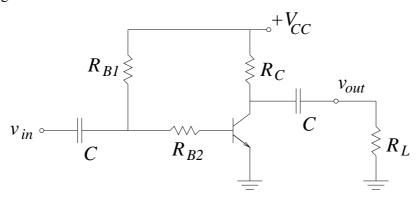
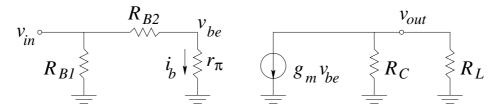
## Bilkent University


Department of Electrical and Electronics Engineering

## **EEE 313 Electronic Circuit Design**

# **Experiment 4 Simple BJT Amplifier**


#### Introduction

The aim of this experiment is to investigate the simple bipolar junction transistor (BJT) amplifier shown in the figure.



The npn transistor is connected in a common emitter configuration. The input and output voltage signals are coupled to and from the amplifier with the use of coupling capacitors. The base resistors  $R_{B1}$  and  $R_{B2}$  bias the transistor to a Q-point. The collector resistor  $R_C$  converts the output current to an output voltage signal. The amplifier output drives a load with resistance  $R_L$ . The simple biasing scheme used in this circuit leaves the Q-point sensitive to changes in the value of the transistor  $\beta$ .

The small-signal AC equivalent circuit for this amplifier is shown in the figure.



The value of the small-signal input resistance is determined by the DC base current;  $r_{\pi} = nV_T/I_{BQ}$ , where n is the emission coefficient. The small-signal transconductance is given by  $g_m = I_{CQ}/nV_T$ .

### **Preliminary work**

Review Sections 5.4 and 6.4 in the textbook.

In the laboratory, you will construct the amplifier circuit using the following values:

| $V_{CC}$ | $R_{B1}$               | $R_{B2}$               | $R_C$               | $R_L$                 | C                  |
|----------|------------------------|------------------------|---------------------|-----------------------|--------------------|
| 15 V     | $470~\mathrm{k}\Omega$ | $1.8~\mathrm{k}\Omega$ | $1 \text{ k}\Omega$ | $100 \text{ k}\Omega$ | $10 \mu\mathrm{F}$ |

The transistor that you will use is BC238B. This transistor has  $200 < \beta < 320$ . In the preliminary work section, you are asked to base your calculations on three different values of  $\beta$ , namely  $\beta_1 = 250$ ,  $\beta_2 = 200$ , and  $\beta_3 = 320$ . Other transistor parameters are  $V_{CE(SAT)} = 0.2 \text{ V}$  and  $V_{BE(ON)} = 0.6 \text{ V}$ . Assume that the emission coefficient n = 1, even though BC238B transistors usually exhibit a higher value. For each  $\beta$  value (250, 200, 320):

- 1. Analyze the DC circuit to determine the Q-point. Find  $I_{BQ}$ ,  $I_{CQ}$ , and  $V_{CEQ}$ .
- 2. Draw the load line and the transistor  $i_C$ - $v_{CE}$  characteristics, and indicate the Q-point. (Separate graph for each  $\beta$  value.)
- 3. Calculate the peak-to-peak maximum undistorted voltage swing at the output.
- 4. Draw the AC equivalent model assuming that the capacitors are short circuit at the operating frequency. Calculate  $r_{\pi}$ ,  $g_{m}$ , and the voltage gain  $A_{v} = v_{out}/v_{in}$ .
- 5. Simulate the amplifier circuit using PSPICE. First do a Bias Point analysis to determine DC voltages and currents. Next, do a Time Domain analysis using an input sine wave of 2 mV peak-to-peak at a frequency of 1 kHz, and determine the voltage gain. Repeat with input amplitudes of 40 mV, 140 mV, and 500 mV; note the changes on the output waveform. Comment on your results.

#### **Experimental work**

In this experiment you are going to use the silicon npn transistor BC238B. The spec sheets for this transistor can be found at the course web page. For this transistor,  $V_{BE(ON)} \simeq 0.6 \text{ V}$  and  $V_{CE(SAT)} \simeq 0.2 \text{ V}$ .

Before constructing the circuit, verify the values of the resistors that you are going to use by measuring their resistances with a multimeter. Make sure that all resistors are within 2% of their marked values. This will assure that your current measurements are accurate.

Construct the amplifier circuit using the values indicated in the preliminary work section.

- 1. Before connecting the signal generator, measure  $I_{BQ}$ ,  $I_{CQ}$ , and  $V_{CEQ}$ , and compare these with your calculations. Draw the load line on a graph and indicate the Q-point.
- 2. Using your measurements from the previous part, determine the  $\beta$  of the transistor that you are using.
- 3. In this part you are going to measure the input resistance  $r_{\pi}$  at the operating point. The resistor  $R_{B2}$  and  $r_{\pi}$  form a voltage divider in the AC circuit. Set the input voltage signal to a sinusoid with 1 kHz frequency and 40 mV peak-to-peak amplitude. Measure  $v_{be}$  and determine  $r_{\pi}$ . Compare this value with your calculations and determine the value of the emission coefficient n.
- 4. Now you have measured the particular  $\beta$  and n values for the specific transistor that you are using. Calculate the voltage gain of the amplifier using these values.
- 5. Set the input voltage signal to a sinusoid with 1 kHz frequency and 40 mV peak-to-peak amplitude. Observe the input and output voltage waveforms on the oscilloscope. Measure the voltage gain of the amplifier and compare with your calculations from the previous part.
- 6. Gradually increase the input signal amplitude and determine the onset of distortion at the output. Measure  $v_{be}$  at this point and compare with  $V_T$ .
- 7. Further increase the input signal amplitude and determine the onset of clipping. Measure the peak-to-peak maximum undistorted output voltage swing. (Here "undistorted" really means "unclipped.") Comment on how this value is related to the location of the Q-point on the load line.
- 8. Print the output waveform for three different values of peak-to-peak input amplitude: 40 mV, 140 mV, and 500 mV. On each plot, indicate any distortion or clipping that you may see.