
Appendix A

Complex Numbers

A.1 Fields

A field is a set F together with two operations, called addition and multiplication and
denoted by the usual symbolism, which satisfy the following conditions.

A1. a + b = b + a for all a, b ∈ F

A2. (a + b) + c = a + (b + c) for all a, b, c ∈ F

A3. There exists an element denoted by 0 ∈ F such that a + 0 = a for all a ∈ F

A4. For each a ∈ F there exists an element −a ∈ F such that a + (−a) = 0

M1. ab = ba for all a, b ∈ F

M2. (ab)c = a(bc) for all a, b, c ∈ F

M3. There exists an element denoted by 1 ∈ F such that 1a = a for all a ∈ F

M4. For each 0 6= a ∈ F there exists an element a−1 ∈ F such that aa−1 = 1

D. a(b + c) = ab + ac for all a, b, c ∈ F

It can be shown that the additive identity 0 and the multiplicative identity 1 are
unique in F. Also each element a has a unique additive inverse −a, and each a 6= 0
has a unique multiplicative inverse a−1. The subtraction operation in F is defined in
terms of addition as

a− b = a + (−b)

and the division operation is defined in terms of multiplication as

a/b = ab−1 , b 6= 0

Familiar examples of fields are the field of rational numbers and the field of real
numbers (denoted R). Another common one is the field of complex numbers explained
next.

A.2 Complex Numbers

A complex number is of the form

z = a + ib

295

296 Complex Numbers

where a, b ∈ R and

i2 = −1

a and b are called the real and imaginary parts of z, respectively, denoted

a = Re z , b = Im z

Two complex numbers z1 = a1 + ib1 and z2 = a2 + ib2 are called equal if a1 = a2 and
b1 = b2. The addition and multiplication of z1 and z2 are defined as

z1 + z2 = (a1 + a2) + i(b1 + b2)

and

z1z2 = (a1a2 − b1b2) + i(a1b2 + a2b1)

Note that multiplication of two complex numbers is performed by the usual rules for
algebraic multiplication with i2 = −1.

Defining additive and multiplicative identities as

0 = 0 + i0 , 1 = 1 + i0

additive inverse of z = a + ib as

−z = (−a) + i(−b)

and the multiplicative inverse as

z−1 = a/(a2 + b2)− ib/(a2 + b2)

it can be shown that the set of all complex numbers C together with the above
addition and multiplication, is a field. Every real number can be considered as a
complex number with imaginary part equal to 0, that is a = a + i0. Its additive
inverse and multiplicative inverse (if a 6= 0) as a complex number are the same as its
additive and multiplicative inverses as a real number. Thus R, which is itself a field,
is a subfield of C with respect to the same addition and multiplication operations.

The complex conjugate of z = a + ib is defined to be

z∗ = a− ib

Note that

zz∗ = (a + ib)(a− ib) = a2 + b2

There is a geometrical representation of complex numbers. To a given complex
number z = a + ib we associate the point in a plane with abscissa a and ordinate b,
relative to a rectangular coordinate system in the plane, as shown in Figure A.1. In
this way there is a one-to-one correspondence between the set of all complex numbers
and the set of all points in the plane. The absolute value or modulus of z, is defined
as

|z| =
√

zz∗ = (a2 + b2)1/2

A.2 Complex Numbers 297

y

b

0

−b

a x

z = a + ib

r

r

θ
−θ

z* = a − ib

= reiθ

= re−iθ

Figure A.1: Representation of a complex number

Geometrically, this is the polar distance r of the point (a, b) from the origin (0, 0),
that is, |z| = r. We also define the argument of z 6= 0, denoted arg z, to be the polar
angle θ shown in the figure, that is

arg z = θ = tan−1(b/a)

Note that

z = r(cos θ + i sin θ)

Using the series representations

cos θ = 1− θ2/2! + θ4/4!− · · ·
sin θ = θ − θ3/3! + θ5/5!− · · ·

and rearranging the terms we observe that

cos θ + i sin θ = 1 + (iθ) + (iθ)2/2! + (iθ)3/3! + · · ·

By analogy to the series representation of the real quantity

ex = 1 + x + x2/2! + x3/3! + · · ·

the above series can conveniently be defined as eiθ. Thus we obtain

z = r(cos θ + i sin θ) = reiθ

which is called the polar representation of the complex number z. Polar representation
provides simplicity in multiplication and division of complex numbers. If z1 = r1e

iθ1

and z2 = r2e
iθ2 , then

z1z2 = r1r2e
i(θ1+θ2)

and if z2 6= 0 (r2 6= 0), then

z1/z2 = (r1/r2)e
i(θ1−θ2)

298 Complex Numbers

A.3 Complex-Valued Functions

If f and g are real-valued functions of a real variable t, then

h(t) = f(t) + ig(t)

defines a complex-valued function h of t. If f and g are differentiable on an interval
a < t < b, then h is also differentiable, and its derivative is given by

h′(t) = f ′(t) + ig′(t)

A useful complex-valued function is ezt, where z = a + ib is a complex number
and t is a real variable. Using the polar representation, ezt can be expressed as

ezt = e(a+ib)t = eateibt = eat(cos bt + i sin bt)

Differentiating real and imaginary parts of ezt, and rearranging the terms we get

d

dt
ezt = aeat(cos bt + i sin bt) + eat(−b sin bt + ib cos bt)

= eat(a cos bt− b sin bt) + ieat(a sin bt + b cos bt)

= (a + ib)eat(cos bt + i sin bt)

= zezt

Thus the usual differentiation property of the real-valued exponential function is gen-
eralized to the complex-valued exponential function.

Appendix B

Existence and Uniqueness

Theorems

Consider a system of first order ordinary differential equations together with a set of
initial conditions:

x′ = f(x, t) , x(t0) = xo (B.1)

where f : R
n×1×R→ R

n×1 is a vector-valued function defined on some interval I ⊂ R

containing t0. We assume that

a) for every fixed x ∈ R
n×1, the function f(x, ·) : t→ f(x, t) is piecewise continu-

ous on I, and

b) f satisfies a Lipschitz condition on I, that is, there exists a constant K > 0
such that 1

‖ f(x1, t)− f(x2, t) ‖ ≤ K‖x1 − x2 ‖ (B.2)

for all x1,x2 ∈ R
n×1 and t ∈ I.

Recall that a vector-valued function φ defined on I is called a solution of (B.1) if
φ(t0) = xo and

φ′(t) = f(φ(t), t) (B.3)

at all continuity points of f . Clearly, if φ is a solution, then integrating both sides of
(B.3) from t0 to t, we obtain

φ(t) = x0 +

∫ t

t0

f(φ(τ), τ) dτ (B.4)

Conversely, if φ satisfies the integral equation in (B.4), then it is a solution of (B.1).
We will use this fact in the proof of the following existence and uniqueness theorem.

Theorem B.1 Under the assumptions (a) and (b) above, the initial-value problem
in (B.1) has a unique, continuous solution on I.

1The Lipschitz condition in (B.2) is stronger than continuity of f in x. For example, the scalar
function f(x, t) =

√
x defined on I = [0,∞) is continuous everywhere on I, but does not satisfy a

Lipschitz condition. With x1 = x and x2 = 0, there exists no K that satisfies

√
x ≤ Kx

for all x ≥ 0.

