
Chapter 3

Vector Spaces and Linear

Transformations

3.1 Vector Spaces

Recall that a vector in the xy plane is a line segment directed from the origin to a
point in the plane as shown in Figure 3.1. Recall also that the sum of two vectors v1

and v2 is a vector obtained by the parallelogram rule. Also, for a real number c, cv
is a vector whose magnitude is |c| times the magnitude of v and whose direction is
the same as the direction of v if c > 0, and opposite to the direction of v if c < 0.

A convenient way to represent a vector in the xy plane is to consider it as an
ordered pair of two real numbers as v = (α, β) where α and β are the components
of v along the x and y axes. This representation allows us to define the sum of two
vectors v1 = (α1, β1) and v2 = (α2, β2) in terms of their components as

v1 + v2 = (α1 + α2, β1 + β2)

and a scalar multiple of a vector v = (α, β) as

cv = (cα, cβ)

The representation of a vector in the xy plane by a pair also allows us to derive
some desirable properties of vector addition and scalar multiplication. For example,

v1 + v2 = (α1 + α2, β1 + β2) = (α2 + α1, β2 + β1) = v2 + v1

and

(c + d)v = ((c + d)α, (c + d)β) = (cα, cβ) + (dα, dβ) = cv + dv

Finally, such a representation is useful in expressing a given vector in terms of
some special vectors. For example, defining i = (1, 0) and j = (0, 1) to be the unit
vectors along the x and y axes, we have

v = (α, β) = α (1, 0) + β (0, 1) = α i + β j

The idea of representing a vector in a plane by an ordered pair can be generalized
to vectors in three dimensional xyz space, where we represent a vector v by a triple
(α, β, γ), with α, β, and γ corresponding to the components of v along the x, y,
and z axes. What about a quadruple (α, β, γ, δ)? Although we cannot visualize it
as an arrow in a four dimensional space, we can still define the sum of two such
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Figure 3.1: Representation of vectors in a plane

quadruples as well as a scalar multiple of a quadruple in terms of their components.
This motivates the need for a more general and abstract definition of a vector.1

3.1.1 Definitions

A vector space X over a field F is a non-empty set, elements of which are called
vectors, together with two operations called addition and scalar multiplication

that have the following properties.
Addition operation associates with any two vectors x,y ∈ X a unique vector

denoted x + y ∈ X, and satisfies the following conditions.

A1. x + y = y + x for all x,y ∈ X.

A2. x + (y + z) = (x + y) + z for all x,y, z ∈ X.

A3. There exists an element of X, denoted 0, such that x + 0 = x for all x ∈ X.
0 is called the zero vector or the null vector.

A4. For any x ∈ X there is a vector −x ∈ X such that x + (−x) = 0.

Scalar multiplication operation associates with any vector x ∈ X and any scalar
c ∈ F a unique vector denoted cx ∈ X, and satisfies the following conditions.

S1. (cd)x = c(dx) for all x ∈ X and c, d ∈ F.

S2. 1x = x for all x ∈ X, where 1 is the multiplicative identity of F.

S3. (c + d)x = cx + dx for all x ∈ X and c, d ∈ F.

S4. c(x + y) = cx + cy for all x,y ∈ X and c ∈ F.

If the field over which a vector space is defined is clear from the context, we omit
the phrase “over F” when referring to a vector space.

The following properties of a vector space follow directly from the definition.

