considered. The set of activities can be broadened and activity

and location information can be combined to provide more accurate results. In

addition, the samples themselves may also be used together with the features

extracted from them, since the sampling rate (of the fitted curves) is not high,

because the samples may provide information about the activity that is not cov-

ered by the features. Then, the feature reduction techniques will deal with the

dimensionality problem and high computational complexity by selecting some

(linear combinations of) samples and features in the reduced space. In addition,

the 10 classes other than the “falling” class can be combined to obtain a binary

fall detection problem, which may be solved by using HMMs [89].

In investigating the variations in the activity dataset (Chapter 3), the effects

of physical properties of the subjects may be compensated by developing a specific

method in order to decrease the inter-subject variations of the sensor data. In

addition, the DTW distance may be used in a smarter way: To compare two long

signals, several random periods in the time-domain data of the periodic activities

may be selected and the subsequence DTW algorithm (see p. A.3), which finds

the minimum DTW distance between the short signal and a subsequence of the

long signal, may be applied to each period and the whole part of the other signal

to assess the similarity in a more accurate way.
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For the physical therapy part (Chapter 4), the proposed system may be imple-

mented to run in real-time to provide feedback immediately after each execution.

The parameters can be optimized differently for the individual exercise types and

subjects. The experiments may be performed in a more robust way to minimize

intra-class variations. Different sensor technologies may be used, such as RF lo-

calization, to directly get the position information instead of accelerometers and

gyroscopes that provide the second derivative of the linear position and the first

derivative of the angular position (angle), respectively. In this case, the relative

positions of the RF tags worn on the body will be estimated in 3-D space without

any drift errors that exist in inertial sensors. The main drawback of such a system

compared to inertial sensing would be that it would radiate radio waves to the

environment. Moreover, the system may be used with only one template of the

correct execution of each exercise so that the executions are classified in one of

the exercises according to the most similar template and then evaluated by ap-

plying a threshold to the corresponding DTW distance—if the distance is below

the threshold, meaning that the execution is sufficiently similar to the template,

the execution is classified as correct. However, in this case, it would probably be

needed to determine the threshold separately for each exercise or each subject,

which does not seem to be easy to be done automatically by the system.
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Appendix A

Dynamic Time Warping

The standard DTW matches two discrete-time signals [represented as vectors

x = (x1 x2 . . . xN)> and y = (y1 y2 . . . yM)>] by “elastically” transform-

ing their time (or sample) axes such that they are most similar to each other. See

Figure 3.1(b) for an illustration. To quantize similarity, a local distance (cost)

measure must be defined between two samples x and y as

c(x, y) : F × F → R≥0 (A.1)

with F being the feature space such that xn, ym ∈ F ∀n,m [86]. Since c(x, y)

determines the cost of assigning x and y to each other, the more similar x and

y are, the smaller is the cost (distance). In this thesis, the local cost is selected

to be the square of the distance between x and y: c(x, y) = (x− y)2, as is done

usually.

To find the optimal match between x and y, one can calculate the cost matrix

C of size N ×M between each pair of elements of x and y as

C = [ Cn,m ] = [ c(xn, ym) ] (A.2)

and find the optimal warping path in the cost matrix C with the smallest cumu-

lative cost.

100



A warping path can be represented with the sequence p = (p1, p2, . . . pL) where

pl = (nl,ml) ∈ [1 : N ]× [1 : M ], 1 ≤ l ≤ L. (A.3)

There are three basic conditions for the warping path [86]:

1. Boundary condition: The path starts from the very first element of the cost

matrix and ends at the very last element; i.e., p1 = (1, 1) and pL = (N,M).

2. Monotonicity condition: The path can proceed to the right, to the bottom,

or to any direction in between (such as bottom-right), but it cannot return

back; i.e., n1 ≤ n2 ≤ . . . ≤ nL and m1 ≤ m2 ≤ . . . ≤ mL.

