1. **Filling Arrays or Creating Signals in Matlab**

Create the following arrays or matrices in Matlab without using any for loop:

- A 1×100 array consisting of all zero elements.

 Answer: `a=zeros(1,100);`

- A 10×12 matrix consisting of all ones.

 Answer: `a=ones(10,12);`

- 5×5 identity matrix.

 Answer: `a=eye(5);`

- A 1×100 array whose elements are $1,2,3,4,...,99,100$.

 Answer: `a=[1:100];` or `a=[1:1:100];`

- A 1×4 array whose elements are $7,17,27,37$.

 Answer: `a=[7:10:37];`

- A 1×100 array whose elements are $3,7,11,15,...,395,399$.

 Answer: `a=[3:4:399];`

- A 1×100 time array t such that $t(1,1)=0$, $t(1,2)=0.01$, ..., $t(1,100)=0.99$.

 Answer: `t=[0:0.01:0.99];`

- A 1×100 array x such that $x(1,1)=\cos(2\pi 5 \cdot 0)$, $x(1,2)=\cos(2\pi 5 \cdot 0.01)$, ..., $x(1,100)=\cos(2\pi 5 \cdot 0.99)$.

 Answer: `x=cos(2*pi*5*[0:0.01:0.99]);` or `x=cos(2*pi*5*t);` where t is as created in the previous item

2. **Functions with array inputs in Matlab**

Let t denote the time array whose elements are $-1,-0.999,-0.998,...,-0.001,0.001,...,0.998,0.999,1$. Recall that we can create t by issuing the command `t=[-1:0.001:1];`.

On this time grid, compute the values of the following functions without using any for loop. Use as few lines of code as you can.

- $x(t) = 1$

 Answer: `x=ones(size(t));`

- $x(t) = 2t + 3$

 Answer: `x=2*t+3;`
• \(x(t) = 3t^2 - 5t + 1\)
 Answer: \(x=3*t.^2-5*t+1;\)

• \(x(t) = \frac{2t^2-4t+1}{3t^2-2t+3t+2}\)
 Answer: \(x=(2*t.^2-4*t+1)./(3*t.^2-2+5*t+2);\)

• \(x(t) = 2 \cos(2\pi 5t + 1)\)
 Answer: \(x=2*cos(2*pi*5*t+1);\)

• \(x(t) = \sin^3(2\pi 7t)\)
 Answer: \(x=\sin(2*pi*7*t).^3;\)

• \(x(t) = \cos^3(2\pi 2t^2)\)
 Answer: \(x=\cos(2*pi*2*t.^2).^3;\)

• \(x(t) = 3 \sin(2\pi \frac{4t+3}{2t+1}) - 4\)
 Answer: \(x=3*\sin(2*pi*(4*t+3)./(2*t+1))-4;\)

• \(x(t) = \frac{2 \cos\left(\sqrt{\frac{t+1}{t+2}}\right)}{3 \sin\left(\frac{\sqrt{t+1}}{t+2}\right)}\)
 Answer: \(x=(2*cos(((2*abs(t)+1)./(4*t.^2+1)).^0.5))./(3*sin(5*t-2).^3+4);\)

• \(x(t) = e^{j2\pi 10t}\)
 Answer: \(x=\exp(j*2*pi*10*t);\)

• \(x(t) = e^{j3t^2}\)
 Answer: \(x=\exp(j*pi*3*t.^2);\)

• \(x(t) = e^{-\frac{t^2}{\tau}}\)
 Answer: \(x=\exp(-t.^2/\tau);\)

• \(x(t) = e^{-|t|}\)
 Answer: \(x=\exp(-abs(t));\)

3. Extracting Parts of a Matrix or an Array

Let \(x=[x_1 \ x_2 \ x_3 \ x_4 \ \ldots \ x_{98} \ x_{99} \ x_{100}].\) Prepare the following arrays (to test your codes, you can take \(x=[1 \ 2 \ 3 \ \ldots \ 98 \ 99 \ 100];\)):

• \(y = [x_{22} \ x_{23} \ x_{24} \ \ldots \ x_{55} \ x_{56}]\)
 Answer: \(y=x(22:1:56);\)

• \(y = [x_{61} \ x_{60} \ x_{59} \ \ldots \ x_{42} \ x_{41}]\)
 Answer: \(y=x(61:-1:41);\)