299

300 Existence and Uniqueness Theorems

Proof Define a sequence of continuous functions recursively as

φ0(t) = x0

φm(t) = x0 +

∫ t

t0

f(φm−1(τ), τ) dτ , m = 1, 2, . . . (B.5)

Fix T > 0 such that J = [t0, t0 + T] ⊂ I. Since f(x0, t) is piecewise continuous, it is
bounded on J . Let

B = max
t∈J

{ f(x0, t) }

We claim that

‖φm(t)− φm−1(t) ‖ ≤
B

K

Km(t− t0)
m

m!
, m = 1, 2, . . . (B.6)

for all t ∈ J . The claim is true for m = 1 as

‖φ1(t)− φ0(t) ‖ ≤ ‖

∫ t

t0

f(φ0(τ), τ) dτ ‖ ≤

∫ t

t0

‖ f(x0, τ) ‖ dτ ≤ B(t− t0)

Suppose it is true for m = k. Then for m = k + 1

‖φk+1(t)− φk(t) ‖ ≤ ‖

∫ t

t0

[f(φk(τ), τ)− f(φk−1(τ), τ)] dτ ‖

≤

∫ t

t0

K ‖φk(τ)− φk−1(τ) ‖ dτ

≤

∫ t

t0

K
B

K

Kk(τ − t0)
k

k!
dτ

≤
B

K

Kk+1(t− t0)
k+1

(k + 1)!

so that it is also true for m = k + 1. Hence it is true for all m ≥ 1. Since t− t0 ≤ T for
all t ∈ J , (B.6) further implies that

‖φm(t)− φm−1(t) ‖ ≤
B

K

(KT)m

m!
, m = 1, 2, . . .

Define

φm(t) = ‖φm(t)− φ0(t) ‖

Then

φm(t) = ‖

m
∑

k=1

[φk(t)− φk−1(t)] ‖ ≤

m
∑

k=1

‖φk(t)− φk−1(t) ‖

≤
B

K

m
∑

k=1

(KT)k

k!
≤

B

K
(eKT − 1) , m = 1, 2, . . .

for all t ∈ J . This implies that the sequence of nonnegative-valued continuous func-
tions {φm } converges uniformly on J .2 Consequently, the sequence of vector-valued
continuous functions {φm } converges uniformly to a continuous limit function φ.3

2This is a direct consequence of the comparison test. For details the reader is referred to a book
on advanced calculus.

3That is, given any ε > 0, there exist M > 0 such that

‖φ(t) − φm(t) ‖ ≤ ε

for all m ≥ M and for all t ∈ J .

B.1 Existence and Uniqueness Theorems 301

Uniform convergence of {φm }, together with the Lipschitz condition on f further
imply that

a) lim
m → ∞

f(φm(t), t) = f(φ(t), t)

b) lim
m → ∞

∫ t

t0

f(φm(τ), τ) dτ =

∫ t

t0

f(φ(τ), τ) dτ

Thus

φ(t) = lim
m → ∞

φm(t)

= xo + lim
m → ∞

∫ t

t0

f(φm−1(τ), τ) dτ

= xo +

∫ t

t0

f(φ(τ), τ) dτ

for all t ∈ J , proving that φ is a solution of (B.1) on J .
To prove uniqueness of φ, suppose (B.1) has another solution ψ on J . Define

g(t) = ‖φ(t)− ψ(t) ‖ = ‖

∫ t

t0

[f(φ(τ), τ)− f(ψ(τ), τ)] dτ ‖

Then

g(t) ≤

∫ t

t0

‖ f(φ(τ), τ)− f(ψ(τ), τ) ‖ dτ ≤

∫ t

t0

Kg(τ) dτ

for all t ∈ J . Let

h(t) = e
−K(t−t0)

∫ t

t0

Kg(τ) dτ

Then h(t0) = 0 and

h
′(t) = Ke

−K(t−t0)[g(t)−

∫ t

t0

Kg(τ) dτ] ≤ 0

so that

h(t) ≤ 0 for all t ∈ J

Hence

0 ≤ g(t) ≤

∫ t

t0

Kg(τ) dτ ≤ 0 for all t ∈ J

This implies g(t) = 0 for all t ∈ J , or equivalently,

φ(t) = ψ(t) for all t ∈ J

contradicting the assumption that φ and ψ are two different solutions on J . In conclu-
sion, (B.1) has a unique solution on J .

The case t < t0 can be analyzed similarly by considering a closed interval J =

[t0 − T, T] ⊂ I. Since T is arbitrary in both cases, it follows that (B.1) has a unique,

continuous solution on I.

302 Existence and Uniqueness Theorems

The functions in (B.5) that converge to the solution of (B.1) are known as the
Picard iterates, and provide a constructive method for the proof of the existence
of a solution. The proof of the uniqueness part of the theorem is a variation of the
well-known Bellman-Gronwal Lemma.

Proof of Theorem 6.1

The proof follows immediately from Theorem B.1 on noting that

f(x, t) = A(t)x + u(t)

is piecewise continuous for every fixed x ∈ R
n×1, and satisfies a Lipschitz condition with

K = sup
t∈I

‖A(t)‖

Appendix C

The Laplace Transform

C.1 Definition and Properties

The one-sided (or unilateral) Laplace transform of a real- or complex-valued func-
tion f of a real variable t is a complex-valued function F of a complex variable s,
defined by

F (s) =

∫

∞

0

f(t)e−st dt (C.1)

provided the integral converges. For convenience, the Laplace transform of f is also
denoted by L{f}.

Let f be a piece-wise continuous function that is bounded by an exponential, that
is, there exist M, α ∈ R such that

|f(t)| ≤Meαt

holds for all t. Such a function is said to be of exponential order α. Then for any
s = σ + iω ∈ C with σ > α

|
∫

∞

0

f(t)e−st dt | ≤
∫

∞

0

|f(t)e−st| dt

≤
∫

∞

0

Me(α−σ)t dt

≤ M

σ − α

and thus the integral in (C.1) converges. The region

Cα = { s = σ + iω |σ > α }

is called the region of convergence of F .

Let f be a function of exponential order α with a Laplace transform F (s) that
exists in a region Cα, and suppose that f(t) = 0 for t < 0. Then f can be obtained
uniquely from F by means of a line integral as

f(t) = lim
ω → ∞

∫

Γ

F (s)est ds (C.2)

303

304 The Laplace Transform

where Γ is a vertical straight line in Cα extending from s = σ− iω to s = σ + iω. The
integral on the right-hand side of (C.2) is called the inverse Laplace transform of
F , denoted by L−1(F).1 We use the notation

f(t) ←→ F (s)

to indicate that f and F are a Laplace transform-inverse Laplace transform pair.
Some useful properties of the Laplace transform are stated below, where it is

assumed that the Laplace transforms involved exist.

a) Linearity

af(t) + bg(t) ←→ aF (s) + bG(s)

b) Shift

f(t− t0) ←→ e−st0F (s) , t0 > 0

es0tf(t) ←→ F (s− s0) , s0 ∈ C

c) Scaling

f(at) ←→ 1

a
F (

s

a
) , a > 0

d) Differentiation

f (n)(t) ←→ snF (s)− sn−1f(0)− · · · − sf (n−2)(0)− f (n−1)(0)

tnf(t) ←→ (−1)n dn

dsn F (s)

The first three of the properties above are direct consequences of the definition.
For example, the Laplace transform of the shifted function f(t− t0) is

∫

∞

0

f(t− t0)e
−st dt =

∫

∞

−t0

f(τ)e−s(τ+t0) dτ

= e−st0

∫

∞

0

f(τ)e−sτ dτ = e−st0F (s)

proving the first property in (b).2 Proofs of the properties in (d) require some ma-
nipulations. Evaluating the integral in (C.1) written for f ′ by parts, we obtain

L{f ′} =

∫

∞

0

f ′(t)e−st dt

= [f(t)e−st]t=∞

t=0 +

∫

∞

0

f(t)se−st dt

= sF (s)− f(0)

1In practice, the line integral in (C.2) is seldom used to find the inverse Laplace transform.
Instead, Laplace transform tables are used for most of the functions of interest.