3. Step-size condition (continuity)1: The path can proceed to the neighbor

element at the right, at the bottom or at the bottom-right; i.e.,

pl ∈ {pl−1 + (0, 1), pl−1 + (1, 0), pl−1 + (1, 1)} , 2 ≤ l ≤ L. (A.4)

The total (cumulative) cost of a warping path p between the signals x and y

is defined simply as the sum of the local costs of the matched elements of x and

y:

Cp(x,y) =
L∑
l=1

c (xnl , yml
). (A.5)

Then, the optimal warping path p∗ is the path having minimum total cost among

all warping paths between x and y satisfying the path conditions:

p∗ = arg min
p
Cp(x,y) (A.6)

The DTW distance between x and y is then defined as the total distance of the

optimal warping path:

DTW(x,y) = Cp∗(x,y) = min
p
Cp(x,y) (A.7)

1There are several choices for the step-size condition. See reference [86] for different step-size
conditions.
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Unlike its name, DTW distance does not satisfy the triangle inequality even if c

is a metric and hence DTW distance is not a metric [86].

Instead of an exhaustive search in all possible warping paths between x and

y, which would be extremely inefficient, there is an algorithm with computa-

tional complexity O(NM) based on dynamic programming. For this purpose,

accumulated cost matrix of size N ×M is defined as

D = [ Dn,m ] = [ DTW (x1:n,y1:m) ] (A.8)

where x1:n = (x1 x2 . . . xn) and y1:m = (y1 y2 . . . ym) are the prefixes

of the signals x and y with lengths n and m, respectively, for 1 ≤ n ≤ N

and 1 ≤ m ≤M . Obviously, DN,M is the desired DTW distance; i.e.,

DTW(x,y) = DN,M . The accumulated cost matrix D can be computed relatively

efficiently with the following equations [86]:

Dn,1 =
n∑

i=1

c(xi, y1)

D1,m =
m∑
i=1

c(x1, yi) (A.9)

Dn,m = min {Dn−1,m−1, Dn−1,m, Dn,m−1}+ c(xn, ym)

1 ≤ n ≤ N, 1 ≤ m ≤M

Note that, all the elements of D must be calculated to obtain the very last element

DN,M , which is the DTW distance. By using this method, the DTW distance is

calculated without explicitly finding the optimal warping path p∗. Using D, p∗

can be calculated by initializing p∗L = (N,M) and progressing in reverse order: If

p∗l is computed, p∗l−1 is calculated as

p∗l−1 =


(1,m− 1) if n = 1

(n− 1, 1) if m = 1

arg min {Dn−1,m−1, Dn−1,m, Dn,m−1} otherwise.

(A.10)

This approach will finally end up with p∗1 = (1, 1). In other words, starting at
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the bottom-right element DN,M , the optimal warping path p∗ steps into the next

smallest neighbor element in D (proceeding only to the left, top, or top-left) and

finally ends up with the top-left element D1,1.

A.1 Multi-Dimensional Signals

Note that, one can compute the DTW distance and the optimal warping path of

two signals x and y by knowing only the cost matrix C, which can be computed

by using the local cost function c(x, y) defined on every sample x and y of x and

y. In the case of multi-dimensional signals x and y, the local cost c (x, y) can

be defined to handle this case such that its range is scalar as before. Then, the

DTW and the optimal warping path can be calculated in exactly the same way

as done for scalar signals. In this case, the same “warping” is applied to all the

dimensions of x and all the dimensions of y, considering the overall similarity

between x and y.

A.2 Local Weights

Local weights wd, wh, and wv may be added to the DTW algorithm in order to

favor the diagonal, horizontal, or the vertical direction, respectively, in warping

the signals. The weights are used only when calculating the accumulated cost

matrix D in the following way:

Dn,1 =
n∑

i=1

c(xi, y1)

D1,m =
m∑
i=1

c(x1, yi) 1 ≤ n ≤ N, 1 ≤ m ≤M (A.11)

Dn,m = min


Dn−1,m−1 + wdc(xn, ym)

Dn−1,m + whc(xn, ym)

Dn,m−1 + wvc(xn, ym)
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A.3 Free Endpoints

For some applications, the signals to be matched are cropped manually and hence

exhibit idle parts in the beginning and/or at the end. Sometimes, the signals

naturally contain a prefix or a suffix that contains no valuable information. Then,

the signals should be matched to each other with some unmatched parts in the

beginning or at the end of one of the signals. From now on, the signals x and

y are called the template and the test signals, respectively, assuming the test

signal may contain idle prefix and/or suffix parts, whereas the template signal

does not. This assumption is valid in pattern classification and pattern search

problems, where there are few template signals that are obtained for this purpose

and hence do not contain undesired idle parts, but there are many test signals

that may contain additional parts in the beginning and/or at the end [86].