• \(y = [x_2 \ x_4 \ x_6 \ \ldots \ x_{98} \ x_{100}]\)
 Answer: \(y=x(2:2:100);\)
4. Some Common Programming Mistakes

4.A.
Suppose \(x \) of size \(1 \times 1000 \) represents a signal \(x(t) \), and \(y \) of size \(1 \times 1000 \) represents a signal \(y(t) \). Let \(g \) represent the signal \(g(t) \) defined as \(g(t) = x(t)y(t) \). The following code tries to compute \(g \) but it has a mistake so Matlab gives an error message. Find the mistake. What is the message that Matlab gives?

\[
g = x*y
\]

Answer: Matlab gives the error message

Error using mtimes, Inner matrix dimensions must agree.

The reason is, the command \(g = x*y \) orders Matlab to perform the matrix multiplication of \(x \) and \(y \). However, under our definitions, the sizes of \(x \) and \(y \) are not suitable for matrix multiplication, so Matlab gives an error message. Actually, even if their size were suitable, our intention is not to compute the matrix multiplication of \(x \) and \(y \), but rather compute a new \(1 \times 1000 \) vector (that we name \(g \)) such that

\[
g(1) = x(1)y(1), \ g(2) = x(2)y(2) \text{ and so on.}
\]

The true command to accomplish this is

\[
g = x.*y
\]

Note that when we introduce the dot before the multiplication symbol, Matlab understands that we want to perform elementwise multiplication of \(x \) and \(y \), and gives us the desired \(g \).

4.B.
Suppose we have an image \(x[m,n] \) that is stored in a matrix \(x \) of size \(512 \times 512 \). Let \(y[m,n] = x^2[m,n] \). Now we want to compute the matrix \(y \) which is again \(512 \times 512 \) and which contains \(y[m,n] \). The following code tries to do it but it has a mistake. What is that?

\[
y = x^2
\]
Answer: Matlab recognizes the above command as the **matrix multiplication** of \(x\) with itself. That is, \(y\) computed in this manner represents a new matrix which is obtained as \(y=x*x\). Note that since \(x\) is 512 by 512, the matrix multiplication \(x*x\) is defined and computed by Matlab. However, this is not what we want. We actually want the relation between \(x\) and \(y\) to be \(y(1,1)=x(1,1)*x(1,1)\), \(y(1,2)=x(1,2)*x(1,2)\) and so on. The true command should be

\[y=x .^ 2 \]

4.C.

The following code tries to add 100 complex sinusoids to each other over a time array given by \(t\). The frequencies are contained within an array named \(\omega\) and the amplitudes are contained within \(A\). However, it has a bug. Find it.

```matlab
MySum=zeros(size(t));
for j=1:100
    MySum=MySum+A(j)*exp(j*omega(j)*t);
end
```

Answer: Note that the letter \(j\) is defined on the second line as the counter parameter of the for loop. On the third line, it is also used to represent the unit imaginary number, i.e., \(\sqrt{-1}\). However, since \(j\) is defined on line 2, Matlab does not recognize it as \(\sqrt{-1}\) any more, so \(MySum\) turns out to be quite different than intended.

One practice of avoiding such bugs is to reserve the letter \(j\) for \(\sqrt{-1}\) and use different letters or names for the counters of loops. So a better way to write the above program is

```matlab
MySum=zeros(size(t));
for i=1:100
    MySum=MySum+A(i)*exp(j*omega(i)*t);
end
```

4.D.

The following code tries to form a periodic signal \(x(t)\) by adding the Fourier series components for \(-10 \leq k \leq 10\). Suppose the coefficients are given within a 1 \(\times\) 21 array whose name is \(X\). But the code has a small programming mistake so Matlab gives an error message. Find that mistake. What is the error message that Matlab gives?

```matlab
x=zeros(size(t));
for k=-10:1:10
    x=x+X(k)*exp(j*2*pi*k*t/T);
end
```

Answer: Suppose the program recently enters the for loop, so that \(k=-10\) as indicated on line 2. On line 3, Matlab tries to fetch the \(-10\)th value of \(X\). The problem is, index values must be positive integers in Matlab. In other words, \(X(1), X(2), \ldots, X(21)\) are all defined but \(X(-10)\) is not defined. So Matlab returns the error

Index exceeds matrix dimensions

The correct way to write the code is as follows:

```matlab
x=zeros(size(t));
for k=-10:1:10
    x=x+X(k+11)*exp(j*2*pi*k*t/T);
end
```