2The second equality follows from the assumption that f(t) = 0 for t < 0.

C.2 Laplace Transform Pairs 305

proving the first property in (d) for n = 1.3 The case n > 1 and the second property
in (d) can be proved similarly.

Example C.1

The Laplace transform of the unit step function

u(t) =

{

1, t > 0
0, t < 0

is

U(s) =

∫ t

0

e
−st

dt = [−se
−st]t=∞

t=0 =
1

s
, Re s > 0

By property (b),

u(t− t0) ←→
e
−st0

s
, Re s > 0

and, by property (d)

tu(t) ←→ −
d

ds
(

1

s
) =

1

s
2

C.2 Some Laplace Transform Pairs

The Laplace transform of the unit step function obtained in Example C.1, together
with the properties listed in the previous section, allows us to obtain the Laplace
transform of many useful functions. For example, from the second property in (b),
we obtain

eσ0tu(t) ←→ 1

s− σ0

and from property (d),

teσ0tu(t) ←→ 1

(s− σ0)
2

The Laplace transform of es0tu(t), in turn, can be used to find Laplace transforms
of sine and cosine functions. On noting that

eiω0tu(t) = cosω0t + i sinω0t

we obtain

(cosω0t + i sinω0t)u(t) ←→ 1

s− iω0
=

s + iω0

s2 + ω2
0

Thus

(cosω0t)u(t) ←→ s

s2 + ω2
0

3Since f is exponential order α and Re s > α

lim
t → ∞

f(t)e−st = 0

306 The Laplace Transform

and

(sin ω0t)u(t) ←→ ω0

s2 + ω2
0

A list of some Laplace transform pairs, which can be derived similarly, is given in
Table C.1.

C.3 Partial Fraction Expansions

A function F that is expressed as a ratio of two polynomials is called a rational

function. A rational function

F (s) =
c(s)

d(s)
=

c0s
m + c1s

m−1 + · · ·+ cm

sn + d1s
n−1 + · · ·+ dn

(C.3)

is said to be proper if m ≤ n and strictly proper if m < n.
The Laplace transforms in Table C.1 are simple strictly proper rational functions

with denominators being first or second degree polynomials or powers of such poly-
nomials. This observation suggests that if a rational function F can be expressed as a
linear combination of such simple rational functions, then by linearity of the Laplace
transform, the inverse Laplace transform of F can be obtained as the same linear
combination of the inverse Laplace transforms of individual functions, which can be
written down directly from the table. For example, the inverse Laplace transform of

s + 2

s2 + s
=

2

s
− 1

s + 1

can be written down using Table C.1 as

L−1{ s + 2

s2 + s
} = (2− e−t)u(t)

Consider a strictly proper rational function F (s) expressed as in (C.3). Suppose
that the denominator polynomial d(s) is factored out as

d(s) =
k

∏

i=1

(s− pi)
ni

where pi ∈ C are distinct zeros of d with multiplicities ni, i = 1, . . . , k. pi are called
the poles of F . Then F can be expressed as

F (s) =

k
∑

i=1

ni
∑

j=1

rij

(s− pi)
j (C.4)

where rij ∈ C. This expression is known as the partial fraction expansion of F .
The coefficients rij can be obtained by collecting the terms on the right-hand side of
(C.4) over the common denominator d and equating the coefficients of the resulting
numerator polynomial to those of c.

MATLAB provides a built-in function, residue, to compute pi and rij . The
commands

C.3 Partial Fraction Expansions 307

Table C.1: Some Laplace transform pairs

f(t) F (s)

1
1

s

tn
n!

sn+1

eσ0t 1

s− σ0

tneσ0t n!

(s− σ0)
n+1

cosω0t
s

s2 + ω2
0

sinω0t
ω0

s2 + ω2
0

t cosω0t
s2 − ω2

0

(s2 + ω2
0)

2

t sinω0t
2ω0s

(s2 + ω2
0)

2

eσ0t cosω0t
s− σ0

(s− σ0)
2 + ω2

0

eσ0t sin ω0t
σ0

s− σ0)
2 + ω2

0

teσ0t cosω0t
(s− σ0)

2 − ω2
0

((s− σ0)
2 + ω2

0)
2

teσ0t sin ω0t
2ω0(s− σ0)

((s− σ0)
2 + ω2

0)
2

308 The Laplace Transform

>> c=[c0 c1 ... cm]; d=[1 d1 ... dn];

>> [r,p]=residue(c,d);

return the poles pi in the array p (with each pole appearing as many times as its
multiplicity) and the coefficients rij in the array r.

Example C.2

The strictly proper rational function

F (s) =
2s

2 + 4s + 1

s
3 + 4s

2 + 5s + 2
=

2s
2 + 4s + 1

(s + 2)(s + 1)2

has the poles p1 = −2 with n1 = 1 and p2 = −1 with n2 = 2. Hence F has a partial
fraction expansion of the form

F (s) =
r1

s + 2
+

r21

s + 1
+

r22

(s + 1)2

Reorganizing the above expression, we get

F (s) =
r1(s + 1)2 + r21(s + 1)(s + 2) + r22(s + 2)

(s + 2)(s + 1)2(s + 2)

=
(r1 + r21)s

2 + (2r1 + 3r21 + r22)s + (r1 + 2r21 + 2r22)

s
3 + 4s

2 + 5s + 2

=
2s

2 + 4s + 1

s
3 + 4s

2 + 5s + 2

Equating the coefficients of the numerators of the last two expressions we obtain a system
of three equatins in three unknows

[

1 1 0
2 3 1
1 2 2

][

r1

r21

r22

]

=

[

2
4
1

]

the unique solution of which is easily computed as r1 = r12 = 1, r22 = −1.

Alternatively, the MATLAB commands

>> c=[2 4 1]; d=[1 4 5 2];

>> [r,p]=residue(c,d);

produce

r = [1 1 − 1] , p = [−2 − 1 − 1]

Note that the coefficients rij associated with a multiple pole pi appear in the order of
increasing j in the array r.

