Chapter 2
Introduction to
Differential Equations

2.1 Basic Definitions

An equation involving a real-valued function of one or more real independent variables
and its derivatives (with respect to these variables) is called a differential equation.
Some examples are

Y+ (nz)y*> = 0, y=y(x)
d? d
Eg+3d_i+2y = cost, y=1y(t)
Py %u
@ a—yg =0 ) u = u(x, y)
U — Pugy, = 0, u = u(t, )

A differential equation involving derivatives of a function of a single independent
variable is called an ordinary differential equation, and one involving partial deriva-
tives of a function of two or more independent variables is called a partial differential
equation. First two equations above are ordinary differential equations, and the last
two are partial differential equations. We will deal only with ordinary differential
equations.

The order of a differential equation is the order of the highest derivative appearing
in the equation. First equation above is a first order differential equation, the others
are second order.

An nth order ordinary differential equation in a function y of an independent
variable ¢ is of the form

F(tayvylv"'ay(n)) =0 (21)

where F' is a given real-valued function, and v/,y”, ...,y denote the first, second,
and the nth derivative of y.! If y(™ can be written explicitly in terms of the remaining
variables, then (2.1) becomes

y™ = flt,y .. y™Y) (2.2)

Lf the independent variable ¢t appears explicitly in a differential equation, then it is understood
that the dependent variable y is a function of ¢, and y’,y”, etc. refer to the derivatives of y with
respect to t. However, if the independent variable does not appear explicitly in the differential

2
equation, then it is better to denote the derivatives of the dependent variable by £, 44 etc., to
dt’ dt2
indicate that the independent variable is ¢t and y is a function of ¢.
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42 Introduction to Differential Equations

A real-valued function ¢(t) defined on an open interval 7 = (t;,%s) is called a
solution of the differential equation in (2.1) if

Ft,o(t),d'(t),..., 6" () =0 forall teT

Obviously, this requires that ¢'(t),...,¢™ (t) and F(t,¢(t), ¢ (t),..., o™ (1)) exist
for all t € Z. The graph of y = ¢(¢) is called a solution curve.

Example 2.1

The function
G(t) =1 +sint
is a solution of the differential equation
y' +y=1
on the interval —oco < t < oo, because ¢'(t) = cost and ¢ (t) = —sint exist and
¢ (t) + ¢(t) = —sint + 1 +sint =1
for all —oo < t < co. The function
P(t)=1—2cost

is also a solution of the same differential equation on the interval —co < t < oo as can
be verified similarly.

Example 2.2

Any function of the form
p(t) = c/t

where c is a real number, is a solution of the differential equation
ty +y=0

on each of the intervals —oo <t < 0 and 0 < ¢t < co. The solutions curves corresponding
to different choices of ¢ are shown in Figure 2.1.

4

= -2 0 2 4

Figure 2.1: Solution curves of the differential equation in Example 2.2
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If the differential equation in (2.1) can be written as

¥ Oy 4 aua (DY + an(t)y = u(t) (23

where aq(t),...,a,(t) and u(t) are given real-valued functions, then it is called a
linear differential equation (LDE). If v = 0 in (2.3), then it is called homogeneous.
We will deal mostly with linear differential equations having constant coefficients:
ai(t) =a; €Ri=1,2,...,n.

2.2 First Order LDE with Constant Coefficients

A first order linear differential equation with a constant coefficient is of the form
y' +ay = u(t)

We deal with the problem of solving the above differential equation in two steps: We
first find a solution of a homogeneous equation, and then generate from it a solution
of the non-homogeneous equation.

2.2.1 Homogeneous Equations

Consider the homogeneous equation
v +ay=0 (2.4)

Clearly, y = 0 is a trivial solution of (2.4) for all ¢. In search of a nontrivial solution
we rewrite the equation as y' = —ay, from which observe that the derivative of the
solution must be a multiple of the solution itself. One such function is the exponential
function. Motivated with this observation, we seek a solution of the form y = e%¢ where
s is a real number. Substituting y and 3’ = se®t into (2.4) we get

se’t +ae’ = (s+a)e =0
Since €%t # 0 for all ¢, we must have

s+a=0
which is called the characteristic equation of (2.4). The characteristic equation
has the root s = —a, which implies that y = ¢~ is a solution. But then it is easy to
see that any multiple of e~%!, that is, any function of the form

y=ce ™, ceR (2.5)
is also a solution for all t. The constant ¢ in expression (2.5) can be chosen arbitrarily,

and for each choice of ¢ we get a different solution as shown in Figure 2.2 for a = 1.
Thus the expression in (2.5) defines a one-parameter family of solutions.
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Figure 2.2: Solutions of (2.4) for a = 1.

2.2.2 Non-homogeneous Equations

Now consider the non-homogeneous equation
Y +ay = u(t) (2.6)

We replace the constant ¢ in (2.5) with a function v(¢), and look for a solution of
the form y = e~ %v(t).2 Substituting y and 3’ = e~/ (t) — ae~*wv(t) into (2.6), we
get

e M (t) — ae” v (t) + ae”v(t) = e/ () = u(t)

or equivalently,

where V/(t) is any antiderivative of v/(t) = e*u(t), and ¢ € R is an arbitrary constant.
Hence any function of the form

y=c V() +c, ceR (2.7)

is a solution of the non-homogeneous equation in (2.6).>

As in the homogeneous case, the expression in (2.7) contains an arbitrary constant
¢, and thus defines a family of solutions. By analogy to the solution of linear systems
considered in Chapter 1, any member of this family obtained by assigning a fixed
value to the arbitrary constant c is called a particular solution, denoted ¢,. A
simple particular solution is obtained by choosing ¢ = 0 as

p(t) = e "V (t)

2This method of finding a solution of a non-homogeneous linear differential equation from a solu-
tion of the associated homogeneous equation is known as the method of variation of parameters,
and is also applicable to higher order differential equations.

3From now on, we will omit the phrase “c € R” from a solution expression for simplicity in
notation.
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Then the family of solutions in (2.7) can be written as
y=e "V(t)+ce ™ = gp(t) + (1) (2.8)
where

be(t) = ce™ ™

characterizes a family of solutions of the homogeneous equation (2.4) associated with
(2.6). ¢. is called a complementary solution of (2.6) because by adding to ¢, any
member of the family defined by ¢. we obtain another particular solution.

Example 2.3
A complementary solution of the differential equation
y' + 2y = 5cost (2.9)
is
e(t) = ce™™

To find a particular solution, we substitute y = e~**v(t) and its derivative into the given
equation, and obtain

e 2 (t) — 2¢ > u(t) + 2> u(t) = 5cost
or equivalently,
v (t) = 5e* cost

Taking the antiderivative of both sides, we get
u(t) = /56% costdt = e*(2cost +sint) + ¢

Thus a family of solutions is obtained as

y=e *u(t) = 2cost +sint + ce >

where
op(t) = 2cost +sint (2.10)

is a particular solution.
Now consider the same differential equation with a different right-hand side:

y 42y = 4t (2.11)
Complementary solution is still ¢.(t) = ce™2. Following the same steps as above, a

family of solutions can be found as
y=2t—1+ce >
where

dp(t) =2t —1 (2.12)

is a particular solution.
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What if the right-hand side of the differential equation is the sum of the right-hand
sides of (2.9) and (2.11)? The reader might suspect that a particular solution would be
the sum of the particular solutions in (2.10) and (2.12). Indeed, it is easy to verify that

y=2cost+sint +2t —1
is a particular solution of

y +2y = bcost + 4t

So far we have shown that any member of the family defined by (2.8) is a solution
of the differential equation (2.6), but left the question whether there may be other
solutions that do not belong to this family unanswered. We will consider this issue
in the next section.

2.3 Initial Conditions

Suppose that we are interested in finding among the family of solutions given in (2.8)
a particular one which has the value y = yg when t = ty. In other words, we look for
a particular solution whose graph passes through the point (¢g,yo) in the ty plane.
Such a condition is called an initial condition, and a differential equation with an
initial condition attached to it is called an initial-value problem. We describe an
initial-value problem involving a first order differential equation as

Y +ay =u(t), y(to) =yo (2.13)

A function ¢(t) is called a solution of the initial-value problem in (2.13) on an interval
7 that includes tg if it is a solution of the differential equation on Z and ¢(to) = yo.

If we assume that the solution of the initial-value problem in (2.13) is included in
the family of solutions given by (2.8), then to find it all we have to do is to fix the
arbitrary constant ¢ in expression (2.8) to satisfy the initial condition as we illustrate
by the following example.

Example 2.4
Let us solve the initial-value problem
!
y +2y=>5cost, y(0)=1
A family of solutions of the differential equation has already been obtained in Example
2.3 as

y = 2cost +sint 4 ce” >

To evaluate the arbitrary constant, we substitute to = 0 for ¢t and yo = 1 for y, and get

2.

1=2cos0+sin0+ce >*=2+4c¢

which gives ¢ = —1. Thus the solution of the initial-value problem is obtained as
2t

y =2cost+sint —e

There are two questions concerning the initial-value problem in (2.13).
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a) Under what conditions does there exist a solution?

b) If a solution exists, is it included in the family of solutions given by (2.8)7

The first question is answered by the following theorem, whose proof is given in
Appendix B for a more general case.

