BİLKENT UNIVERSITY ELECTRICAL & ELECTRONICS ENGINEERING DEPARTMENT

EE 311 ELECTRONICS II

Experiment	1
------------	---

Lab Report

Biasing and Small Signal Concepts

ID Number:	
Date:	

PRELIMINARY WORK

 v_{in} is a sinewave at 2kHz. At this frequency and with this circuit setting, the 10- μ F decoupling capacitors may be considered as short circuit in AC small signal model.

(a1) Find the AC small-signal model for this frequency for $V_{supply} = +5V$, and $R_2 = 3.9k\Omega$, and compute the output signal amplitude for $v_{in}(t) = 100m \sin(2\pi 2K t)V$

(a2) Find the AC small-signal model for this frequency for $V_{supply} = +5V$, and $R_2 = 39k\Omega$, and compute the output signal amplitude for $v_{in}(t) = 100m \sin(2\pi 2K t) V$

(a3) Find the AC small-signal model for this frequency for $V_{supply}=+5V$, and $R_2=390k\Omega$, and compute the output signal amplitude for $v_{in}(t)=100m\,\sin(2\pi 2K\,t)$ V

(b) Perform the following SPICE simulations to measure v_{out} , and append the printouts to the end of this report

(b.1) for $V_{supply} = +5V$, and $R_2 = 3.9k\Omega$,

(b.1.1) for
$$v_{in}(t) = 100m \sin(2\pi 2K t) V$$

(b.1.2) for
$$v_{in}(t) = 200m \sin(2\pi 2K t) V$$

(b.1.3) for
$$v_{in}(t) = 500m \sin(2\pi 2K t) V$$

(b.1.4) for
$$v_{in}(t) = 1 \sin(2\pi 2K t) V$$

(b.2) for $V_{supply} = +5V$, and $v_{in}(t) = 100m \sin(2\pi 2K t) V$

(b.2.1) for
$$R_2 = 3.9k\Omega$$
,

(b.2.2) for
$$R_2 = 39k\Omega$$
,

(b.2.3) for
$$R_2 = 390k\Omega$$
,

(b.3) for $R_2 = 3.9k\Omega$, and $v_{in}(t) = 100m \sin(2\pi 2K t) V$

(b.3.1) for
$$V_{supply} = +5V$$

(b.3.2) for
$$V_{supply} = +3V$$

(b.3.3) for
$$V_{supply} = +2V$$

(b.3.4) for
$$V_{supply} = +1V$$

(c) Explain the circuit operations and List the roles of the components.

Circuit function:

 $10 - \mu F$ capacitors:

 V_{supply} :

 R_1 :

 R_2 :

 R_3 :

D:

1	$^{\prime}$	١.	D	es	i	o	n
ı	u,	Ι.	U	62	1	×	П

(d1) Calculations for redesigning the circuit to have the diode small-signal resistance equal $1k\Omega$. (For **Part 4** of the experiment)

(d2) Plan a scheme to verify the design completed in Part (d1).

EXPERIMENT:

Start with the setting

$$R_2 = 3.9k\Omega$$

$$v_{in}(t) = 100 \text{m } sin(2\pi 2 \text{k } t)$$

$$V_{supply} = +5V$$

for parts 1, 2, and 3 in the following.

Part 1: Ramp up the amplitude of v_{in} to 1V. Observe the output waveform and comment on it on the report. Find the maximum allowable amplitude of v_{in} to have linear operation.

Observations and comments:

Part 2: Observe the output waveform for

$$R_2 = 3.9k\Omega$$
, $39k\Omega$, $390k\Omega$

cases. Comment on it on the report. Find, by experiment for each case the maximum allowable amplitude of v_{in} to have linear operation.

Observations and comments:

Part 3: Ramp down V_{supply} to 1V in 4 steps. Observe the output waveform and comment on it on the report. Find, by experiment for each case, the maximum allowable amplitude of v_{in} to have linear operation.

Observations and comments:

Part 4: Redesign the experimental circuit (find R_2 , or V_{supply} or both, if necessary) to have the dynamic resistance of the diode equal to $1k\Omega$. Verify it by experiment.

Observations and comments: