The Modified Regula Falsi Method

 

1. Information About the Modified Regula Falsi Method

         

          Modified Regula Falsi Method generates the approximations in the same manner as the Regula Falsi Method does. But for faster convergence some modifications are made. We first choose the initial approximations  and  with . The approximation  is chosen as the x-intercept of the line joining  and . To decide which secant line to use to compute , we check . If this value is negative, then  and  bracket a root and we choose  as the x-intercept of the line joining  and . If not, we choose  as the x-intercept of the line joining  and and then interchange the indices on  and . In a similar manner, the following ’s are calculated. This relabeling ensures that the root is bracketed between successive iterations.

 

          The above explanation is described in the following algorithm. Figure.1 shows how this algorithm is implemented.

 

 

Figure.1: Modified Regula Falsi Method

 

INPUT: endpoints , ; tolerance TOL; maximum number of iterations N0

OUTPUT: approximate solution  or message of failure.

Step 1: Set i = 2;

          ;

          .

Step 2: While  do steps 3-7

          Step 3: Set    (Compute pi.)

          Step 4: If  then

                   OUTPUT (p); (Procedure completed successfully.)

                   STOP

          Step 5: Set i = i+1;

                  

          Step 6: If  then set ;

                                            .

          Step 7: Set ;

                          .

Step 8: OUTPUT (Method failed)

          (Procedure completed unsuccessfully.)

          STOP.

 

The following procedures can be used as stopping criteria for the above algorithm. In our program we use one of them or the both according the desire of the user. The typical values for these criteria are set at the initial state of the applet.

 

Absolute Error:  

 

Relative Error:  

 

 

2. Some Numerical Results

 

            f(x) = x3+4x2-10

 

            The results of the problem f(x) = x3+4x2-10 = 0 is obtained by using the Modified Regula Falsi Method. The iteration number and the p value obtained after this iteration are provided as follows:

 

 

 

Iteration

Number

Pn

1

1.263157894736842

2

1.400403369320204

3

1.342145133684757

4

1.3748035389123485

5

1.3598670255622798

6

1.367732025551732

7

1.3639281150229308

8

1.3658662133784305

9

1.3649078080249408

10

1.365389970606483

11

1.3651497209704881

12

1.3652700739462054

13

1.3652099599732015

14

1.3652400338945831

15

1.3652001035925876

 

            Table.1: The results for the Modified Regula Falsi Method.

 

          While the above results are being obtained, the absolute error is chosen and its value is 0.0001. The initial interval is [1,2]. The correct value of the root is 1.365230013 (up to nine digits). The approximated value of root by this method is 1.365200103. Then the absolute error is 0.00003 that is already smaller than the desired value 0.0001.

 

          f(x)=cos(x)-x

         

            The results of the problem f(x) = cos(x)-x = 0 is obtained by using the Modified Regula Falsi Method. The initial interval is chosen as [0,1]. The iteration number and the p value obtained after each iteration are provided as follows:

 

Iteration

Number

Pn

1

0.6850733573260451

2

0.7731914418788256

3

0.7235874993260181

4

0.7470698118498033

5

0.7351221175987429

6

0.7410660783535018

7

0.7380925680968499

8

0.7395804042079531

9

0.7388371228632933

10

0.7392090141125577

11

0.7390231540774963

12

0.739116111201908

13

0.7390696408498045

 

            Table.2: The results for Modified Regula Falsi Method     

 

          The absolute value of the error is again smaller than the desired value 0.0001. That is the input for the applet by the user.

 

            f(x)=ex^3–8

 

Because of the shape (see the below figure) of the function in the interval [0,3] the Regula Falsi Method couldn’t converge to a root after 100 iterations. The iterations cannot leave the area where the change in the function is nearly zero. If we use the Modified Regula Falsi instead of the Regula Falsi Method, we obtain the following results.

 

Figure.2: f(x)=ex^3–8

 

 

Iteration

Number

Pn

1

3.9470105147395006E-11

2

1.1841031544010784E-10

3

2.7629073601722474E-10

4

5.920515771382235E-10

5

1.2235732592472813E-9

6

2.4866166229336375E-9

7

5.0127033481793115E-9

8

1.0064876790162508E-8

9

2.0169223640096295E-8

10

4.037791720383343E-8

11

8.079530378678597E-8

12

1.6163007477460422E-7

13

3.2329960803789376E-7

14

6.466386397150889E-7

15

1.293316563671973E-6

16

2.5866718539959587E-6

17

5.173380204286721E-6

18

1.0346787983454791E-5

19

2.06935678562602E-5

20

4.138698486073267E-5

21

8.27732479130008E-5

22

1.6554349025383808E-4

23

3.3107484038472003E-4

24

6.621010064743331E-4

25

0.001324007234196999

26

0.002647235529414968

27

0.005291357535624367

28

0.010570279599228245

29

0.02109096600130855

30

0.041984732269401234

31

0.08318978545001166

32

0.16332990643429346

33

0.3149604128619411

34

0.5864873603688315

35

1.0197841634381308

36

1.5112716280638492

37

1.0679008766032143

38

1.1928316349827386

39

1.2888335127317911

40

1.261458821312048

41

1.2802687918986537

42

1.2735758220744937

43

1.2774997520293316

44

1.2757532048019795

45

1.2766804084396108

46

1.27623350381156

47

1.2764614149990965

48

1.27634873039798

49

1.2764054163368483

50

1.2763771677821358

 

            Table.3: The results for Modified Regula Falsi Method     

 

 

f(x)=xtan(x)-3

 

The results of the problem f(x)=xtan(x)-3=0 is obtained by using the Modified Regula Falsi Method. The initial interval is chosen as [6,7]. The iteration number and the p value obtained after each iteration are provided as follows:

 

Iteration

Number

Pn

1

6.604885608786283

2

6.739248971974184

3

6.680962636531199

4

6.713462763424663

5

6.698605387698973

6

6.706441745550199

7

6.702658570642793

8

6.704588510644558

9

6.703634964556151

10

6.704114934190539

11

6.703875853443404

12

6.703995642904286

13

6.7039358167077685

14

6.703965748429587

 

          Table.4: The results for the Modified Regula Falsi Method

 

The absolute value of the error is again smaller than the desired value 0.0001.

 

3. Conclusion

 

            When the above examples are examined it can be seen that the Modified Regula Falsi is faster than Regula Falsi for some examples while there is no or less difference between the iteration numbers for some others. The reason for this is the behavior of the function in the given interval. The effect of the shape of the function on the iteration number is explained in the above section. Then while deciding which method to use, the user should know the behavior of the function in the desired interval.

 

4. References

 

[1] Numerical Analysis, R.L. Burden, J.D. Faires, PWS Publishing Company, Boston 1993.