Theorem 2.1 Suppose that the function u(t) is piece-wise continuous on an interval
T which includes to.* Then there exists a unique continuous function ¢(t) defined on
T such that ¢(to) = yo and y = G(t) is a solution of the differential equation in (2.13)
on every subinterval of T that does not contain a discontinuity point of u(t).

The function ¢(¢) in the statement of Theorem 2.1 satisfies the differential equation
(2.13) for all t € Z except the discontinuity points of u(t), where ¢(t) is well defined
(as it is continuous) but ¢'(t) fails to exist. However, since there are only a finite
number of such points in every finite subinterval of Z, we can extend the definition
of solution to include such piece-wise differentiable functions. With this extended
definition of solution, Theorem 2.1 states that the initial-value problem in (2.13) has
a unique continuous, piece-wise differentiable solution y = ¢(t) on Z.

Note that the theorem tells more than the existence of a solution. It also states
that the solution is unique. It is the uniqueness of the solution that allows us to
answer the second question.

Consider the function

B(t) = e [V (t) — V(to) + e yo] (2.14)

which is a particular solution of the differential equation (2.13) obtained from (2.8)
by choosing ¢ = ey, — V(o). Evaluating this function at t = to, we get

d(to) = e~ [V (to) — V(to) + €™yl = yo

that is, ¢ also satisfies the initial condition. Then it must be the unique solution
of (2.13). This shows that the solution of the initial-value problem (2.13) is indeed
included in the family of solutions given by (2.8).

The reader may wonder how ¢ can be unique while V can be chosen to be any
antiderivative of v’. The answer is that although V(¢) is not unique, V' (t) — V (¢o) is,
because all antiderivatives differ only by a constant. If Vis any other antiderivative,
then V(t) = V(t) + C and V(tg) = V(to) + C, so that V(t) — V(to) = V() — V(to).
A convenient choice for V is given by the definite integral

¢

V(t) = / e u(r)dr
to

for which V' (ty) = 0. With this choice of V' (¢), the unique solution of (2.13) is obtained

from (2.14) as

t
P(t) = e t0)yy 4 et / e Tu(T) dr = Go(t) + ¢u(t) (2.15)

to

4A function f(t) defined on a finite interval is said to be piece-wise continuous if it is continuous
everywhere except for a finite number of discontinuity points, and left and right limits of f exist
at the discontinuity points. A function defined on an infinite or semi-infinite interval is piece-wise
continuous if it is piece-wise continuous on every finite subinterval.
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This expression gives the solution as the sum of two parts; one part, ¢,(t), due to the
initial condition yg, and the other part, ¢, (t), due to the forcing function wu(t).?

Let us go back to the non-homogeneous differential equation (2.6). Let y = 9 (t)
be a solution of (2.6) on an interval Z, and let ¢ (tg) = 1y at some arbitrary to € Z.
Then obviously y = 1(t) is a solution of the initial-value problem

Y +ay=u(t), ylto) =10

and, by the above discussion, it must be included in the family of solutions given by
(2.8). This shows that the expression (2.8) includes all possible solutions of (2.6).
Because of this reason it is called a general solution of (2.6). Note that since V(t)
in (2.8) is not unique, a general solution may be expressed in many different ways.

Example 2.5

Let us find the solution of the initial-value problem

Y +ay =au(t), y(to) =yo (2.16)

where a # 0, and

1, t>0
“(t):{ 0, t<0

Such a function u is called a unit step function, and is common in many engineering
applications. Note that unit step function is continuous everywhere except t = 0, where
it has a jump as shown in Figure 2.3.

2 u(t) E

= 0 1 2

Figure 2.3: Unit step function

Since u(t) has a discontinuity at ¢ = 0, it is reasonable to look for separate solutions
on the intervals —oo < ¢t < 0 and 0 <t < oo.

On the interval —co < ¢t < 0, u(t) = 0, and a general solution of the resulting
homogeneous differential equation

y +ay=0
is given as
y=ce ™, t<0 (2.17)

5Unlike the decomposition of a solution into particular and complementary solutions as in (2.8),
the parts ¢o(t) and ¢ (t) in (2.15) are not themselves solutions of (2.13).
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On the interval 0 < t < oo, u(t) = 1, and the differential equation becomes
y' +ay=a
Now a general solution is
y=1l+ce *, t>0 (2.18)

The solution curves defined by (2.17) and (2.18) are shown in Figure 2.4 for a = 1.
Note that these solutions are not defined at ¢ = 0. However, for any given yo, there exist
a particular solution ¢ in the family defined by (2.17) and a particular solution ¢z in
the family defined by (2.18) such that

lim ¢1(t) =yo = lim_ ¢2(t) (2.19)

t— 0~ t — 0t

The first condition in (2.19) requires that ¢; = yo. Hence
o1(t) = ey, t<0
Similarly, using the second condition in (2.19) to evaluate cz in (2.18), we get
da(t) =e Pyo+1—e*, t>0

Combining ¢1 and ¢2 and extending their domains of definition to include ¢t = 0, we
obtain a single solution for all —co < t < 0o as

e *ypo, t<0
y = ot ot (2.20)
e “y+1—e t2>0

Note that the solution is continuous at all ¢, and it satisfies the given differential equation
at all ¢t except t = 0. This is what we mean by a solution in the extended sense of Theorem
2.1.

2

Figure 2.4: Solution curves of (2.16) for a =1

The separate treatment of the cases t < 0 and t > 0 can be avoided by using the
solution expression given in (2.15). If ¢ < 0 then u(7) = 0 forall ¢ < 7 < 0, and
therefore, the integral term is zero. The solution is then given by

—at

y=e¢ Yo, t<0



50 Introduction to Differential Equations

Ift >0, u(t) =1 forall 0 <7 <t, and the solution is found as
t

y=e “yo+ efat/ ae’Tdr =e yo+1—e ", t>0
0

Of particular interest is the case when yo = 0. In this case, the solution becomes
0, t<0
y = —at
1—e %, t>0

which is called the step response of the differential equation, and is indicated by the
thick curve in Figure 2.4.

Example 2.6
Let us consider the initial-value problem
y' +y=ur(t), y(0)=0 (2.21)
where

0, t<0 or t>T
up(t) = (2.22)

1T, 0<t<T

Note that the area under the graph of ur(t) is 1 as shown in Figure 2.5. Such a function
is called a unit pulse.

1/Tr —

Area =1

Figure 2.5: Unit pulse function.

As in the previous example, y = 0 for ¢ < 0.
If0<t<T,then ur(r)=1/T forall 0 <7 <t and

1—e?

t
_ ,t T _
y=e /0 (1/T)e"dr = T

If t > T, ur(7) contributes to the integral only for 0 < 7 < T', so that

el —1 ¢

T
=e " 1/T)e"dr = e
Y T
0

The solution is shown in Figure 2.6 for several values of T'.
It is interesting to examine the behavior of ur(t) and the solution as T'— 0. As T
gets smaller, the height of the pulse ur(t) tends to co at t = 0 and to 0 everywhere
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else, while the area under the pulse remains unchanged. The limit of ur is called a unit
impulse, denoted 6(t).6 Now the corresponding solution tends to”

We formally say that the initial-value problem

Yy +y=96(t), y(0)=0

has the solution

(o0, t<o
y= et t>0

which we call the impulse response of the differential equation. Note that the impulse
response is not continuous, but has a jump at ¢ = 0, as indicated by the thick solution
curve in Figure 2.6. Since impulse is not a piece-wise continuous function, we should not
expect to get a continuous solution. Theorem 2.1 is not applicable to this case. Note
also that the initial condition is specified not exactly at ¢ = 0, but at some t = —e where
€ > 0 is arbitrarily small (which is denoted by 0~ for convenience). The reason is that
we do not know what is going on at ¢ = 0. Looking at the solution for ¢t > 0, we observe
that it is actually the same as the solution of the homogeneous initial-value problem

y+y=0, y(0)=1

It looks as if the impulse has changed the initial condition from 0 to 1 instantaneously
at t =0.

1r Impulse Response

Figure 2.6: Solution of (2.21) for several T'.

6Unit impulse is not a function in the ordinary sense, because it is not defined at t = 0, it is zero
everywhere except ¢t = 0, and yet

/E s(tydt =1

for any € > 0.
"This follows from

x
-1
lim ¢

z — 0 T

=1
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Example 2.7

In the previous two examples the point at which the initial condition was specified was
also a discontinuity point of the forcing function wu(¢), but these were just coincidence
and irrelevant for the solution formula in (2.15). To illustrate this point consider the
initial-value problem

Y +y=ul), y0) =y (2.23)

where

1, t>1
“(t):{ 0, t<1

is a shifted unit step function.
Fort <1

¢
y = ¢i(t) = eityoJreft/ eu(t)dr = e 'y
0

where the second equality follows from the fact that u(7) = 0 on the interval of integra-
tion. For ¢t > 1

¢
y = ¢2t) = e_tyo—l—e_t/ e u(r)dr
0

¢
e tyo+e? / e€dr = e tyo+1-— e~
1

Note that
lim ¢1(t) =yo/e = lim ¢a(t)
t—1- t— 1+

Combining ¢1 and ¢2 after extending their domains to include the discontinuity
point ¢ = 1 of u, we obtain a continuous solution whose graph is shown in Figure 2.7 for
yo = 0.4.