Thus

F (s) =
1

s + 2
+

1

s + 1
−

1

(s + 1)2

and its inverse Laplace transform is

f(t) = (e−2t + e
−t − te

−t)u(t)

C.4 Solution of DEs by Laplace Transform 309

Example C.3

To find the inverse Laplace transform of

G(s) =
s
2 + 9s + 16

s
3 + 5s

2 + 9s + 5

we execute the MATLAB commands

>> c=[1 9 16]; d=[1 5 9 5];

>> [r,p]=residue(c,d)

which compute

r = [−1.5− i − 1.5 + i 4] , p = [−2 + i − 2− i − 1]

Thus

G(s) =
−1.5− i

s + 2− i
+
−1.5 + i

s + 2 + i
+

4

s + 1

and

g(t) = (−1.5− i) e
(−2+i)t + (−1.5 + i) e

(−2−i)t + 4 e
−t

= 2Re { (−1.5− i) e
(−2+i)t }+ 4 e

−t

= e
−2t(2 sin t− 3 cos t) + 4 e

−t

C.4 Solution of Differential Equations by Laplace

Transform

Consider an nth order linear differential equation with constant coefficients

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = u(t) (C.5)

together with a set of n initial conditions

y(0) = y0 , y′(0) = y1 , . . . , y(n−1)(0) = yn−1

specified at t0 = 0. Taking the Laplace transform of both sides of (C.5) and using the
differentiation property, we obtain

snY (s)− sn−1y0 − · · · − syn−2 − yn−1 +
sn−1Y (s)− · · · − syn−3 − yn−2 +

...
sY (s)− y0 +

Y (s) = U(s)

Rearranging the terms, the above expression can be written as

Y (s) =
b(s)

a(s)
+

1

a(s)
U(s) (C.6)

where

a(s) = sn + a1s
n−1 + · · ·+ an

b(s) = y0s
n−1 + (y0 + y1)s

n−2 + · · ·+ (y0 + y1 + · · ·+ yn−1)

310 The Laplace Transform

Taking the inverse Laplace transform of (C.6), the solution of the given initial-value
problem is obtained as

y = yo(t) + yu(t) , t ≥ 0 (C.7)

where

yo(t) = L−1{ b(s)

a(s)
}

is part of the solution due to the initial conditions, and

yu(t) = L−1{ 1

a(s)
U(s) }

is the part due to the forcing term. Note the similarity between the expressions in
(2.15) and (C.7).

Example C.4

Consider the differential equation

y
′′ + 2y

′ + 26y = 26u(t) , y(0) = y
′(0) = 0

where u(t) is the unit step function.
Taking the Laplace transforms of both sides of the given differential equation and

rearranging the terms, we get

Y (s) = Φ(s) =
26

s(s2 + 2s + 26)
(C.8)

Expanding Y (s) into partial fractions, we obtain

Y (s) =
26

s(s + 1− 5i)(s + 1 + 5i)

=
1

s
+
−0.5 + 0.1 i

s + 1− 5i
+
−0.5− 0.1 i

s + 1 + 5i

Thus

y = φ(t) = 1 + (−0.5 + 0.1 i) e
(−1+5i)t + (−0.5− 0.1 i) e

(−1−5i)t

= 1 + 2Re { (−0.5 + 0.1 i) e
(−1+5i)t }

= 1− e
−t(cos 5t + 0.2 sin 5t) , t ≥ 0 (C.9)

the plot of which is shown in Figure C.1.
If the initial conditions were specified as y(0) = 1, y′(0) = 0, then the Laplace

transform would yield

s
2
Y (s)− s + 2sY (s)− 2 + 26Y (s) =

26

s

or equivalently,

Y (s) =
1

s

Then the solution would be

y = 1 , t ≥ 0

C.4 Solution of DEs by Laplace Transform 311

0 2 4 6
0

0.5

1

1.5

2 y

t

Figure C.1: Solution of the DE in Example C.4

Example C.5

Consider the same differential equation in the previous example with a different forcing
function:

y
′′ + 2y

′ + 26y = 26f(t) , y(0) = y
′(0) = 0

where

f(t) =

{

1, 0 < t < 2

0, t < 0 or t > 2

is a pulse of unit strength extending from t = 0 to t = 2.
Observing that

f(t) = u(t)− u(t− 2)

we have

F (s) = U(s)− e
−2s

U(s) =
1− e

−2s

s

Then the Laplace transform of the solution is obtained as

Y (s) =
26(1− e

−2s)

s(s2 + 2s + 26)
= (1− e

−2s)Φ(s)

where Φ(s) is given by (C.8). Taking the inverse Laplace transform, we compute the
solution as

y = φ(t)u(t)− φ(t− 2)u(t− 2)

=

{

φ(t), 0 < t < 2

φ(t)− φ(t− 2), t > 2

=











1− e−t(cos 5t + 0.2 sin 5t), 0 < t < 2

−e−t(cos 5t + 0.2 sin 5t)+

e−(t−2)(cos 5(t− 2) + 0.2 sin 5(t− 2)), t > 2

The solution is plotted in Figure C.2.

312 The Laplace Transform

0 2 4 6
−1

−0.5

0

0.5

1

1.5

2 y

t

Figure C.2: Solution of the DE in Example C.5

The Laplace transform can also be used to solve systems of differential equations
provided we properly define the Laplace transform of a vector-valued function. This
is fairly straightforward: We define the Laplace transform of

f(t) = col [f1(t), . . . , fn(t)]

element-by-element as

F(s) = L{ f(t) } = col [F1(s), . . . , Fn(s)]

With this definition it is easy to prove that all the properties of the Laplace transform
are also valid for the vector case. For example

Af(t) + Bg(t) ←→ AF(s) + BG(s)

and

f ′(t) ←→ sF(s)− f(0)

Consider a SLDE with a constant coefficient matrix:

x′ = Ax + u(t) , x(0) = xo (C.10)

Taking the Laplace transform of both sides, we obtain

sX(s)− xo = AX(s) + U(s)

which can be solved for X(s) as

X(s) = (sI −A)−1xo + (sI −A)−1U(s) (C.11)

Then the solution is

x = L−1{ (sI −A)−1 }xo + L−1{ (sI −A)−1U(s) } = Φo(t) + Φu(t)

When u(t) = 0, i.e., (C.10) is homogeneous, the solution expression above reduces
to

x = L−1{ (sI −A)−1 }xo

C.4 Solution of DEs by Laplace Transform 313

Comparing the above expression with (6.19) we observe that

L−1{ (sI −A)−1 } = eAt

We thus obtain an alternative formula to compute the matrix exponential function
eAt.

Example C.6

Consider again Example 6.4, where

(sI −A)−1 =

[

s + 3 2
1 s + 2

]−1

=
1

(s + 1)(s + 4)

[

s + 2 −2
−1 s + 3

]

We can compute eAt by taking the inverse Laplace transform of the elements of
(sI − A)−1 after expanding each of them into its partial fractions. However, a more
elegant approach is to expand the matrix rational function (sI − A)−1 into its partial
fractions as

(sI −A)−1 =
1

s + 1
R1 +

1

s + 4
R2

=
1

(s + 1)(s + 4)
[(s + 4)R1 + (s + 1)R2]

=
1

(s + 1)(s + 4)
[(R1 + R2)s + (4R1 + R2)]

Comparing the numerator polynomial matrices of the two expressions for (sI−A)−1, we
get

R1 + R2 =

[

1 0
0 1

]

4R1 + R2 =

[

2 −2
−1 3

]

from which we obtain

R1 =
1

3

[

1 −2
−1 2

]

, R2 =
1

3

[

2 2
1 1

]

Thus

e
At = e

−t
R1 + e

−4t
R2 =

1

3

[

e−t + 2e−4t −2e−t + 2e−4t

−e−t + e−4t 2e−t + e−4t

]

and the solution corresponding to the given initial condition xo = col [1, 2] is

x = e
At

xo =

[

−e−t + 2e−4t

e−t + e−4t

]

which is the same as the one obtained in Example 6.4.
Of course, we can obtain the solution corresponding to a given initial condition di-

rectly without computing eAt. By computing X(s) and expanding it into partial fractions
as

X(s) = (sI −A)−1
xo =

1

(s + 1)(s + 4)

[

s + 2 −2
−1 s + 3

][

1
2

]

=
1

(s + 1)(s + 4)

[

s− 2
2s + 5

]

=
1

s + 1

[

−1
1

]

+
1

s + 4

[

2
1

]

we get the same solution.