1The reader may be accustomed to defining any directed line segment in the plane, such as an
arrow directed from the tip of v1 to the tip of v1 + v2 in Figure 3.1, as a vector. However, this
is just a visual aid, and as far as the addition and scalar multiplication operations just defined are
concerned, that arrow is no different from v2. In this sense, v2 represents all arrows that have the
same orientation and the same length as v2, which form an equivalence class.
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a) 0 is unique

b) −0 = 0

c) 0x = 0 for all x ∈ X

d) c0 = 0 for all c ∈ F

e) −x is unique for any x ∈ X

f) (−1)x = −x for any x ∈ X

To prove (a), assume that there are two different vectors 01 6= 02 satisfying con-
dition A3. Then 02 + 01 = 02 (A3 with x = 02 and 0 = 01), and also 01 + 02 = 01

(A3 with x = 01 and 0 = 02). Then, by A1 we have 02 = 01, contradicting the
assumption. Therefore, there can be no two distinct 0’s. Other properties can be
proved similarly, and are left to the reader as an exercise.

Example 3.1

Consider the set of all ordered n-tuples2 of the form

x = (x1, x2, . . . , xn)

where x1, x2, . . . , xn ∈ F. Defining addition and scalar multiplication operations element-
by-element as

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

c (x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn)

and letting

0 = (0, 0, . . . , 0)

−(x1, x2, . . . , xn) = (−x1,−x2, . . . ,−xn)

all the properties of the vector addition and scalar multiplication are satisfied. Thus the
set of all n-tuples of F is a vector space over F, called the n-space and denoted F

n. A
real n-tuple is (x1, x2, . . . , xn) is an obvious generalization of the familiar concept of a
vector in the plane.

In particular, R
1, R

2 and R
3 can be identified with the real line, the xy plane and

the xyz space, respectively.3

Example 3.2

The set of m×n matrices, F
m×n, together with the matrix addition and scalar multipli-

cation operations defined in Section 1.2 is a vector space.4

In particular, F
1×n and F

n×1 are vector spaces. This is why we call a row matrix
also a row vector, and a column matrix a column vector. In fact, both F

1×n and F
n×1

can be identified with F
n in Example 3.1. In other words, an n-tuple can be viewed as an

2From now on, we will distinguish an ordered set from an unordered set by enclosing its elements
with parantheses rather than curly brackets

3Note that the set of real numbers is both a field and also a vector space. We distinguish the two
by denoting the real field by R and the vector space of real numbers by R

1.
4The reader might ask: “When we multiply two n × n matrices, are we multiplying two vectors

in F
m×n? Can we similarly multiply two vectors in R

n”? The answer is that when we multiply
two matrices, we do not view them as vectors, but as something else that we will consider later.
Multiplication of vectors is not defined, nor is it needed to construct a vector space.
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element of either of the vector spaces F
n, F

1×n or F
n×1, in which case it is represented

respectively as

(x1, x2, . . . , xn) , [x1 x2 · · · xn ] , or col [x1, x2, . . . , xn ]

* Example 3.3

An ordered real n-tuple (x1, x2, . . . , xn) is a special case of a semi-infinite sequence

(xk)∞1 = (x1, x2, . . .)

of real numbers. Defining, by analogy to R
n,

(x1, x2, . . .) + (y1, y2, . . .) = (x1 + y1, x2 + y2, . . .)

c (x1, x2, . . .) = (cx1, cx2, . . .)

0 = (0, 0, . . .)

−(x1, x2, . . .) = (−x1,−x2, . . .)

we observe that the set of all such semi-infinite sequences is a vector space over R.

Similarly, we can extend n-tuples in both directions and consider infinite sequences
of the form

(xk)∞−∞ = (. . . , x−1, x0, x1, . . .)

which form yet another vector space.

* Example 3.4

An ordered real n-tuple (x1, x2, . . . , xn) in Example 3.1 can be viewed as a function
f : n → R, whose domain n = ( 1, 2, . . . , n ) is the ordered set of integers from 1 to n, and

f [k] = xk , k ∈ n

Similarly, a semi-infinite sequence (xk)∞1 can be viewed as a function whose domain is
the set of positive integers N = ( 1, 2, . . . ), and an infinite sequence (xk)∞−∞ as a function
whose domain is the set of all integers Z = ( . . . ,−1, 0, 1, . . . ).