Figure 2.7: Solution of (2.23)

The formula in (2.15) provides us with a nice property of the solution of an initial-
value problem involving a first order linear differential equation with a constant co-
efficient: If the initial-value problem

Y +ay=u(t), y0)=uwo
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has the solution y = ¢(t), then the initial-value problem

Y +ay=ult—1to), y(to) =10

has the solution y = () = ¢(t — to) (see Exercise 2.6). This property allows us
to derive the solution of a differential equation with an initial condition specified at
some arbitrary to from the solution of a modified differential equation with an initial
condition specified at ¢y = 0. (Modification involves an appropriate shift of the forcing
function wu(t).) It should however be emphasized that this property does not hold for
a differential equation with a non-constant coefficient.

Example 2.8
The initial-value problem
y' +y=2cost, y(0)=1
has the solution
y = ¢(t) =sint + cost
as can be verified by observing that
@' (t) + ¢(t) = (cost —sint) + (sint + cost) = 2 cost
and
¢(0) =sin0+cos0 =1
Then the initial-value problem
Y +y=2cos(t—n/2) =2sint, y(r/2)=1
must have the solution
y=v(t) = ¢(t — w/2) = sin(t — 7/2) + cos(t — 7/2) = sint — cost
Indeed,
' (t) + (t) = (cost + sint) + (sint — cost) = 2 sint
and

Y(m/2) =sinw/2 —cosm/2 =1

2.4 Second Order LDE with Constant Coefficients

2.4.1 Homogeneous Second Order Equations

Again we start with the homogeneous equation
y' +ary +ay =0 (2.24)

where a1, as € R are given constants. As in the first order equations, y = 0 is a trivial
solution, and we look for nontrivial solutions of the form y = e®t. Substituting y and
its derivatives into the equation, we get the characteristic equation

32+a15—|—a2=0

The characteristic equation is a second order equation with real coefficients. Accord-
ing to the fundamental theorem of algebra, it has two roots which may be real or
complex. We investigate three possible cases separately.
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Characteristic equation has distinct real roots

If a? — 4ap > 0, then the characteristic equation has two distinct real roots, s = oy
and s = oo. Then each of the functions

é1(t) = e’ and  ¢o(t) = 7
is a solution of the differential equation (2.24). Moreover, any function of the form
y = c1o1(t) + cada(t) = c1e7*" + e

where c¢1, co € R are arbitrary constants, is also a solution as can easily be verified by
substitution.

The solutions ¢; and ¢ have the property that neither of them can be expressed
as a multiple of the other, and are said to be linearly independent. The importance
of linear independence of ¢; and ¢ is that the solution expression above cannot be
simplified by combining the two terms, which means that the two arbitrary constants
c1 and co can be assigned arbitrary values independently, and we get a different
solution for every different choice of the pair (c1,co).8
Characteristic equation has complex roots

If a2 — 4ay < 0, then the characteristic equation has a pair of complex conjugate
roots s = A1 = 0 +iw and s = A\] = 0 — iw, where o,w € R. Then each of the
complex-valued functions

Py (t) = el 7T = 7 (cos wt + i sinwt)
and
Yo(t) = i (t) = el77 )t = ¢ (coswt — isinwt)

satisfies the differential equation (2.24), and is called a complex solution. To find
real solutions we write 11 (t) = ¢1(t) + i¢2(t) where the real and imaginary parts

$1(t) = e“Fcoswt and  ¢o(t) = e sinwt
of 11 are real-valued functions. Since 7 satisfies the differential equation, we have
0= + @] +azis = (] + a1y + az¢) +i(¢5 + a1 + azgs)
which implies
1 +ai1d) +azpr =0
and
5+ a1y + asgs =0

where the argument ¢ of the functions are dropped for convenience. This shows
that both the real part ¢; and the imaginary part ¢ of 1)1 are solutions of (2.24).

8Recall that we talked about linear independence of column vectors in Chapter 1 in connection
with solution of linear systems. Here the same concept is used for functions. A precise definition of
linear independence of functions will be given in Chapter 3.
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The reader can also verify this by substituting ¢; and its derivatives and ¢5 and
its derivatives into (2.24) (see Exercise 2.8). We would reach the same result if we
considered 15 instead of 1)1, because their real parts are the same and imaginary parts
differ only in sign.

The functions ¢1(t) = € coswt and ¢2(t) = e’ sinwt are linearly independent,
and any function of the form

y = c101(t) + cada(t) = c1e”" coswt + coe”" sinwt

is also a solution.

Characteristic equation has a double real root

If a? — 4ay = 0, then the characteristic equation is of the form
s2 =205+ 0> =(s—0)?=0

and it has a double root at s = o. In this case the function ¢ (t) = e’ is a solution
of (2.24). Since there is no reason to think that this case is any different from the
previous two cases in an essential way, we look for a second solution which is linearly
independent of ¢;. To find a second solution, we define a new dependent variable as
z =y’ — oy. Then the differential equation becomes

y' =20y + oty =" —oy)—o(y —oy) =2’ —ox =0

Thus the original second order equation in y is reduced to a first order equation in
the new variable z. The solution of this equation is

T = coelt

Substituting this expression in the equation defining = in terms of y, we obtain
/ _ ot
Yy — oy = cge

which is another first order differential equation in y, but now it is a non-homogeneous
one. Solving this equation we obtain

y = cire’ + cote”"

ot

This expression is already in the form y = c1¢1(t) + caga(t), where ¢1(¢) = e”* and
¢2(t) = te". Thus we not only recover ¢, but also obtain a second solution ¢3. As
in the previous two cases, ¢1 and ¢o are linearly independent.

In summary, the second order homogeneous linear differential equation (2.24) has
a solution of the form

y = c1¢1(t) + caga(t) (2.25)

where ¢ and ¢5 are linearly independent solutions that are defined by the roots of
the characteristic equation.
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2.4.2 Non-homogeneous Second Order Equations
We now consider the non-homogeneous equation
Yy + a1y’ + asy = u(t) (2.26)

As in the first order equation, we use the method of variation of parameters, and
assume a solution of the form

y = ¢1(t)u(t) + pa(t)va(?)

where ¢; and ¢9 are linearly independent solutions of the associated homogeneous
equation, and the functions v; and vy are to be determined. The derivative of y is
obtained as

y' = Phvr + d1v1 + Phva + avy
where the argument ¢ is dropped for simplicity. Let us impose the condition
P1(t)vy(t) + 2(t)va(t) = 0 (2.27)
on v; and vy.? Then the expression for ¢’ reduces to
Y = ¢lvr + dhvy
and differentiating once more we get
y" = divr + @l + @hva + dyvy
Substituting y, y’, and y” into the differential equation in (2.26) and grouping the
terms, we obtain
y' + a1y + agy
= (¢ + a1 +azr)vr + (¢35 + a1¢y + azdz)va + d1vy + PHvs
= Hi+dhvy = u
where the second equation follows from the fact that ¢; and ¢, are solutions of the

homogeneous part of (2.26) so that the expressions in the parentheses are zero. Thus
we obtain a second equation in v{ and v}

¢ ()] (1) + @ (t)vy(t) = u(t) (2.28)

Linear independence of ¢; and ¢2 guarantee that equations (2.27) and (2.28) can
be solved simultaneously for v| and v5.'° The reader can verify that

o)
A6 (0) — n (D5(0)

0

and

_ —¢1(H)u(t)
P ()da(t) — P1(t)d5(t)
9The significance of this condition is explained in Chapter 6 for the general case of nth order

linear differential equations.
10This will be proved in Chapter 6 for a general nth order linear differential equation.

v5(t)
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satisfy (2.27) and (2.28) simultaneously. Integrating these expressions we obtain
v1(t) =Vi(t) + 1 and wvo(t) = Va(t) + co

where V; and V5 are fixed antiderivatives of v] and v}, and c;,c2 € R are arbitrary
constants. A solution of the non-homogeneous differential equation (2.26) is thus
obtained as

y = o1(t)Vi(t) + ¢2(t)Va(t) + 11 (t) + 22 () (2.29)

We note that, as in the case of first order differential equations, the solution in
(2.29) is also of the form

Y= ¢p(t) + ¢c(t)

where

Pp(t) = S1(OV1(E) + P2(8)V2(?)

is a particular solution, and

Ge(t) = c1¢1(t) + caha(t)

is a complementary solution (solution of the homogeneous equation (2.24) associated
with (2.26)). We will show in Chapter 6 that the expression in (2.29) includes all
solutions of (2.26), and therefore, it is a general solution of (2.26).

As in the case of first order equations, we might be interested in finding among the
family of solutions given by (2.29) a particular one that satisfies additional conditions.
Since a general solution contains two arbitrary constants, we need two conditions to
determine the values of the arbitrary constants . If these conditions involve the values
of the solution and its derivative at some tg, then the problem becomes an initial-value
problem specified as

y' +ary +ay=ut), ylto)=wo, ¥ (t)=1mn

Equating the value of the general solution in (2.26) at tg to yo and the value of its
derivative at £y to y1, we get

Op(to) + c1¢1(to) + cad2(to) = o
Pp(to) 4 c19 (to) + cagh(to) =

Again linear independence of ¢, and ¢5 guarantees that these equations can be solved
for ¢; and cs to obtain the required solution of the initial-value problem.