314 The Laplace Transform

Appendix D

A Brief Tutorial on MATLAB

MATLAB is an interactive system and a programming language for general scientific
and technical computation. When it is invoked (either by clicking on the Matlab
icon or by typing the command matlab from the keyboard) the command prompt >>
appears indicating that MATLAB is ready to accept command from the keyboard.
Commands are terminated by “return” or “enter” keys. The exit or quit command
ends MATLAB.

D.1 Defining Variables

The basic data element of MATLAB is a matrix that does not require dimensioning.
Scalars and arrays (vectors) are treated as special matrices. A variable is a data
element with a name, which can be any combination of upper and lowercase letters,
digits and underscores, starting with a letter and length not exceeding 19. Variables
are case sensitive, so A and a are different variables.

Variables are assigned numerical values by typing an expression or a formula or a
function that utilizes arithmetic operations on numerical data or previously defined
variables. For example, the commands

>> a=2+7; b=4*a;

>> c=sqrt(b);

assign the values 9, 36 and 6 to the variables a, b and c, respectively; and the command

>> c=c/3;

reassigns c the value 2. Note that more than one command, separated by commas or
semicolons, may appear on a single line. When a command is not terminated by a
semicolon the result of the operation is echoed on the screen:

>> d=sin(pi/c)

d =

1

If the result of an operation is not assigned to a variable, it is assigned to a default
variable ans (short for “answer”):

>> a+sqrt(-b)

ans =

9.0000+6.0000i

The last example shows that MATLAB requires no special handling of complex
numbers. In fact, the imaginary unit i is one of the special variables of MATLAB.
Some others are j (same as i), ans (default variable name), pi (π), eps (smallest

315

316 A Brief Tutorial on MATLAB

number such that when added to 1 creates a floating-point number greater than 1),
inf (∞) and NaN (not a number, e.g., 0/0). It is recommended that these variables
should not be used as variable names to avoid changing their values.

A matrix is defined by entering its elements row by row as

>> A=[1 2 3 4; 3 4 5 6; 5 6 7 8]

A =

1 2 3 4

3 4 5 6

5 6 7 8

where elements in each row are separated by spaces (or commas), and the rows by
semicolons. Thus the commands

>> x=[2 4 6 8]; y=[-3; 2; -1];

define a row vector x, and a column vector y. In particular, the command

start:increment:end

generates a row vector (an array) of equally spaced values with the values of start
and end specifying the first and the last elements of the array. If the increment is
omitted, it is assumed to be 1. Thus

>> arry=-3:2:9

arry =

-3 -1 1 3 5 7 9

Note also:

>> B(1,2)=7, B(2,4)=2

B =

0 7

B =

0 7 0 0

0 0 0 2

The command size(A) returns a 1 × 2 row vector consisting of the number of
rows and the number of columns of A. For a row or column vector x, the command
length(x) returns the number of elements of the vector. Thus

>> size(A), size(arry), length(arry)

ans =

3 4

ans =

1 7

ans =

7

A particular element of a matrix (or a row or column vector) can be extracted as

>> a23=A(2,3), x3=x(3), x3new=x(1,3), y2=y(2)

a23 =

5

x3 =

6

D.1 Defining Variables 317

x3new =

6

y2 =

2

To extract a submatrix of a matrix, the rows and columns of the submatrix are
specified:

>> sub1=A(2,3:4), sub2=A([1 3],[2 3]), sub3=A(2,:)

sub1 =

5 6

sub2 =

2 3

6 7

sub3 =

3 4 5 6

Thus sub1 consists of row 2 and columns 3 and 4 of A, sub2 rows 1 and 3 and columns
2 and 3, and sub3 row 2 and all columns. Similarly,

>> part=arry(2:5)

part =

-1 1 3 5

Conversely, a matrix can be constructed from smaller blocks:

>> A1=[x;0:3], A2=[A y A(:,[3 1])]

A1 =

2 4 6 8

0 1 2 3

A2 =

1 2 3 4 -3 3 1

3 4 5 6 2 5 3

5 6 7 8 -1 7 5

MATLAB has special commands for generating special matrices: eye(n) generates
an identity matrix of order n, zeros(m,n) an m×n zero matrix, ones(m,n) an m×n
matrix with all elements equal to 1. If d is a row or column matrix of length n,
the command diag(d) generates an n × n diagonal matrix with the elements of d
appearing on the diagonal; and if A is an m × n matrix, diag(A) gives a column
vector of the diagonal elements of A.

All commands entered and variables defined in a session are stored in MATLAB’s
workspace, and can be recalled at any time. Typing the name of a variable returns
its value:

>> A1

A1 =

2 4 6 8

0 1 2 3

The command who gives a list of all variables defined.

>> who

Your variables are:

318 A Brief Tutorial on MATLAB

A a c sub2 x3new

A1 a23 d sub3 y

A2 arry part x y2

B b sub1 x3

The command clear v_name_1 v_name_2 clears the variables v_name_1 and v_name_2

from the workspace, and clear clears all variables.
The command save fn saves the workspace in the binary file fn.mat, which can

later be retrieved by the load fn command. Menu items Save Workspace As... and
Load Workspace in the File menu serve the same purpose.

D.2 Arithmetic Operations

MATLAB utilizes the following arithmetic operators: + (addition), - (subtraction), *
(multiplication), ^ (power operator), ’ (transpose), / and \ (right and left division).

These operators work on scalars or matrices:

>> i*sub1, (sub1-[8 5])*sub2

ans =

0+5.0000i 0+6.0000i

ans =

0 -2

where * denotes a scalar multiplication in the first command and matrix multiplication
in the second. However,

>> sub2*sub1

??? Error using ==> *

Inner matrix dimensions must agree.

which indicates that the matrices are not compatible for the product.
Although addition of matrices requires that the matrices be of the same order,

for convenience MATLAB also allows for addition of a scalar and a matrix by first
enlarging the scalar to the size of the matrix. Thus

>> sub2+2

ans =

4 5

8 9

that is, sub2+2 is equivalent to sub2+2*ones(2,2).
The power operator requires a square matrix as operand:

>> C=[0 i; -i 0]^3

C =

0 0+1.0000i

0-1.0000i 0

The transpose operator takes the Hermitian adjoint of a matrix, which reduces to
transpose when the matrix is real. Thus

>> [1-i;2+i]’

ans =

1.0000+1.0000i 2.0000-1.0000i

D.2 Arithmetic Operations 319

Right division operator / works as usual when both operands or the divisor is a
scalar:

>> C/5

ans =

0 0+0.2000i

0-0.2000i 0

However, care must be taken when “dividing” two matrices: The command A/B cal-
culates a matrix Y such that A=YB. Obviously, this requires that A and B have the same
number of columns. If the equation is inconsistent then Y is a least-squares solution.
Thus

>> [0 2]/[1 2; 3 4]

ans =

3 -1

calculates the exact solution of the consistent equation

[0 2] = Y

[

1 2
3 4

]

and

>> [2 4]/[6 2]

ans =

0.5000

calculates a least-squares solution of the inconsistent equation

[2 4] = Y [6 2]

Similarly, the command A\B (left division) calculates a matrix X such that AX=B,
provided that A and B have the same number of rows. Again, if the equation is
inconsistent then X is a least-squares solution. Thus

