An MPIxOpenMP Implementation of the
Hierarchical Parallelization of MLFMA

Mert Hidayetoglu and Levent Giirel
ABAKUS Computing Technologies, Cyberpark, Bilkent, Ankara, TR-06800, Turkey

Igurel @ gmail.com

Abstract—We propose an MPIxOpenMP parallelization
scheme based on the hierarchical partitioning strategy for the
multilevel fast multipole algorithm. The parallelization scheme
reduces data duplications via sharing data structures among
processing cores. Therefore, this scheme can employ hundreds
of cores efficiently without requiring extra memory.

I. INTRODUCTION

The multilevel fast multipole algorithm (MLFMA) provides
accurate solutions of electromagnetic radiation and scattering
problems with O(NLog N) complexity [1], where N is
the number of unknowns in a problem. For solving large
problems, MLFMA is parallelized on distributed-memory
computer architectures. An efficient implementation of the
parallel MLFMA uses the hierarchical partitioning strategy
with the message passing interface (MPI) [2]. The hiearchical
partitioning provides excellent efficiency by distributing the
MLFMA data structures in a load-balanced manner and by
minimizing communications among processes. However, it is
inevitable to duplicate some frequently-used data structures,
e.g., the MLFMA tree structure, since passing them from one
processor to another via communications is costly. Even if
the duplicated data structures are relatively small, the memory
required for storing multiple copies of them accumulates
rapidly with the number of processes and ruins the efficiency
of memory parallelization for large numbers of processes. As
a result, when solving large problems within a limited amount
of available memory, the inefficiency prevents employing more
processing cores even when they are available.

In order to avoid excessive duplications of data structures,
for each MPI process, we employ ¢ open multi-processing
(OpenMP) threads, which can share the data of their MPI
parent. The OpenMP threads employ idle processing cores
and paralelize the task of their parent without requiring extra
memory. In other words, the MPIxOpenMP parallelization
employs p X t processing cores using the same amount of
memory as that of pure-MPI parallelization with p processes.

We categorize the parallel regions of MLFMA into two;
MPI regions use the conventional hierarchical paralleliza-
tion with p MPI processes and MPIxOpenMP regions use
p x t OpenMP threads within the parallelization scheme.
MPIxOpenMP parallelization is rather simple when no com-
munication is required. Essentially, sibling threads execute
different sections of large loops of their MPI parent in parallel.
However, special care must be taken in order to implement the
communications among threads.

978-1-4673-7197-1/15/$31.00 ©2015 IEEE

Execution¢ Executlo
Comm. MPI Region
MPI MPI (p processes)
Process Process pp

/ \ Cousins / \- ______ g_
— 2
M)

T == = = = = = ~ = = = = = = ~ X
1 1 Comm.; 1~ 8
| OpenMP OpenMP |<:>| OpenMP OpenMP 12
| Thread Thread |, | Thread Thread |, 5 %
N —m === = - N e e e e e == = - -
w z &
Siblings J S

Comm.

MPI MPI .
* ¢ (p processes)

Fig. 1. Each MPI process forks off a number of OpenMP threads in
MPIxOpenMP regions. As an example, two MPI processes in the MPI
region are shown, and each of them summons two OpenMP threads in the
MPIxOpenMP region. The OpenMP threads are employed on idle processing
cores by the operating system.

II. MPIXOPENMP PARALLELIZATION

When the code execution reaches an MPIxOpenMP region,
each MPI process forks off a number of OpenMP threads, as
depicted in Fig. 1, and each thread employs an available idle
processing core. The children threads of a process share the
computational task of their parent in a load-balanced manner.

An OpenMP thread can share its memory with its sibling
threads, however, it cannot address the memory of its cousin
threads because the cousins belong to a distinct MPI parent.
When two cousin threads need each other’s data, thread-safe
communications [3] must be performed among the threads,
where each thread uses its parent’s MPI communicator. For
ensuring thread safety, no sibling threads communicate at
the same time. An OpenMP thread prevents their siblings to
intervene its communication by initiating a blocking commu-
nication in a critical section.

The critical sections may lead to a deadlock when two
cousin threads, which will communicate, cannot meet in
critical sections at the same time. To solve the issue, a thread,
expecting a communication, continuously probes whether a
communication request is received from its cousin threads. By
doing so, it does not block its sibling threads to communicate.
When a communication request is received, a thread enters
a critical section and initiates the blocking communication,
while its siblings wait idle for the communication to be
completed.

III. NUMERICAL RESULTS

In order to demonstrate the efficiency of the proposed
MPIxOpenMP parallelization, we report the solution of a scat-
tering problem involving a conducting sphere with 240\ diam-
eter, where A is the wavelength of the illuminating plane wave.
The same problem is solved with MPIxOpenMP and pure-
MPI parallelizations and with various numbers of processing
cores on a 16-node parallel computer cluster. The cluster has 2
TB memory and 512 processing cores. The problem involves
approximately 53 million unknowns with 0.1\ meshing and
is solved with all possible p x ¢ combinations. The amount of
required memory for each solution is recorded. The solutions
use out-of-core method, which stores large data structures on
disk [4], [5], saving approximately 96 GB of memory.