Example 2.9

Solve the initial-value problem

The characteristic equation s> = 0 has a double root s = 0. Consequently,

() =e""=1 and ¢o(t) =te"" =1t
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are two linearly independent solutions, and a general solution is
y=c1+cat
The initial conditions require
y0)=ca=1, y0)=c2=-1
Thus the solution of the initial-value problem is obtained as
y=1—1

This problem is so simple that the solution can be found without going into the
systematic procedure of finding the roots of the characteristic equation. All we have to
do is to integrate y twice:

and

Example 2.10
Let us find the unit step response of
y'+py +y=ult), y(0)=y(0)=0 (2.30)

for several different values of the parameter p.

We note that whatever p is, the solution for ¢ < 0 is given by y = 0. We are more
interested in the solution for ¢ > 0, for which u(t) = 1.

For p = 5.2, the characteristic equation

s +525+1=0
has two real roots s = —0.2 and s = —5, and a complementary solution is
y = cie % 4 cpe5t
To find a general solution we let
y = e "% () + e Sun(t)
With the restriction
e O (1) + e () = 0 (2.31)
the derivatives of y are calculated as
Y = —0.2e" "% v (t) — 5e wa(t)
and
y" = e %%(0.04v1 () — 0.20 (1)) + e~ 7" (2502 (t) — 5v5(t))
Substituting y and its derivatives into the equation, we get after simplification

—0.2e "2 (1) — 5e Ptoh(t) = u(t) =1 (2.32)
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Solving v] and v5 from (2.31) and (2.32) we obtain
vi(t) = (1/4.8)e™" ,  wh(t) = (—1/4.8)e"
Hence
vi(t) = (5/4.8)e"% +c1, wa(t) = —(0.2/4.8)” + 2

and a general solution for ¢ > 0 is

e "% ((5/4.8)e" % + 1) + e 7 (—(0.2/4.8)e™ + ¢2)

—0.2t —5t
= 1+ce + cae

Y

The initial conditions
y(0) =1+c1+c2 =0
y,(O) = —0.2¢1 — bca =0

give ¢1 = —25/24 and ¢z = 1/24. Thus the solution of the initial-value problem is
obtained as

y=1—(25/24)e "% 4+ (1/24)e™™, t>0
For p = 2, the characteristic equation
4+ 25+1=(s+1°>=0
has a double root s = —1, and a complementary solution is
Yy = cleft + C2t€7t

A general solution can be found by following the same steps as above. However, a simple
observation allows us to avoid the burden of lengthy manipulations. We note that, for
this particular problem, whatever p is, the function ¢,(t) = 1 is a particular solution
because

by (1) + pp(t) + ¢p(t) =0+p-0+1-1=1
Based on this observation we immediately write a general solution as
y=14cie " +eate, t>0

Evaluating the arbitrary constants using the initial conditions, we get ¢c1 = c2 = —1, and
the solution of the initial-value problem is obtained as

y=1—(Q+te", t>0
For p = 0.6 the characteristic equation
s +06s+1=0

has the complex conjugate roots s = —o F iw, where 0 = 0.3 and w = /1 — ¢2. Conse-
quently, a general solution is

Y= 14+cie “tcoswt+ e Psinwt, t>0

Evaluating the arbitrary constants from the initial conditions, we obtain the solution of
the initial-value problem as

o o

y=1—e" tcoswt— Z e~ ‘sinwt, t>0
w
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It is left to the reader as an exercise to show that the solution for p = 0 is
y=1—-cost, t>0
for p = —0.6 is
ot O ot .
y=1—e""coswt+ —e” sinwt, t>0
w
and for p = —2.5 is
y=1-(4/3)e" +(1/3)*", t>0

The graphs of the solutions corresponding to the different values of p are shown in Figure
2.8. The reader is urged to interpret the results.

ot Yy | b:0.0; O.é; 2.0;5.2 ‘ |
: /
i avi /(\
1’ : Y
Or----- Sl oo -eeee R
-2 0 2 4 6 8 10
20 y i
0o
_2 : I I | |
-2 0 2 4 6 8 10

Figure 2.8: Solutions of (2.30) for several p.

2.5 Differential Operators

For a differentiable function f we use the notation f’ to denote its derivative. If f is
also differentiable, then f” denotes its second derivative, etc. An alternative notation
is to denote the derivative of f by D(f), where D stands for the differentiation
operation. We call D the differential operator. Then the higher order derivatives
of f can be expressed as

f" = D(f) = D) = Df)
@ = D(") = DWD*f) = D*f)

and so on, where D? is a short notation for the compound operator D o D, D3 for
Do D?, etc. Each of the operators D, D2, D3, etc. can be viewed as a mapping from
a set of functions into another such that the image of a function f under D is f’,
under D2, f”, under D3, f®), etc.
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Using the operator notation, an nth order linear differential equation with constant
coeflicients can be written as

(D™ 4+ a1 D" ' + -+ a,_ 1D+ a,I)(y) = u(t) (2.33)
where I stands for the identity operator, I(f) = f. Letting

L(D)=D"4+a;D" ' +..-+a, 1D +a,l
(2.33) can be written in a compact way as

L(D)(y) = u(t)

L(D) is called a linear differential operator with constant coefficients. Like D,
D?, etc., L(D) can be viewed as a mapping that maps a function f into a combination
of itself and various order derivatives.

We know from calculus that

D(af +bg) = aD(f) + bD(g) (2.34)

for arbitrary functions f and g and scalars a and b. Then it is easy to show by
induction on k that

D¥(af 4+ bg) = aD*(f) +bD*(g), k=1,...,n
which in turn implies
L(D)(af 4 bg) = aL(D)(f) + bL(D)(g) (2.35)

The significance of the property in (2.35) is that if y = ¢(¢) and y = ¥ (¢) are any two
solutions of the linear differential equations

and
L(D)(y) = o)

then y = a¢(t) + b (t) is a solution of !
L(D)(y) = au(t) + bu(t)

Linear differential operators with constant coefficients provide great notational and
conceptual simplification because they can be treated like polynomials. For example,
if L1(D) and Lo(D) are two such operators then we can define a product operator
L = L1 L5 such that

L(D)(y) = L1(D)[L2(D)(y)]

This definition allows us to factor a given linear differential operator with constant
coefficients as if it were a polynomial in D.

' This property of linear differential equations has already been mentioned in Example 2.3.
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Example 2.11

Consider a second order linear differential equation with constant coefficients

v =3y +2y=0 (2.36)
which can be written using the operator notation as

(D* —3D+2I)(y) =0

Treating the linear differential operator D? — 3D + 2T like a polynomial, we can factor
it out as

D* —3D+2I=(D—1I)(D-2I)
and rewrite the differential equation as

(D= D{(D —21)(y)) = 0 (237)
We can do this because

(D-D(D-20)(y)] = (D-D)(y —2y)
= D@y —2y)— (v —2y)
W' —2y)— (v —2y)
= y' =3y +2
(D? — 3D + 2I)(y)

Now letting (D — 2I)(y) = z, (2.37) is transformed into a first order equation
(D-0N)(z)=2 —2=0
whose solution can easily be obtained as
z=cie'

Substituting the solution back into the definition of z, we get another first order differ-
ential equation

(D-2D)(y) =y -2y =cre’

Solving this final equation we obtain

Yy = clet + 0262t
which is a general solution of (2.36).

The reader might have noticed that this is exactly what we did in finding the general
solution of a second order equation whose characteristic equation has a double real root.

We will discuss the significance of linear differential operators in Chapter 3 in
connection with linear transformations.



2.6 Further Topics on Differential Equations 63

2.6 Further Topics on Differential Equations

2.6.1 First Order LDE with Non-Constant Coefficients

Consider a first order linear homogeneous differential equation with a non-constant
coeflicient

Yy +a(t)y =0 (2.38)
where a(t) is a given function. Writing (2.38) as
y'/y = —af(t)
and integrating both sides, we obtain
In|y|=c —I(t)
or equivalently,
ly| = eo1e T

where I(t) is any antiderivative of a(t). Noting that e=(¥) > 0, we can remove the

absolute value in the above expression by defining e“* = | ¢|, and thus obtain
y = ce 1® (2.39)
The expression in (2.39), which contains an arbitrary constant, is a general solution
of (2.38).
Now consider the non-homogeneous equation
y' 4 a(t)y = u(t) (2.40)

Following the method of variation of parameters, we look for a solution of the form
y = e TMy(t). Substituting y and y’ into (2.40) and simplifying the equation, we get

o' (t) = ! Du(t)

If V(¢) is any antiderivative of v'(t) above, we have v(t) = V(t) + ¢, and a general
solution of (2.40) is obtained as

y = e TOV(t) 4+ ce 1O = 6, (t) + pe(t) (2.41)

where ¢, is a particular solution and ¢. is a complementary solution.
If an initial condition y(tp) = yo is specified, useful choices for I(t) and V (¢t) are

t
I(t) = / a(T)dr
to
and
¢ LT () ds
V@:/emMﬂM:/em u(r) dr
to to

With these choices, the solution of the initial-value problem

Y +alt)y =u(t), y(to)=1yo (2.42)
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is obtained as

t t T
g Joarar / o a@as (") dn)

to

Defining
b(t,7) = e~ Jr (08 (2.43)
and noting that

. ‘o
efto al0)dé _ e ff a(0)dd _ é(to, 7)

the solution above can be expressed in more compact form as

y = ¢(t, to)yo + &(t, t0) t ¢(to, )u(T) dr) (2.44)

Taking ¢(t,tp) inside the integral (it is independent of the variable of integration),
and noting that (see Exercise 2.14)

¢(ta t0)¢(t0a T) - ¢(t7 T)

an alternative expression for the solution is obtained as
t
y =0t to)yo + [ ¢t T)u(T) dT = §o(t) + Pu(t) (2.45)
to

Note that (2.15) is a special case of (2.45) corresponding to é(t,to) = e~ 2(*~t0). Like
(2.15), the expression in (2.45) gives the solution as the sum of two parts, one due to
the initial condition yo, and the other due to the forcing function w(t).