>> [1 2; 3 4]\[0 2]

ans =

2.0000

-1.0000

Note that A\B = (B’/A’)’.
MATLAB also provides array versions of the above arithmetic operators that allow

for element-by-element operations on arrays (row or column vectors). If x and y are
arrays of the same length, then x.*y generates an array whose elements are obtained
by multiplying corresponding elements of x and y. Array versions of right and left
division and the power operator are defined similarly. For example,

>> x=[1 2 3]; y=[4 5 6];

>> x.*y

ans =

4 10 18

>> x./y, x.\y

ans =

0.2500 0.4000 0.5000

320 A Brief Tutorial on MATLAB

ans =

4.0000 2.5000 2.0000

>> x./2, 2./x, x.\2

ans =

0.5000 1.0000 1.5000

ans =

2.0000 1.0000 0.6667

ans =

2.0000 1.0000 0.6667

>> x.^y, y.^x

ans =

1 32 729

ans =

4 25 216

Array version of transpose operator takes the transpose (without conjugate) so
that

>> [1-i; 2+3i].’

ans =

1.0000-1.0000i 2.0000+3.0000i

D.3 Built-In Functions

MATLAB provides a number of elementary math functions that operate on individual
elements of matrices. Among them are trigonometric, inverse trigonometric, hyper-
bolic, inverse hyperbolic, exponential, natural and common logarithmic functions,
square root, absolute value, angle, conjugate, real and imaginary parts of complex
numbers. For example,

>> u=(pi/4)*[1 -3];

>> v=sin(u)

v =

0.7071 -0.7071

>> w=sqrt(v)

w =

0.8409 0+0.8409i

>> z=exp(w)

z =

2.3184 0.6668+0.7452i

>> ang=(180/pi)*angle(w)

ang =

0 90

MATLAB also provides many useful matrix functions, some of which are summa-
rized below.

>> A=[1 2 3 4; 2 3 4 5; 3 5 7 9];

D.3 Built-In Functions 321

>> rank(A)

ans =

2

>> rref(A) % reduced row echelon form

ans =

1 0 -1 -2

0 1 2 3

0 0 0 0

>> norm(A,1), norm(A,2), norm(A,inf) % p norms

ans =

18

ans =

15.7403

ans =

24

>> % singular value decomposition: A=USV’

>> [U,S,V]=svd(A)

U =

0.3472 0.7390 0.5774

0.4664 -0.6702 0.5774

0.8136 0.0688 -0.5774

S =

15.7403 0 0 0

0 0.4921 0 0

0 0 0.0000 0

V =

0.2364 -0.8026 0.3025 -0.4566

0.3914 -0.3831 -0.0629 0.8343

0.5465 0.0364 -0.7815 -0.2987

0.7016 0.4558 0.5420 -0.0790

The following matrix functions operate on square matrices:

>> A=[0 -3 1; 1 4 -2; 1 2 0];

>> det(A)

ans =

4

>> inv(A)

ans =

1.0000 0.5000 0.5000

-0.5000 -0.2500 0.2500

-0.5000 -0.7500 0.7500

>> % LU decomposition: L*U=P*A

>> [L,U,P]=lu(A)

L =

322 A Brief Tutorial on MATLAB

1.0000 0 0

0 1.0000 0

1.0000 0.6667 1.0000

U =

1.0000 4.0000 -2.0000

0 -3.0000 1.0000

0 0 1.3333

P =

0 1 0

1 0 0

0 0 1

>> % modal matrix and diagonal form: A*P=P*D

>> [P,D]=eig(A)

P =

0.5000+0.5000i 0.5000-0.5000i 0.7845

0-0.5000i 0+0.5000i -0.5883

0-0.5000i 0+0.5000i -0.1961

D =

1.0000+1.0000i 0 0

0 1.0000-1.0000i 0

0 0 2.0000

Note that eig command computes the linearly independent eigenvectors of A but not
the generalized eigenvectors. If A is not diagonalizable the P matrix will not be a
modal matrix.

D.4 Programming in MATLAB

D.4.1 Flow Control

MATLAB commands that control flow of execution based on decision making are
similar to those of most programming languages and are briefly summarized below.

For–End Structure

The general structure of a for loop is

for x=matrix

commands

end

where the commands between the for and end statements are executed once for each
column of the matrix with x assigned the value of the corresponding column. Usually
matrix is an array, and x is a scalar. For example,

n=input(’Enter n = ’)

fact=1;

for k=1:n

fact=fact*k;

D.4 Programming in MATLAB 323

end

calculates the factorial of n.
For loops can be nested as desired.

While–End Structure

The general structure of a while loop is

while expression

commands

end

The commands between the while and end statements are executed as long as the
expression is True. The expression may include the relational operators >, <, >=,
<=, == (equal) and ~= (not equal), and/or logical operators & (AND), | (OR) and ~

(NOT). As an example,

>> n=1; x=1; series=1;

>> while x>0.000001

series=series+x;

n=n+1;

x=x/n;

end

>> format long

>> series

series =

2.71828152557319

calculates e using the McLaurin series

exp(x) =
∞
∑

n=0

xn

n!

for x = 1, truncated when xn/n! < 0.000001.
A mistake in the expression controlling a while loop may result in a never-ending

loop. For example, if the second command above is mistakenly typed as while x>0

then the loop never ends. Such a run-away loop can be broken by [CTRL-C] keys.

If–End Structure and Variations

If structures allow for control of the flow of execution based on simple decision
making. The basic structure of the if command is

if expression

commands

end

where commands are executed if expression is True and skipped otherwise. The
variation

if expression_1

commands_1

324 A Brief Tutorial on MATLAB

elseif expression_2

commands_2

...

elseif expression_k

commands_k

else

commands_last

end

allows for a choice among several sets of commands.
A break command within an if structure can be used to terminate a loop prema-

turely. As an example

>> x=1; series=1;

>> for n=1:1000

if x<0.000001

break

end

x=x/n; series=series+x;

end

is equivalent to the sequence of commands in the while loop example.

D.4.2 M-Files

Rather than being typed on the keyboard, a sequence of MATLAB commands can be
placed in a text file with an extension .m, which are then executed upon typing the
name of the file at command prompt. Such a file is called a script file, or an m-file
referring to its extension. A script file can be created by selecting the M-file option of
the menu item New under the File menu, or by using any text editor. When a valid
variable name is typed at command prompt, MATLAB first checks if it is the name
of a current variable or a built-in command, and if not, looks for an m-file with that
name. If such a file exists, the commands in it are executed as if they were typed in
response to >> prompts.

The input command in an M-file allows the user to type a value from the key-
board to be assigned to a variable. As an example, suppose that the following set of
commands are stored in the M-file myfactorial.m

n=input(’Enter n = ’)

fact=1;

for k=1:n

fact=fact*k;

end

fact

When the command myfactorial is typed at the >> prompt, MATLAB starts ex-
ecuting the commands in the file starting with the first command, which types the
prompt

Enter n =

and waits for the user to type an integer, which is assigned to the variable n. The

D.4 Programming in MATLAB 325

program ends after the value of fact, computed by the for loop, is echoed on the
screen. A typical session would be

>> myfactorial

Enter n = [5]

fact =

120

where [5] denotes the number entered by the user (followed by a return). Of course,
the program can be refined to provide suitable error messages when the keyboard
entry is not an admissible input.