Consider the set F (D,R) of all functions f : D → R, where D is any finite or infinite
discrete set like n, or N, or Z. For f, g ∈ F (D,R), we define their sum to be the function
f + g : D → R such that

(f + g)[k] = f [k] + g[k] , k ∈ D

Likewise, the scalar multiple of f with a scalar c is defined to be the function cf : D → R

such that

(cf)[k] = cf [k] , k ∈ D

Note that we do nothing new here, but just rephrase the definition of addition and

scalar multiplication of n-tuples or sequences using an alternative formulation. We thus

reach the conclusion that F (D,R) is a vector space.

F (D,R) in Example 3.4 is a typical example of a function space, a vector space
whose elements are functions. Other examples of a function space are considered
below.
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* Example 3.5

Consider the set F (I,R) of all real-valued functions f : I → R defined on a real interval
I. For f, g ∈ F (I,R) and c ∈ R, we define the functions f + g and cf pointwise just like
we did for f, g ∈ F (D,R):

(f + g)(t) = f(t) + g(t) , t ∈ I

(cf)(t) = cf(t) , t ∈ I

The zero function is one with

0(t) = 0 , t ∈ I

and for any f ∈ F (I,R), −f is defined pointwise as

(−f)(t) = −f(t) , t ∈ I

With these definitions, F (I,R) becomes a vector space over R.
The set of all real vector-valued functions f : I → R

n×1 is also a vector space over R,
denoted F (I,Rn×1). A vector-valued function f can also be viewed as a stack of scalar
functions as

f = col [ f1, f2, . . . , fn ]

Note that a function f and its value f(t) at a fixed t are different things. f is a vector,
an element of F (I,R), but f(t) is a scalar, an element of R. This distinction is more
apparent in the case of vector-valued functions: If f ∈ F (I,Rn×1) then f(t) ∈ R

n×1 for
every t ∈ I. Thus, although f and f(t) are both vectors, they are elements of different
vector spaces.5

Similarly, the set F (I,C) of all complex-valued functions f : I → C and the set

F (I,Cn×1) of all complex-vector-valued functions f : I → C
n×1 defined on a real interval

I are vector spaces over C.

3.1.2 Subspaces

A subset U ⊂ X of a vector space is called a subspace of X if it is itself a vector
space with the same addition and scalar multiplication operations defined on X. To
check if a subset is a subspace we need not check all the conditions of a vector space.
If U is a subspace then it must be closed under addition and scalar multiplication.
That is, for all u,v ∈ U, and c ∈ F, we must have

u + v ∈ U , cu ∈ U

Usually these two conditions are combined into a single condition as

c1u1 + c2u2 ∈ U

for all u1,u2 ∈ U, and c1, c2 ∈ F. Conversely, if U is closed under vector addition
and scalar multiplication, then −u = (−1)u ∈ U for all u ∈ U, which in turn implies
that u + (−u) = 0 ∈ U. Since all other properties of vector addition and scalar
multiplication are inherited from X, we conclude that U ⊂ X is a subspace if and
only if it is closed under vector addition and scalar multiplication.

5Unfortunately, for the lack of an alternative we sometimes use the same notation to denote a
function and its value. For example, et is used to denote both the exponential function and its value
at t.
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Example 3.6

Consider the following subset of R
3.

U = { (x, y, x− y) | x, y ∈ R }

For x1 = (x1, y1, x1 − y1),x2 = (x2, y2, x2 − y2), and c1, c2 ∈ R, we have

c1x1 + c2x2

= (c1x1, c1y1, c1x1 − c1y1) + (c2x2, c2y2, c2x2 − c2y2)

= ((c1x1 + c2x2), (c1y1 + c2y2), (c1x1 + c2x2) − (c1y1 + c2y2)) ∈ U

Thus U is a subspace of R
3. It is the set of all points (x, y, z) ∈ R

3 that satisfy

x− y − z = 0

This is the equation of a plane through the origin 0 = (0, 0, 0). In R
3, a plane through

the origin is represented as the set of all points that satisfy

px+ qy + rz = 0

for some p, q, r, not all zero. It is left to the reader to show that any such plane defines
a subspace of R