Example 2.12

Let us solve the initial-value problem

y' — (cost)y = cost, y(to) = o
Writing the associated homogeneous equation as

y'/y = cost

and integrating both sides, we obtain
In|y|=sint+c1

or equivalently,
y = cesint

To find a solution of the non-homogeneous equation, we substitute y = ¢“*v(t) and
its derivative, and obtain

e (£) 4 (cost)e®™ Pu(t) — (cost)e™™ fu(t) = e (t) = cost

Thus
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and a general solution is
y = €Sint1}(t) _ Cesint 1

Note that the particular solution ¢,(t) = —1 could have been found by inspection.
The arbitrary constant in the general solution is evaluated using the initial condition

yo = ce —1 — ¢ = e_Sint"(yo +1)
Thus the solution of the given initial-value problem is found as
y = Fntemsinto (g | 1) _ ] = gntsintoy, | sint—sinto _ ]
Alternatively, we can use the formula in (2.45). Calculating

t
[l (—cos6)ds _ sint—sinr
T = e

ot,T)=¢
(2.45) gives the solution as
— esmtfsmtgyo +/ esmtfsmT cosTdr = eSlH t—sin toyo + eSlH t—sintg __ 1
to
2.6.2 Exact Equations

Nonlinear differential equations are difficult to solve even when they are first order.
We now consider some special types of first order nonlinear equations for which we
can find a solution.

A first order differential equation expressed in differential form

M(t,y)dt + N(t,y)dy =0 (2.46)

where M and N are given functions of two real variables t and y, defined in some
rectangular region D of the ty plane, is said to be exact if there exists a function
F(t,y) defined and having continuous first partial derivatives in D such that

OF (t,y) OF (t,y)

— =M(t —— = N(t 2.47
o = Mty = = Nty (247)
Recall that the differential of a function F'(¢,y) of two variables is
OF(t,y) OF(t,y)
dF(t,y) = dt d
(t,9) 5 T, W

Thus if F satisfies the conditions in (2.47), then the equation (2.46) can be expressed
as

M(t,y)dt + N(t,y) dy = dF(t,y) =0
from which we obtain
F(t,y)=c

If this relation between ¢ and y defines y as a differentiable function of ¢ as y = ¢(¢),
then ¢ is a solution of (2.46). Conversely, it can be shown that any solution y = ¢(t)
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of the exact equation (2.46) must satisfy F'(¢,¢(t)) = c¢. Such a relation between ¢
and y is called an implicit solution.

Determining whether (2.46) is exact using the definition is equivalent to finding
an implicit solution. Fortunately, there is a much simpler way of checking (2.46) for
exactness, which also provides a constructive method to find a solution.

Suppose that equation (2.46) is exact so that there exists a function F' satisfying
conditions (2.47) in some rectangular region D. If the functions M and N in (2.46)
have continuous first partial derivatives in D, then

OM(t,y) O?F(t,y) B O?F(t,y) _ ON(t,y)

dy dy ot ot Oy ot

On the other hand, if M and N have continuous first partial derivatives and satisfy

OM(t,y) _ ON(ty)

= 2.48
dy ot ( )
in some region D, then the function
t Y
F(t,y) = / M(7,yo) dr + N(t,z)dz (2.49)
to Yo

where (to,yo) is an arbitrary point in D, satisfies (2.47) (see Exercise 2.16). Thus
(2.48) gives necessary and sufficient conditions for (2.46) to be exact when the func-
tions M and N have continuous first partial derivatives, and (2.49) provides a formula
to obtain the function F' when these conditions are satisfied.

Example 2.13
Show that the equation

(y+1)dt+(t—y)dy=0

is exact, and then find a solution satisfying the initial condition y(0) = 1.

Since
OM(t,y) ON(t,y)
2\ d) = 2N\
dy ot
everywhere, the equation is exact. Then there exists F' that satisfies
OF(t,
#y) = M(t,y) =y +1

Integrating both sides of this expression with respect to ¢, we get

F(ty) =+t + f(y)
where f is a function to be determined. Using

OF (t,y)
dy

=t+f'(y) =N(t,y)=t—y
we obtain

fy)=-y = fly)=—v*/2+a
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Thus
Flty) =@+t —y*/2+a
and an implicit solution is obtained as
W+Dt—y*/24ca=c
or equivalently as
y? =2y —2t=c

Alternatively, F(t,y) can be obtained from the formula in (2.49) (see Exercise 2.17).
The implicit solution above defines two families of solutions

y=t—(t*+2t+c)'/?
and
y=t+ > +2+c)/?

No member of the first family satisfies the initial condition. Substituting the initial
conditions in the expression for the second family we get ¢ = 1, and the required solution
is obtained as

y=t+ (2 +2+1)"* =2t 41

Note that, unlike linear differential equations, we cannot say that the solution above
is the only solution of the initial-value problem considered.

When an equation of the form (2.46) is not exact, it is sometimes possible to find
a function I(¢,y) such that

I(t,y)M(t,y)dt + I(t,y)N(t,y)dy =0 (2.50)

is exact (see Exercises 2.18 and 2.19). Such a function is called an integrating
factor. If I(t,y) # 0 in a rectangular region in which equation (2.50) is exact, then
(2.46) and (2.50) have the same solutions.

Example 2.14
The linear equation 3’ + 2y = 0 written in differential form as
2ydt +dy =0

is not exact. Multiplying both sides by e* (which is nonzero everywhere), we get an
exact equation

2e*ydt +e* dy =0
for which F' can be obtained as
F(t,y) =e"y+a
Thus an implicit solution is
thy +c1=c2
Letting ¢ = c2 — c1 we get the expected explicit solution

Yy =ce
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2.6.3 Separable Equations
A differential equation of the form
M (t)Ma(y) dt + N1(t)Na(y) dy = 0 (2.51)

is said to be separable.
In a region where Ny # 0 and Ms # 0, (2.51) is equivalent to

p(t)dt +q(y)dy =0

where p = M7 /N7 and ¢ = No/Ms. Integrating both sides we get an implicit solution

P(t)+Q(y) = ¢

where P and @ are arbitrary antiderivatives of p and ¢. Any function y = ¢(t)
that satisfies the implicit solution is an explicit solution of (2.51). In addition, if the
equation Mz (y) = 0 has a real root

y=r, reR
then it is also a solution (which is lost when dividing (2.51) by N;(¢)M2(y) to obtain

the equivalent equation).

Example 2.15

The equation
2ty* dt + dy = 0
is separable as it can be written as

2dt + (1/y°)dy =0

1

Integrating the last equation, we obtain an implicit solution as > —y~! = ¢, which defines

a family of solutions

y:
2 —¢

In addition, y = 0 is also a solution not included in this family.

2.6.4 Reduction of Order

Consider a second order linear differential equation with non-constant coefficients
described as

v +a1(t)y + ax(t)y = u(t) (2.52)

If two linearly independent solutions of the associated homogeneous equation are
known (that is, if a complementary solution is known), then a general solution can be
obtained by the method of variation of parameters. Unfortunately, except in special
cases, there is no general method of finding a complementary solution. However, if a
solution y = ¢(t) of the associated homogeneous equation

Y +ai1(t)y +ax(t)y =0
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is known, then a general solution of the form y = v(¢)¢(¢) can be obtained as follows.

By

substituting y and its derivatives

yl _ UI¢+U¢I
yll — 'U”d) + 21}/(;51 + U¢II

into (2.52), we get

(¢" +a1¢’ + a29) + pv" + (2¢" + a19)v" = u

where we dropped the argument ¢ for simplicity. Since ¢ is a solution of the associated
homogeneous equation, the term in the first parenthesis above vanishes.
w = v’ (t) the equation reduces to

p(t)w' + [2¢/(t) + a1 (t)p(t)w = u(t)

Letting

which is a first order equation in w that can be solved by known methods. Then v is
obtained by integrating w.

Example 2.16

Solve the second order differential equation

y' = B/y + (4/ty=1/t, t>0

if it is given that 3 = ¢> is a solution of the associated homogeneous equation.