Using the standard DTW algorithm, the idle parts in the signals will cause

an additional undesired cost, increasing the DTW distance. A better approach

may be to ignore the prefix and/or the suffix of the test signal. To this end,

the standard DTW algorithm can be modified to allow free endpoints, ignoring

prefix or suffix parts of the test signal y. The length of the ignored parts are

selected optimally in the sense that the DTW distance between x and the matched

subsequence of y is minimized [41, 86]. If both endpoints are free, the algorithm

is called subsequence DTW [86] or open-begin open-end DTW (OBE-DTW) [41]

and the resulting distance is

DTWsubsequence = min
m1,m2

DTW [x,y(m1 : m2)] (A.12)

where y(m1 : m2) = (ym1 ym1+1 . . . ym2) is the subsequence of y with

1 ≤ m1 ≤ m2 ≤M . The m1 and m2 values minimizing the DTW distance,

namely m∗1 and m∗2, determine the (optimal) matched subsequence of y to x.

If m1 is set to 1, only the suffix of y is excluded. Similarly, if m2 = M , only the

prefix of y is excluded. Obviously, the standard DTW algorithm is obtained if

m1 = 1 and m2 = M .
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To allow free endpoints, the standard DTW algorithm needs to be modified

as follows:

• To exclude the prefix of y, the first boundary condition of the warping

path is extended so that p1 = (1,m1) with 1 ≤ m1 ≤ M , allowing the

beginning point of the warping path to reside anywhere in the first row of

the accumulated cost matrix D. Thus, the first m1 − 1 samples of y are

ignored. To this end, the first modification in the standard DTW algorithm

is in the calculation of the first row of the accumulated cost matrix D:

D1,m = c(x1, ym) (A.13)

In this way, the first row of D consists of the costs of matching x1 to each el-

ement of y instead of accumulated costs. Since the rest of D depends on this

row, the matrix will be different than the one in the standard DTW. The

DTW distance obtained from the newly accumulated cost matrix (DTW

distance is simply the last element of D) will simply give the desired dis-

tance possibly excluding the suffix of y. The second modification is in the

calculation of the optimal warping path. The optimal path p∗ is calculated

in reverse order as before; however, this time the process ends when the

first row of D is reached; i.e., when p∗1 = (1,m′). Here, the column where

the process ends is the first sample of the matched part of y: m′ = m∗1.

• To exclude the suffix of y, the second boundary condition of the warping

path is extended so that pL = (N,m2) with 1 ≤ m2 ≤ M , allowing the

end point of the warping path to reside anywhere in the last row of the

accumulated cost matrix D. Thus, the last M − m2 samples of y are

ignored. For this purpose, the standard DTW algorithm is executed, but

this time the DTW distance (allowing exclusion of the suffix of y) is the

minimum element in the last row of the accumulated cost matrix D instead

of the last element DN,M :

DTW(x,y) = min
m2

DN,m2 (A.14)
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Here, the optimal valuem∗2 ofm2 determines the exclusion of the lastM−m2

elements of y, simply ignoring the rest of D on the right side. Obviously,

the optimal warping path is now initialized as p∗L = (N,m∗2) instead of

p∗L = (N,M) from the end. The suffix of y is possibly ignored with these

two modifications in the standard DTW algorithm.

• To allow the exclusion of both the prefix and the suffix of y, the two modi-

fications to exclude the prefix (in calculating the first row of D and the new

ending criterion in calculating p∗) and the two modifications to exclude the

suffix (in obtaining the DTW distance from D and in the starting point of

p∗) explained above must be done in the standard DTW algorithm. Then,

the subsequence DTW algorithm is obtained.

Note that, as in the standard DTW, the subsequence DTW algorithm is able

to handle multi-dimensional signals and local weights. Surprisingly, the computa-

tional complexity of the subsequence DTW algorithm is O(NM), which is exactly

the same as the standard DTW, although there are two additional parameters

m1 and m2 that are jointly optimized to minimize the DTW distance.
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