TABLE I
CPU TIMES AND REQUIRED MEMORIES WITH MPI
Num. Process 16 32 64 128 256 512
CPU Time (s) | 22633 | 12090 | 6645 | 4117 | 3050 | 3199
Memory (GB) 72 78 90 112 166 264

Table I shows the CPU times and required memories for
pure-MPI solutions. Each column represents an MLFMA
solution and the first row shows the number of MPI processes.
CPU times are decreasing with the number of processes, as
expected, except for the solution with 512 processes because of
the communication overhead. Note that the required memory
increases immensely with the number of processes and the
solution with 512 process requires 3.7 times memory that of
the solution with 16 processes. This inefficiency would prevent
the solution of the problem with 128 (and more) processes if
the cluster had 100 GB of memory.

TABLE 11
CPU TIMES AND REQUIRED MEMORIES WITH MPIXOPENMP
Num. Threads | 64x1 | 64x2 | 64x4 | 64x8
CPU Time (s) | 6645 | 4100 | 2777 | 2126
Memory (GB) 90 91 93 97

Table II shows the CPU times and required memories for
MPIxOpenMP solutions with 64 MPI parents. CPU times
decrease with the number of threads, as expected. Note that
the MPIxOpenMP parallelization is significantly effective with
512 cores, requiring less time than the pure-MPI parallelization
(though the time efficiency of the proposed parallelization
is not the main theme of this paper). The required memory
increases slightly with OpenMP threads because of threads’
communication buffers. Neverheless, MPIxOpenMP uses 512
cores with 2.7 times less memory than that of pure MPL

Figure 2 shows the memory-parallelization efficiency of
all possible p x t combinations when a pure-MPI solution
with 16 processes (one process for each node) is regarded
as the reference. The memory efficiency EM with ¢ = p x t
processing cores is defined as Eé‘/f = Mig/M,., where M,
is the required memory for a solution with ¢ processing
cores. Figure 2 shows that the efficiency of pure MPI drops
significantly with p, while MPIxOpenMP uses p x t cores
and its efficiency decreases slightly with ¢. For example,

33

MPIxOpenMP uses 512 processing cores with 86 GB while
the pure MPI requires 264 GB.

In addition to the sphere with 240\ diameter, an extremely
large sphere with 1000\ diameter is solved. The large problem
involves approximately 1.1 billion unknowns and solved on
64 cores (cannot be solved on more processes due to memory
limitations) with pure MPI and 512 cores with MPIxOpenMP.
The MPIxOpenMP solves the problem in 23.5 hours with 64 x
8 threads while the pure MPI solves the problem in 71.3 hours
with 64 processes. Other relevant computational results are
presented in [5].

1 , . , .
- X
§ o
2
W06
=
s}
5 04
—e— MPIxOpenMP 0.27
0.2 I I 1 !
16 32 64 128 256 512
Number of Processing Cores

Fig. 2. Memory efficiencies for solutions of 53 million unknowns with

various p X t combinations. The red curves represent MPIxOpenMP solutions
and the blue curve represents pure-MPI solutions. MPIxOpenMP provides
better efficiency with large numbers of processing cores than pure MPI since
memory duplication among OpenMP threads is limited to their communication
buffers.

IV. CONCLUSIONS

The MLFMA solver is parallelized with the MPIxOpenMP
scheme. This implementation is based on the hierarchical
partitioning strategy and does not require extra memory for
employing more processing cores, and therefore provides
better memory efficiency than the pure-MPI parallelization. To
demonstrate the benefits of the MPIxOpenMP parallelization,
a scattering problem involving more than 1.1 billion unknowns
is solved with 512 processing cores in 23.5 hours within 2 TB
memory, while it can be solved with at most 64 cores in 71.3
hours using the pure-MPI parallelization.

ACKNOWLEDGMENT

This work was supported by Schlumberger-Doll Research
(SDR). The authors would like to thank Intel Corporation and
Jamie Wilcox for a generous allocation of parallel-computer

time.
REFERENCES

[1] J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm
for electromagnetic scattering by large objects,” IEEE Trans. Antennas
Propag., vol. 45, no. 10, pp. 1488-1493, Oct. 1997.

O. Ergiil and L. Giirel, “A hierarchical partitioning strategy for an
efficient parallelization of the multilevel fast multipole algorithm,” JEEE
Trans. Antennas Propag., vol. 57, no. 6, pp. 1740-1750, June 2009.
W. Gropp and R. Thakur, “Issues in developing a thread-safe MPI
implementation,” The 13th European PVYM/MPI User’s Group Meeting,
Bonn, Germany, Sep. 2006.

M. Hidayetoglu and L. Giirel, “MLFMA memory reduction techniques
for solving large-scale problems,” 2014 IEEE Int. Symp. Antennas
Propagation USNC-URSI Nat. Radio Science Meeting, Memhpis, TN,
USA, July 2014.

M. Hidayetoglu and L. Giirel, “Parallel out-of-core MLFMA on
distributed-memory computer architectures,” CEM’15 Computational
Electromagnetics Workshop, Izmir, Turkey, July 2015.

[2]

[3]