Letting y = t?v(t) and substituting

y o= 2tu(t) + 20 (t)
Y o= 20(t) + 4t (t) + 20" (b)

into the given equation, we obtain after simplification
20" (t) + t' (t) = 1/t
Defining w = v'(t), the last equation reduces to a first order equation
w + (1/t)yw =1/t
A solution of the last equation is found as
w=c [t —1/t°
Integrating, we get
v=cilnt+c —1/t
Thus a solution of the original problem is obtained as

y=cit’Int + cot® — ¢
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2.7 Systems of Differential Equations

Consider an nth order differential equation of the form (2.2)

y" = fty sy ™) (2.53)
together with a set of n initial conditions
y(to) =50, ¥'(t0) =y1, .-, " (te) = yn1 (2.54)

Let us define a set of new dependent variables
r =Y, Zgiy/, ceey T :y(nil)

Their derivatives can easily be obtained using the definition and (2.53) as

7} =y = T2
B o=y = a
(2.55)
B o=y = a,
x = gy = flt,y, s,y D)) = f(t,w1,20,. .., 20)

The equations in (2.55) form a system of n first order differential equations which
can be written in matrix form as

x' =f(t,x), x(to) =x0 (2.56)
where
Ty Yo L2
X = , Xo=| - , f(t,x) =
Tn—1 Yn—2 Tn
Ty Yn—1 flt,x1, 20, ... xn)

and x’ denotes element-by-element derivative of x.

The nth order differential equation (2.53) and the system of first order differential
equations in (2.56) are equivalent in the sense that there is a one-to-one correspon-
dence between their solutions: If y = ¢(t) is the solution of (2.53) corresponding to
the initial conditions in (2.54), then

x = ¢(t) = col [¢(t), ¢/ (t),..., 0"V (1)]
is the solution of (2.56). Conversely, if
X = ¢(t) = col [¢1(t)7 ¢2(t)a EER) d)n(t)]

is the solution of (2.56), then y = ¢1(t) is the solution of (2.53) that satisfies the
initial conditions in (2.54). Furthermore, ¢} (t) = ¢ (t),. .., ¢l_1(t) = dn(t).12

12Here we assumed that (2.53) and (2.56) have unique solutions that satisfy the given initial
conditions. This is indeed the case under certain assumptions concerning the function f in (2.53).
The reader is referred to Appendix B for details.
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Note that if the differential equation in (2.53) is a linear one as in (2.3), then the
last equation in (2.55) becomes

I% = _an(t)xl — = ag(t)$n—1 —ax (t)xn + “(t)

and accordingly, the system in (2.56) takes the form

x' = A(t)x + u(t) (2.57)
where
0 1 0 0
A=| N RO
—an(t) —ap—1(t) - —a1(t) u(t)

If, in addition, the linear differential equation has constant coefficients, then A(t)
becomes a constant matrix. (2.57) is called a system of linear differential equations.
We will study systems of linear differential equations in Chapter 6.

Example 2.17
The second order differential equation
y' +awy +azy=u(t), ylto)=yo, ¥ (to)=u

is equivalent to the system

x) _ To z1(to) _| %
xh —asx1 —a1z2 +u(t) |’ x2(to) Y1
where 1 = y and x2 = ¥/'.
Note that since

f(t,x) = { 2 ]

—azz1 — a1x2 + u(t)

- 0 1 1 0 - x+u
e F R R

the system of differential equations is linear.

Rewriting an nth order differential equation as an equivalent system of first or-
der differential equations allows us to use some well-established numerical solution
techniques as we consider in the next section.

2.8 Numerical Solution of Differential Equations

As we mentioned earlier, nonlinear differential equations and even linear equations
of order higher than one with non-constant coefficients are difficult, and most of the
time impossible to solve analytically. However, solutions of such equations, if they
are known to exist, can be approximated with a desired degree of accuracy by using
numerical techniques.
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Consider an initial-value problem involving a first-order differential equation, not
necessarily linear:

y' = f(t,y), y(to) =wo (2.58)

Suppose that (2.58) has unique solution y = ¢(t) on some interval Z that includes ¢,
so that

¢'(t) = f(t, o), o(to) =yo (2.59)
Consider the Taylor series expansion of ¢ about a point ¢ > tg in Z.
¢t +h) = ¢(t) + he'(t) + R(t, h)

where R(t, h) denotes the remainder and is proportional to h2. For sufficiently small
h, ¢(t + h) can be approximated as

Ot +h) = o(t) + hf(t o(t))

where ¢'(t) is substituted from (2.59). Let tx = to + kh,k = 0,1,..., and let w
denote the approximate value of ¢(tx). Then the approximate expression for ¢(t + h)
above evaluated at ¢t = ¢, becomes

Wh4+1 = Wk +hf(tk,wk), k=0,1,... (260)

which allows us to obtain the approximate values of the solution recursively, starting
with wyg = ¢(to) = yo. This technique of obtaining an approximate solution to an
initial-value problem is known as the Euler method, and is suitable for computer
implementation.

Note that the recursion relation in (2.60) runs forward and gives the approximate
values of the solution for ¢ > ty. To obtain an approximate solution for ¢ < ¢y all
we have to do is to replace h with —h. Then with ¢, = to + kh,k = 0,—1,..., the
backward recursion becomes

wg—1 = wi — hf(tg,wr), k=0,-1,... (2.61)
Example 2.18
The initial-value problem
y=-y+1, y(0)=0 (2.62)
has the exact solution
y=1—e", t>0
The Euler method gives the recursion relation
Wkt1 = wi + (1 —wi), wo=0

for the approximate solution. The following MATLAB code runs the recursion relation
for 0 < ¢, < 5 with a step size of h = 0.5, and plots the approximate solution together
with the exact solution.

t=0:0.01:5; % range of t for solution
y=1-exp(-t); % exact solution
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h=0.5; % step size
k=1; tk(1)=0; wk(1)=0; % initialization
while tk(k)<5 % recursion

tk(k+1)=tk(k)+h;
wk (k+1)=(1-h) *wk (k) +h;
k=k+1;

end

plot(t,y,tk,wk,’.’)

Plots of the exact and approximate solutions are shown in Figure 2.9. The reader
may try a different step size to observe its effect on the quality of approximation.

1

y B
0.8 .
0.6
0.4
0.2
t
0 1 2 3 4 5

Figure 2.9: Exact and approximate solutions of (2.62).

Note that the recursion formula in (2.60) can be obtained directly from (2.58) by
the following replacement of the variables.

t «— it
Yy — wg (2.63)
1
v (W — )

This observation suggests that the Euler method can be generalized to higher or-
der differential equations provided that we derive approximate expressions for higher
derivatives of the solution. For this purpose, let us define ¥(t) = ¢/(¢) and denote the
approximate value of 1 (tx) = ¢ (tx) by vk. Then

" (tr) =Y (th) =~ % (Vk41 — k)

L6 (brsn) — &' (1))

Q

h

1 (wk+2 — W41 Wig1 — wk)
h h h
1

= 2 (Wry2 — 2Wpy1 + wi)

Thus the replacement
1
y” — (wk+2 — 2wg41 + wk) (2.64)

h
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in addition to those in (2.63), in a second order differential equation

y'=fty,y), ylto) =y, ¥'(to)=u
yields the recursion relation

W41 — Wk )

h
The initial values wg and w; needed to start the recursion are obtained from the
initial conditions as

Wh42 = 2wk+1 — Wk + h2f(tk, Wi,

wo =yo, w1~ h¢(to)+wo = hy1 +yo
Example 2.19
The second order initial-value problem
y' 406y +y=0, y0)=0, 2 (0)=1 (2.65)
is similar to the one considered in Example 2.10, and has the exact solution

1 —ot . t
= —e€ sin w
y w

where o = 0.3 and w = V1 — 02 = 0.9539.
The substitutions in (2.63) and (2.64) yield
Wito = (2— 0.6 W) wrs1 + (=14 0.6 h — h*)wy, wo =0, w1 = h (2.66)

The approximate solution obtained from the recursion relation above with A = 0.1 is
shown in Figure 2.10 together with the exact solution.

0.

0.4

04 2 4 6 8 10

Figure 2.10: Exact and approximate solutions of (2.65).

An alternative approach to solving a high order differential equation numerically
is to transform it into a system of first order differential equations as explained in the
previous section. Note that a system of differential equations as in (2.56) is no different
than a first order differential equation except that x and f are now column vectors
rather than scalars. However, this does not make any difference in the application
of the Euler method. Following the same argument leading to (2.60), a recursion
relation

Wit1 = Wi + hf(tk, Wk) , Wp=Xg (267)

can be obtained for the approximate solution.
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Example 2.20

With z1 = y, 2 = v/, the second order differential equation in (2.65) is transformed into

T2
—T1 — 0.6 X2

xy
; =
T3

Euler method yields

-]
I

and the

[ Wikl | _ w1k + hwak
| W2,k+1 (1 — 0.6 h)war — hwik

(2.68)

']

w10
w20

(2.69)

o

Running the recursion relation with A = 0.1 and plotting w1, we obtain the same ap-

proximate solution as the one in Figure 2.10. Of course, this is not a coincidence, because

the recursion relations in (2.66) and (2.69) are equivalent (see Exercise 2.32).

There are other numerical solution methods that are more sophisticated and more
accurate than Euler method. MATLAB provides several built-in functions that use
a variable step size to solve systems of first-order differential equations of the form
(2.56). The reader is referred to Appendix D for a brief summary of the use of these

functions.