D.4.3 User Defined Functions

Each of MATLAB’s built-in functions is a sequence of commands which operate on
the variables passed to it, compute the required results, and pass those results back.
For example, the function

[L,U,P]=lu(A)

accepts as input a square matrix A, computes its LU decomposition, and passes back
the results in the matrices L, U and P. The commands executed by the function as
well as any intermediate variables created by those commands are hidden.

MATLAB provides a structure for creating user-defined functions in the form of
a text M-file. The general structure of a user-defined function is

[vo_1,...,vo_k]=fname(vi_1,...,vi_m)

commands

where fname is a user given name of the function and commands is a set of MATLAB
commands evaluated to compute the output variables vo_1,...,vo_k using the input
variables vi_1,...,vi_m. A single output variable need not be enclosed in brackets.
The text of the function must be saved with the same name as the function itself and
with an extension .m, i.e., as fname.m.

As an example, the following function finds the largest k elements of an array v

and returns them in an array u.

function u=mymax(v,k)

for p=1:k

[w,ind]=max(v);

u(p)=w;

v(ind)=-inf;

end

Its use is illustrated below:

>> u=[-7:3:5];

>> x=mymax(u,3)

x =

5 2 -1

Note that the function mymax uses the built-in MATLAB function max, which finds
the maximum element in an array and its position in the array. It should also be
noted that unlike an M-file, a function does not interfere with MATLAB’s workspace;
it has its own separate workspace.

326 A Brief Tutorial on MATLAB

D.5 Simple Plots

The plot command of MATLAB plots an array against another of the same length:

>> t=0:0.01:2; x=cos(2*pi*t);

>> plot(t,x)

produces the graph in Figure D.1.

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Figure D.1: A simple graph produced by MATLAB

More than one graphs may be plotted on the same graph, with different line
characteristics. Lines may be added, axes and tick marks may be redefined, axis
labels and a title may be added as shown in D.2:

>> newt=0:0.02:1; newx=sin(2*pi*newt);

>> plot(t,x,newt,newx,’o’)

>> axis([-0.5 2.5 -1.25 1.25])

>> set(gca,’XTick’,0:0.5:2,’YTick’,-1:0.5:1)

>> line([-0.5 2.5],[0 0]), line([0 0],[-1.25 1.25])

>> xlabel(’t’), ylabel(’cos 2\pit (-) and sin 2\pit (o)’)

>> title(’A Simple MATLAB Plot’)

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

t

co
s

2π
t (

−
)

an
d

si
n

2πt
 (

o)

A Simple MATLAB Plot

Figure D.2: A more complicated graph produced by MATLAB

D.6 Solving Ordinary Differential Equations 327

D.6 Solving Ordinary Differential Equations

MATLAB provides two functions, ode23 and ode45, for solving systems of first-order
differential equation of the form

x′ = f(t,x) , x(t0) = x0

Although they use different numerical techniques, their formats are exactly the same:

[t,x]=ode23(’myfnc’, tspan, x0);

where myfunc is the name of a user-defined function that evaluates f(t,x) for a pair
(t,x) and returns it with name xdot, tspan is an array of strictly increasing or decreas-
ing values of tk at which the solution is to be found, and x0 is a vector containing the
initial value x0. The output array t contains a set of discrete points tk, k = 0, 1, . . . , m
in the range specified by tspan, and each column of the output matrix x contains the
values of the corresponding component of the solution at tk. If tspan=[ti tf], then
ode23 use a variable step size to generate t with t(1)=ti and t(m)<tf.

As an example, the first order differential equation

y′ = −2ty2 , y(0) = 1

has the exact solution (see Example 2.15)

y =
1

t2 + 1

The following set of commands evaluate the exact solution and plot it together with
its difference from the solution obtained by the ode23 function.

>> t=0:0.01:5;

>> y_e=1./(t.*t+1); [t,y_a]=ode23(’myrhs’,t,1);

>> subplot(211),plot(t,y_e)

>> Xlabel(’t’),Ylabel(’y_e’)

>> subplot(212),plot(t,y_e-y_a’)

>> Xlabel(’t’),Ylabel(’y_e-y_a’)

where the MATLAB function

function xdot=myrhs(t,x)

xdot=-2*t.*x.*x;

which is saved as a text file with name myrhs.m, evaluates f(t, y) = −2ty2. This
example also illustrates the use of the subplot(rcn) command, which divides a figure
area into an r-by-c array with n referring to the nth cell on which the current figure
is to be plotted.

328 A Brief Tutorial on MATLAB

0 1 2 3 4 5
0

0.5

1

t

y e

0 1 2 3 4 5
−2

0

2

4
x 10

−3

t

y e−y
a

Figure D.3: Illustration of the subplot command

Index

n-space, 87

adjugate matrix, 162
algebraic sum, 124
angle between vectors, 255, 269
augmented matrix, 17

basic column, 20
basic variables, 22
basis, 98, 99

canonical, 99
change of, 107
orthogonal, 251
orthonormal, 251

Bellman-Gronwal Lemma, 302
Bernoulli equation, 76
Bessel’s inequality, 268
boundary value problem, 80, 174

Cauchy sequence, 266
Cayley-Hamilton theorem, 175
change–of–basis matrix, 107, 112
characteristic equation, 43, 53, 170, 231
characteristic polynomial, 170, 231
codomain, 109
coefficient matrix, 12
cofactor, 158
column equivalence, 35, 148
column representation of vectors, 104
column space, 135
companion matrix, 196
complementary solution, 22, 27, 45, 57,

216, 230
condition number, 289
conic section, 278
convergence, 265
convolution, 111
Cramer’s rule, 160

determinant, 154
column expansion of, 154
Laplace expansion of, 158
row expansion of, 154

diagonal dominance, 205
diagonal form, 179

difference equations, 122
differential equation(s), 41

exact, 65
implicit solution of, 66, 68
linear, 43, 53, 211, 226
numerical solution of, 71
order of, 41
ordinary, 41
partial, 41
separable, 68
solution curve of, 42
solution of, 42
system of, 70, 211

differential operator, 60
linear, 61, 110

direct sum, 124
orthogonal, 284

discrete Fourier series, 106
domain, 109

echelon form
column, 35, 136
reduced column, 35
reduced row, 20
row, 20, 135

eigenfunction, 174
eigenspace, 171

generalized, 194
eigenvalue, 170

algebraic multiplicity of, 171
geometric multiplicity of, 171

eigenvector, 170
generalized, 194

elementary matrix, 141
elementary operations, 17, 35, 95
equivalence

of linear systems, 18
of matrices, 17, 35, 148
of norms, 264

Euclidean norm, 244
Euler method, 72
exact differential equation, 65
existence and uniqueness theorem, 299
exponential order, 303

329

330 Index

Fibonacci sequence, 133
field, 1, 86, 295
Fourier series, 106, 259
Frobenius norm, 246
function of a matrix, 198
function space, 88
fundamental matrix, 213

Gauss-Jordan algorithm, 22
Gaussian elimination, 21
general solution, 27, 48, 57, 121, 132, 216,

230
generalized eigenvector, 194
generalized inverse, 146
Gersgorin’s theorem, 205
Gram matrix, 251
Gram-Schmidt process, 255

Hölder’s inequality, 263
Hermitian adjoint, 5
Hermitian matrix, 5, 272, 277

indefinite, 277
positive (negative) definite, 277
positive (negative) semi-definite, 277