3. In particular, the equation x = 0 defines the yz plane, y = 0 the xz
plane, and z = 0 the xy plane.

Now, consider the set of all points (x, y, z) that satisfy

[

p1 q1 r1
p2 q2 r2

]

[

x
y
z

]

=

[

0
0

]

Since each equation above defines a plane through the origin, the points satisfying the
above system are on the intersection of these two planes. If (p1, q1, r1) and (p2, q2, r2) are
not proportional, then the two equations define distinct planes, and so their intersection
is a straight line through the origin. Since the set of solutions of the above system
is closed under addition and scalar multiplication, we conclude that any straight line
through the origin is also a subspace of R

3.

As an illustration, the first of the equations

[

1 −1 −1
1 0 1

]

[

x
y
z

]

=

[

0
0

]

describes the subspace U considered above, and the second describes the subspace

V = { (x, y,−x) | x, y ∈ R }

Their intersection, which is the common solution of these equations, is the straight line
described as

U ∩ V = { (x, 2x,−x) | x ∈ R }

Clearly, a plane or a line not passing through the origin is not a subspace, simply

because it does not include the zero vector of R
3.
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* Example 3.7

The set of polynomials of a complex variable s with complex coefficients is a vector space
over C, denoted C[s]. The subset Cn[s], consisting of all polynomials with degree less
than or equal to n, is a subspace of C[s]. However, the set of polynomials with degree
equal exactly to n is not a vector space. (Why?)

The set of polynomials in a real variable t with real coefficients is also a vector space,

denoted R[t]. Clearly, R[t] is a vector space over R.

* Example 3.8

Let Cm(I,R) denote the set of all real-valued functions defined on some real interval I
such that f, f ′, . . . , f (m) all exist and are continuous on I. That is, C0(I,R) is the set
of continuous functions, C1(I,R) is the set of differentiable functions with a continuous
derivative, etc. Also, let C∞(I,R) denote the set of functions that have continuous
derivatives of every order. By definition

F (I,R) ⊃ C0(I,R) ⊃ C1(I,R) ⊃ · · · ⊃ C∞(I,R)

Each of these sets is closed under the addition and scalar multiplication operations defined
for the function space F (I,R) in Example 3.4, and therefore, is a subspace of F (I,R).
The subspaces Cm(I,Rn×1) ⊂ F (I,Rn×1) can be defined similarly as

Cm(I,Rn×1) = { f = col [ f1, f2, . . . , fn ] | fi ∈ Cm(I,R), i = 1, . . . , n }

3.2 Span and Linear Independence

3.2.1 Span

Let R = {r1, r2, . . . , rk} be a finite subset of a vector space X. An expression of the
form

c1r1 + c2r2 + · · · + ckrk

where c1, c2, . . . , ck ∈ F, is called a linear combination of r1, r2, . . . , rk. Because of
property A2 of vector addition, a linear combination unambiguously defines a vector
in X. The set of all linear combinations of r1, r2, . . . , rk is called the span of R,
denoted span (R) or span (r1, . . . , rk). Thus

span (R) = { c1r1 + c2r2 + · · · + ckrk | c1, c2, . . . , ck ∈ F }

If span (R) = X, then R is called a spanning set.
The definition of span can be extended to infinite sets. The span of an infinite

set of vectors is defined to be the set of all finite linear combinations of vectors of R.
More precisely,

span (R) = {
∑

i∈I

ciri | I is a finite index set, ci ∈ F, ri ∈ R }

If u,v ∈ span (R), then u =
∑

airi and v =
∑

biri for some ai, bi ∈ F. Then

cu + dv =
∑

(cai + dbi)ri ∈ span (R)

for any c, d ∈ F. This shows that span (R) is a subspace of X. In fact, it is the
smallest subspace that contains all the vectors in R.
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Example 3.9

Let i = (1, 0) and j = (0, 1) denote the unit vectors along the x and y axes of the xy
plane (R2). Then

span ( i ) = { (α, 0) |α ∈ R}

and

span ( j ) = { (0, β) | β ∈ R}

are the x and y axes, and

span ( i, j ) = { (α, β) |α, β ∈ R}

is the whole xy plane.