2.9 Exercises

1. Find a general solution of the following first order linear differential equations

(a) ¥ +y =3e* + 5sin 2t
(b) o/ +2y=2t—1
() y—y=¢
(d) '+ 1/t)y =0
(e) y" — (cost)y = cost
2. Solve the following initial-value problems
y(0) =0
y(0) =2

t<0 or t>1
—-1<t<1 ’

(a) 2y +y=t,
(b) ¥ +y=1t>,

(©) y’+y={ v

1 y(0)=0

(d) x2% + 2zy =2sinzx,

3. Suppose that o # —a.

y(2m) =0

(a) Show that the first order differential equation

y/ + ay — eat

has a particular solution of the form ¢,(t) = A

(b) Show that
ot

y/—&—ay:te

has a particular solution of the form ¢,(t) =

(Aot + A1)

e’?, and find A by substitution.

e"t, and find Ag and A;.
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(c) Generalize the result in part (b) and write down the form of a particular solution
of

yl + ay = tmeo't
(a) Show that the first order differential equation
/ ot
Yy —oy=e
has a particular solution of the form ¢, (t) = Ate’*, and find A.

(b) Generalize the result in part (a) and write down the form of a particular solution
of

y —oy=t"e""
(a) Find the solution y = ¢(t) of the initial-value problem
v +y=ult), y(0)=yo
where
u(t) = { S(;st, z i 8
(b) Show that there exists a periodic function ¢p(t) such that
Jim (6(1) — 9p(1)) = 0
independent of yo.
(¢) Find value of yo such that ¢(t) = ¢p(t).

. Suppose that the initial-value problem

v +ay=u(t), y(0)=yo

has the solution y = ¢(¢). Show that the solution of the initial-value problem
v tay=ult—to), ylto) =y, y'(to)=m

is y = (t) = ¢(t — to). Hint: Substitute u(t — to) for u(t) in (2.15).

. A first order differential equation of the form

y' +p(t)y = q(t)y"
where n # 1, is called a Bernoulli equation.

(a) Show that a change of the dependent variable z = y' =™ transforms the Bernoulli
equation to a first order linear differential equation in x.

(b) Find the solution of the initial-value problem
Y +y+y' =0, y0)=1

and indicate the interval on which the solution is valid.

. Show, by direct substitution, that if the characteristic equation of the second order

linear differential equation in (2.24) has a pair of complex conjugate roots s1,2 = o Fiw,
then each of the functions ¢1(t) = e’ coswt and ¢2(t) = e’ sinwt is a solution of
(2.24). Hint: Note that

(0 +iw)? + a1 (0 + iw) + a2

= o’ - Haotar+i20w+aw) = 0
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9. Show that if 0 € R is not a root of the characteristic equation of the second order
differential equation
Y +ary +azy = e’
then it has a particular solution of the form ¢, (t) = Ae’*, and find A.
10. Show that if o + iw is not a root of the characteristic equation of the second order
differential equation
y" 4+ a1y’ + asy = " (pcos wt + gsin wt)
where p,q € R, then it has a particular solution of the form
¢p(t) = e”" (A coswt + Bsinwt)
and find A and B.
11. Solve the following initial-value problems
(a) ¥y +3y +2y=e"", y(0)=y(0)=0
(b) y" +2y +2y=10cos2t, y(0)=-1, ' (0)=4
(c) ty"+2y +ty=0, y(m)=0, v'(r)=—1. Hint: Let v = ty.
12. Find the solution y = ¢r(t) of the initial-value problem
y'+3y 2y =ur(t), y(0)=y(0)=0
for t > 0, where up(t) is the unit pulse in (2.22) with to = 0, and investigate the
behavior of the solution as T' — 0.
13. Find a general solution of the differential equation
2y —ty +y=2t, t>0
if it is given that y = ¢ and y = tInt are solutions of the associated homogeneous
equation.
14. Show the identity
o(t,t0)p(to, 7) = (¢, 7)
for ¢(t,7) defined in (2.43).
15. Solve the following exact differential equations
(a) (3t> +y?)dt+2tydy =0
(b) (ye™ — 423 dx + ze*™¥ dy = 0
16. Differentiate F'(t,y) in (2.49) with respect to ¢t and with respect to y to show that if M

and N satisfy (2.48), then F' satisfies (2.47). The expression in (2.49) is obtained by
taking the line integral of dF' from an arbitrary initial point (to,yo) € D to (t,y) € D
first along a horizontal line segment from (o, yo) to (¢,30), and then along a vertical
line segment from (¢, yo) to (¢,y), and noting that on the horizontal line segment

dF(r,z) = Lg’ %) g7 = M(r,y0) dr
T
and on the vertical line segment
dF(1,z) = %dz = N(t,z)dz

Obtain an alternative expression for F' by integrating dF first along a vertical line
segment from (to,yo) to (to,y), and then along a horizontal line segment from (¢o,y)

to (t,y).



78 Introduction to Differential Equations

17. Use formula (2.49) to obtain a function

t

F(ty) = (y0+1)d7'+/y(t—z)dz

to Yo

for the exact differential equation in Example 2.9, and show that it gives the same
implicit solution.

18. For the following differential equation find integrating factors of the given form, and
then solve the resulting exact differential equations.

(2) (#+y*)dt+tydy =0, I(t,y)=Ff()

(b) ydz+dy=0, I(z,y)=g(x)

(¢) (WPv+v®)du—2u?dv=0, I(u,v)=u"v"
19. Let M, denote OM/0t, M, denote OM/dy, etc.

(a) Show that if

M, — N,
N

is a function of ¢ only, then

I(t) = efp(t) @

p:

is an integrating factor for (2.46).
(b) Use the result of part (a) to find an integrating factor for
(2t —y*)dt+tydy=0, t>0
and then obtain an implicit solution.
(¢) Show that if
_ N =M,
M
is a function of y only, then
I(y) = efq(y)dy
is an integrating factor for (2.46).
(d) Use the result of part (b) to find an integrating factor for
ydt — (3t+y")dy=0, y>0
and then obtain an implicit solution.
20. Solve the following separable differential equations
(a) (2t —1)ydt+dy=0
(b) sinzcosydx + cosxsinydy =0
(c) duwvdu + (u? +1)dv =0
21. Consider a second order differential equation
F(ty',y")=0

in which the dependent variable y does not appear explicitly.
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(a) Show that a change of the dependent variable z =y’ transforms the equation to
a first order equation in the dependent variable x.
(b) Use the result of part (a) to solve the initial-value problem
y'+y' =1, y(0)=y(0)=0
22. Consider a second order differential equation
dy d?y
(y7 dt: dt? ) -
in which the independent variable ¢ does not appear explicitly.
(a) Show that a change of the variables
dy d’y dv dv dy dv
- = d 2 =—=—-"==9p—
a0 MY e T w Ty at - Cdy
transforms the equation to a first order equation in the independent variable y
and the dependent variable v.
(b) Use the result of part (a) to solve the initial-value problem
vy =) =0, y0)=1, y(0)=-1
23. Find a general solution of
t-1y" -ty +y=1
Hint: Look for a solution of the form ¢.(t) = At + B for the associated homogeneous
equation.
24. Solve the initial-value problem
ty" +2y' +ty=0, y(m) =0, y'(r)=-1
Hint: Use a change of the dependent variable as v = ty.

25. Solve the initial-value problems in Exercise 2.2 by using the MATLAB function ode23.
Plot the resulting solutions and the exact solutions obtained in Exercise 2.2 on the
same graph. The MATLAB function ode23 requires a user defined function (call it
myfunction for future use) that evaluates the vector-valued function f(¢,x) in (2.56)
and returns it as a vector xdot.

26. Let f(t) = sint, whose derivatives are f'(t) = cost and f’(t) = —sint. Let wy =
f(kh) = sin kh denote the value of f at t = kh,k=0,1,..., and let

- —2
F(kh) ~ wk+1h Wk o4 £ (kh) ~ Wk42 ;:;kJrl + wk
be the Euler approximations of f' and f” at t = kh. Use MATLAB to compute the
approximate values of f’ and f” over the interval 0 < ¢ < 10 using a step size of
h = 0.1, and plot the exact and approximate values of each derivative on the same
graph.
27. Write a MATLAB function

function [tk,wk| = myeuler(ti,tO,tf,h, x0)

to implement the Euler method, where h = h is the step size, ti =t; = to — M h and
tf =ty = to + Nh specify the end points of the interval over which the solution is to
be computed, x0 = xg is an n X 1 column vector, tk is an N+ M + 1 dimensional array
containing the points ty,k = —M,...,to,..., N, and wk is an n X M + N + 1 matrix,
the columns of which are wy. The function myeuler can use the user defined function
myfunction in Exercise 2.25 that evaluates f(¢,x). Note that myeuler is required to
solve a given system of differential equations both forward and backward. It must
return only the forward solution if ¢; = to and only the backward solution if ¢t; = to.



80 Introduction to Differential Equations
28. Solve the initial-value problems in Exercise 2.2 numerically by using the function
myeuler written in Exercise 2.27 with h = 0.1 and A = 0.5. Plot the resulting solutions

and the exact solutions obtained in Exercise 2.2 on the same graph.