Hilbert matrix, 163, 268

idempotent matrix, 126
identity matrix, 8
image, 115
implicit solution, 66, 68
impulse response, 51
infinity norm, 244
initial conditions, 46, 57, 211
initial-value problem, 46, 57, 211
inner product, 248
inner product space, 248
integrating factor, 67
interpolating polynomial, 198
invariant subspace, 186, 194
inverse Laplace4 transform, 303
inverse of a matrix, 140

generalized, 146
left, 140
pseudo, 286
right, 140

inverse transformation, 119, 140
isomorphism, 119

Jordan form, 191

kernel, 115

Laplace transform, 303
least–squares problem, 257, 285
left inverse, 117, 140
linear combination, 91
linear dependence, 92
linear differential equation(s), 43, 211, 226

nth order, 226
characteristic equation of, 43, 53, 231
characteristic polynomial of, 231
complementary solution of, 45, 57,

230
first order, 43
general solution of, 48, 57, 230
homogeneous, 43, 53, 227
non-homogeneous, 44, 56, 229
particular solution of, 44, 57, 230
second order, 53
system of, 211

linear differential operator, 61, 110
linear equations, 119

general solution of, 121, 132
homogeneous, 120

linear independence, 27, 55, 92, 94, 212,
227, 232

linear operator, 109
linear system(s), 12

complementary solution of, 22, 27
consistent, 12
equivalence of, 18
general solution of, 27
homogeneous, 12
ill-conditioned, 31
inconsistent, 12
particular solution of, 22, 27
solution of, 12

linear transformation(s), 108
codomain of, 109
domain of, 109
image of, 115
inverse of, 119, 140
kernel of, 115
left inverse of, 117, 140
matrix representation of, 112
null space of, 115
nullity of, 115
one-to-one, 116
onto, 118
range space of, 115
rank of, 115
right inverse of, 118, 140

Lipschitz condition, 299

Index 331

Lorentz transformation, 130
LU decomposition, 150

Markov matrix, 205
matrices

addition of, 3
column equivalence of, 35, 148
commutative, 7
equality of, 3
equivalence of, 148
multiplication of, 6
row equivalence of, 17, 148
similarity of, 149, 178

matrix, 1
adjugate, 162
augmented, 17
change-of-basis, 107, 112
characteristic equation of, 170
characteristic polynomial of, 170
coefficient, 12
cofactor of, 158
column, 1
column space of, 135
companion, 196
condition number of, 289
determinant of, 154
diagonal, 2, 8
diagonal form of, 179
diagonally dominant, 205
echelon form of, 20, 35, 135
eigenspace of, 171
eigenvalue of, 170
eigenvector of, 170
element of, 1
elementary, 141
function of, 198
fundamental, 213
generalized eigenspace of, 194
generalized eigenvector of, 194
generalized inverse of, 146
Gram, 251
Hermitian, 5, 272, 277
Hermitian adjoint of, 5
Hilbert, 163, 268
idempotent, 126
identity, 8
image of, 115
inverse of, 140
invertible, 141
Jordan form of, 191
kernel of, 115
left inverse of, 140

Markov, 205
minimum polynomial of, 176, 205
modal, 179, 191
nilpotent, 128
nonsingular, 138, 160
norm of, 246
normal, 291
normal form of, 146
null, 3
null space of, 115
order of, 1
orthogonal, 269
partitioned, 9
permutation, 142
projection, 126
pseudoinverse of, 286
range space of, 115
rank of, 136
right inverse of, 140
rotation, 270, 290
row, 1
row space of, 135
scalar multiplication of, 3
semi-diagonal form of, 189
singular, 138
skew-Hermitian, 5
skew-symmetric, 5
square, 2
state transition, 213, 217
symmetric, 5, 272
trace of, 2
transpose of, 4
triangular, 2
unitary, 269
Vandermonde, 166
Wronski, 229
zero, 3

matrix representation of linear transfor-
mations, 112

method of undetermined coefficients, 233
method of variation of parameters, 44, 56,

215, 230
minimum polynomial, 176, 205
Minkowski’s inequality, 263
minor, 158
modal matrix, 179, 191

orthogonal, 271, 273
real, 189
unitary, 270, 272

mode, 219
Moore-Penrose generalized inverse, 286

332 Index

nilpotent matrix, 128
nonsingular matrix, 138, 160
norm

defined by an inner product, 249
equivalence of, 264
Euclidean, 244
Frobenius, 246
infinity, 244
of a function, 244
of a matrix, 246
of a vector, 243
subordinate, 246
uniform, 243, 244

normal form, 146
normal matrix, 291
normed vector space, 243
null space, 115
nullity, 115
numerical solution, 71

order
of a differential equation, 41
of a matrix, 1

orthogonal
basis, 251
complement, 252
direct sum, 284
matrix, 269
projection, 253
set, 250
trajectories, 80
vectors, 250

orthonormal
basis, 251
set, 250
vectors, 250

partial fraction expansion, 306
partial pivoting, 30, 151
particular solution, 22, 27, 44, 57, 216, 230
partitioned matrix, 9

block of, 9
Pauli spin matrices, 207
permutation, 153
permutation matrix, 142
Picard iterates, 302
pivot element, 22
projection, 126
projection matrix, 126
projection theorem, 253
pseudoinverse, 286
Pythagorean theorem, 250

quadratic form, 274, 277
indefinite, 274
positive (negative) definite, 274
positive (negative) semi-definite, 274

quadric surface, 280

range space, 115
rank

column, 35, 136
of a generalized eigenvector, 194
of a linear transformation, 115
of a matrix, 136
row, 20, 22, 135

rational function, 306
recursion equation, 72, 122
right inverse, 118, 140
rotation matrix, 270, 290
row equivalence, 17, 148
row space, 135

scalar, 3, 86
scalar multiplication, 3, 86
Schur’s theorem, 290
Schwarz Inequality, 249
semi-diagonal form, 189
separable differential equation, 68
similarity, 149, 178
singular matrix, 138
singular value decomposition, 282
singular values, 283
singular vectors, 283
solution

by Laplace transform, 309
of a differential equation, 42
of a linear equation, 120
of a linear system, 12

span, 91
standard inner product on R

n×1,Cn×1, 248
state transition matrix, 213, 217, 313
step response, 50
submatrix, 9
subordinate matrix norm, 246
subspace, 89

complement of, 126
invariant, 186, 194
orthogonal complement of, 252

symmetric matrix, 5, 272
indefinite, 274
positive (negative) definite, 274
positive (negative) semi-definite, 274

system of differential equations, 70, 211
system of linear differential equations, 211

Index 333

complementary solution of, 216
fundamental matrix of, 213
general solution of, 216
modes of, 219
particular solution of, 216
state transition matrix of, 213

system of linear equations, 12

trace, 2
transpose, 4
triangle inequality, 243

uniform norm, 243, 244
unit impulse, 51
unit step function, 48, 305
unit vector, 243
unitary matrix, 269

Vandermonde’s matrix, 166
vector space(s), 86

algebraic sum of, 124
basis of, 99
dimension of, 101
direct sum of, 124
finite dimensional, 100
infinite dimensional, 100
isomorphic, 119
normed, 243
subspace of, 89

vector(s), 1, 86
addition of, 86
angle between, 255, 269
column, 1
column representation of, 104
linear combination of, 91
linear dependence of, 92
linear in dependence of, 92
norm of, 243
orthogonal, 250
orthonormal, 250
row, 1
scalar multiplication of, 86
span of, 91
unit, 243

Wronski matrix, 229
Wronskian, 229

zero matrix, 3