29. Solve the initial-value problems in Exercise 2.11 numerically by using the Euler method.
Plot both the exact and numerical solutions on the same graph.

30. Solve the following initial-value problems by using both myeuler and ode23, and plot
the results on the same graph.

(a) v =t"+y*, y(0)=1
(b) y' =2ty +y7 =1, y(0)=y(0)=1
31. (a) Transform each of the initial-value problems in Exercise 2.11 into a system of
first-order initial-value problems.
(b) Use the MATLAB function ode23 to solve the systems in part (a). Plot both the
exact and numerical solutions on the same graph.
(¢) Repeat (b) using the function myeuler written in Exercise 2.27.

32. Show that the recursion relations in (2.66) and (2.69) are equivalent, i.e., the sequence
w1n produced by (2.69) is the same as the sequence w, produced by (2.66). Hint: Use
(2.69) to obtain an expression for wi n42 in terms of wi n41 and win.

33. A differential equation together with additional conditions on the solution that are to
be satisfied at two or more values of the independent variable is called a boundary
value problem.

(a) Show that the boundary value problem
y'+y=0, y(0)=0, y(m) =1
has no solution.
(b) Show that the boundary value problem
y' =Xy, y(0)=0, y(m)=0
has a nontrivial solution if and only if A = —n? for some integer n, in which case
the nontrivial solution is
Yy = cp sinnt
34. (Application) A family of curves defined by the equation

F(z,y)=c, c€R
is said to be orthogonal to a second family of curves defined by the equation
G(z,y)=d, deR

if every curve of the first family intersects every curve of the second family at right
angles. (Two such families are called orthogonal trajectories of each other.) Assume
that every curve of each family has a well-defined gradient at every point on the xy-
plane. Orthogonality of the curves is equivalent to orthogonality of the gradients at
points of intersection, which requires that

Gzdr+ Gydy = —F,dz + Fydy
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(a) Consider a family of concentric circles defined by the equation

22 +y? = &
for which F, = 2z and Fy = 2y at every point (z,y). The orthogonal trajectories
must then satisfy

—2ydx+2xdy =0
Solve the above equation to obtain an expression for the orthogonal trajectories
of the family of circles. Plot both families on the same graph, and verify that
the curves of the two families indeed intersect at right angles.

(b) Find the orthogonal trajectories of the family of curves defined by

22?442 = 2
and plot both the given family and the orthogonal family on the same graph.
(c) Repeat (b) for the family
x
Yy =ce

35. (Application) The behavior of a particle of mass m in vertical motion in the air near

the surface of the earth is described by the second order linear differential equation
my" = —mg + f(t)

where y(t) is the position of the particle at time ¢ measured positive upward from

the surface of the earth, mg is the downward gravitational force, and f(t) represents

additional external forces acting on the particle.

(a) Assuming f(¢) = 0, find the solution corresponding to the initial conditions
y(0) = yo and y'(0) = vo.

(b) Find the time t = t; at which the particle falls on earth and the velocity with
which it hits the ground.

(c) Repeat (a) if the air resistance is modeled as f(t) = —ky’'(t). Show that if yo is
large enough, then the velocity of the particle approaches a constant limit v,
and find vso.

36. (Application) According to Malthusian growth model, a certain population increases
at a rate that is proportional to its current value. If p(t) represents the population at
time ¢, then

/
p =rp
where r is a constant birth rate per individual.

(a) Find an expression for p(t) if p(0) = po.

(b) Find Ty such that p(Ty) = 2po. T4 is called the doubling time of the population.

(¢) Show that p(t + Tyq) = 2p(t) for all ¢.

37. (Application) A more realistic population model, which takes into account the death

rate as well the birth rate is the logistic population model described as

r_ _p
p =71 C)p

where r is the birth rate, and rp/C is the death rate per individual. (The model
assumes that the death rate per individual increases in direct proportion to the pop-
ulation due to competition.)



82

Introduction to Differential Equations

38.

39.

(a) Find an expression for p(¢) if p(0) = po. Plot p(t) for each of the cases 0 < py < C,
po =C, and po > C.

(b) Show that lim; —, o p(¢t) = C independent of po. C is called the carrying capacity
of the environment. (If p > C at any time then p’ < 0, and p(t) decreases until
it eventually reaches C. If p < C then p’ > 0, and p(t) increases until it reaches
C. If p= C then p’ = 0, and p(¢) remains stable at C'.)

(c) Show that if po is much smaller than C, then p(¢) obtained from the logistic
population model can be approximated with that obtained from the Malthusian
growth model for small ¢ (that is, as long as p(t) remains small compared with

Q).

(Application) According to Newton’s law of cooling, the rate of change of the temper-
ature of an object is proportional to the temperature difference between the object
and its surrounding medium. Denoting the temperature of the object by T'(t) and
that of the surrounding medium by T, (t), the law of cooling is expressed as

T' = k(T (t) — T)

where k > 0 is a constant. Assume that the T5,(t) = T, is constant, and the initial
temperature of the object is T'(0) = Tp. Find an expression for T'(t) for each of the
cases Ty < Ty, To = T, and Ty > To,. Are the solutions consistent with our everyday
experience?

(Application) Consider the electrical circuit shown in Figure 2.11. Let vs denote the
voltage supplied by the source, v, and v. denote the voltage drops across the resistor
and the capacitor, and i denote the current flowing through the circuit. The behavior
of the circuit is determined by the equations

dve .
C =i, vr=Ri, vs=0vr+ v
di +

where C' is the capacitance and R is the resistance.

+V -
r

R
\A J:C) 9 C ::ivc

Figure 2.11: An RC circuit.

(a) Eliminate the variables v, and 7 from the above equations and obtain a differential
equation in the dependent variable v..

(b) Let v.(0) = 0. Find v.(t) for ¢ > 0 if the supply voltage v,(¢) is a unit step
function.

(c) Repeat (b) if vs(t) = coswt,t > 0. Show that v.(t) — v(t) as t — oo, where v is
a periodic function with frequency w (period 27 /w).
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40. (Application) Consider the mechanical system shown in Figure 2.12. The force balance

41.

on the mass requires that
Mz" + Bx' + Kz =0

where z(t) denotes the displacement of the mass M from the equilibrium position.
(Mz" is the force accelerating the mass, Bz’ represents the frictional force, and Kz
is the restoring force of the spring.) Dividing the above equation by M we obtain

" 2wz’ + W’z =0
where

| K | M B2
W=7 and (= 1K

are called the natural frequency and the damping ratio of the system, respectively.
Suppose that the mass is released at ¢ = 0 with an initial displacement z(0) = z¢
and initial velocity z'(0) = 0. Calculate and plot z(t) for ¢ > 0 for each of the cases
(=0,0<¢<1,(=1,and 1 < (. Show that when ¢ = 0, the system oscillates with
natural frequency w, and that as ( increases, the oscillations become more and more
damped, disappearing completely when ¢ = 1. The system is said to be undamped,
underdamped, critically damped, and overdamped in the above four cases of (.

X

QO QOB

Figure 2.12: A mechanical system.

(Application) Rewriting a higher order differential equation in a single dependent
variable as an equivalent system is not the only way we come up with a system of
first order differential equations. Consider the following problem of formulating the
dynamics of two competing populations, say chickens and foxes, that live in a closed
environment. Assume that the chickens increase at a rate 0.4 chicken per chicken per
unit time in the absence of foxes; but are killed by foxes at a rate 80 chicken per fox
per unit time. Foxes, on the other hand, die of hunger at a rate 0.6 fox per fox per
unit time if there are no chickens to feed upon; but when there are chickens to eat,
they increase at a rate 0.003 fox per chicken per unit time. Let z1(t) and z2(t) the
number of chickens and foxes at time ¢. Then the populations of foxes and chickens
can be described by a system of two coupled first order differential equations as

x| 04 —80 1 z1(0) | | zio
|:$/2:|_|:0003 —0.6:||:.T2:|7 |:.T2(O):|_|:$20:|

where z10 and x20 denote the initial populations of foxes and chicken at ¢ = 0.

(a) Use MATLAB command ode23 to find the solution of the system for 0 < ¢ < 20
for each of the following initial populations. In each case, plot z1/1000 and x2/10
on the same graph.

. _ | 4000 o _ | 8000 o _ | 8000 o _ | 8000
O 10 |0 °T | 40 | T°T | 50 | T | 60
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Hint: The reason for plotting x1/1000 and x2/10 rather than z; and z2 is to
make the populations comparable so that x1 does not obscure 2 when plotted on
the same graph. This scaling corresponds to counting chickens in thousands and
foxes in tens, and can be done before solving the equations: Let z1 = z1/1000
and z2 = 22/10 denote the scaled populations of chickens and foxes. Rewrite the
system of equations in z; and z2 and observe that the coefficients in the system
become comparable.

(b) Repeat (a) for
o — 9000
o7 70
How can you modify your model to avoid negative population?

(¢) The coefficients of the model are chosen to reflect the delicate balance of nature:
If there are enough chickens initially, both populations converge to positive steady
state values. Change the coefficient 0.003 to 0.0035 and solve the equation for
several initial conditions. Try to interpret the result.

(d) Repeat (c) with the coefficient 0.003 changed to 0.0025.