Example 3.10

In R
3, let

r1 = (0, 0, 1) , r2 = (0, 1,−1) , r3 = (1, 0, 1) , r4 = (1,−1, 2)

Then

a) Span of each of the vectors is a straight line through the origin on which that
vector lies. For example, span (r1) = { (0, 0, c) | c ∈ R }, which is the z axis. Since
the given vectors are different, each spans a different lines.

b) Any two of the given vectors span a plane through the origin that contain those
two vectors. For example,

span (r2, r3) = { (a, b, a− b) | a, b ∈ R }

which is the subspace U in Example 3.6.

c) span (r1, r2, r3) = R
3, because by definition span (r1, r2, r3) ⊂ R

3, and for any
x = (a, b, c) ∈ R

3

x = (b+ c− a) r1 + b r2 + a r3 ∈ span (r1, r2, r3)

so that R
3 ⊂ span (r1, r2, r3) also. Similarly, span (r1, r2, r4) = span (r1, r3, r4) =

R
3.

d) However, span (r2, r3, r4) = span (r2, r3) = span (r2, r4) = span (r3, r4) = U.

e) Finally, span (r1, r2, r3, r4) = R
3, simply because

span (r1, r2, r3, r4) ⊃ span (r1, r2, r3)

3.2.2 Linear Independence

A finite set of vectors R = {r1, r2, . . . , rk} is said to be linearly independent if

c1r1 + c2r2 + · · · + ckrk = 0 (3.1)

holds only when c1 = c2 = · · · = ck = 0.
A set is said to be linearly dependent if it is not linearly independent. Alterna-

tively, a finite set R = {r1, r2, . . . , rk} is linearly dependent if there exist c1, . . . , ck,
not all 0, that satisfy (3.1).6

6We also say that the vectors r1, r2, . . . , rk are linearly independent (dependent) to mean that
the set consisting of these vectors is linearly independent (dependent).
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By definition, a set containing only a single vector r is linearly independent if and
only if r 6= 0.

We have the following results concerning linear independence.

a) If 0 ∈ R then R is linearly dependent.

b) If R is linearly independent and S ⊂ R, then S is also linearly independent.
Equivalently, if R is linearly dependent and S ⊃ R, then S is also linearly
dependent.

c) R is linearly dependent if and only if at least one vector in R can be written
as a linear combination of some other vectors in R (assuming, of course, that
R contains at least two vectors).

The rest being direct consequences of the definitions, only the necessity part of
the last result requires a proof. If R is linearly dependent then there exist c1, . . . , ck,
not all 0, such that

c1r1 + c2r2 + · · · + ckrk = 0

Suppose cp 6= 0. Then

rp =
∑

q 6=p

(−cq/cp)rq

Property (b) above can be used to define linear dependence and independence of
infinite sets. An infinite set is said to be linearly independent if every finite subset of
it is linearly independent, and linearly dependent if it has a linearly dependent finite
subset.

Example 3.11

The vectors i and j in Example 3.9 are linearly independent, because

0 = αi + βj = (α, β) =⇒ α = β = 0

Example 3.12

Consider the vectors in Example 3.10. The set R1 = {r1, r2, r3} is linearly independent,
because

0 = c1r1 + c2r2 + c3r3 = (c3, c2, c1 − c2 + c3)

implies

c1 = c2 = c3 = 0

Similarly, the sets R2 = {r1, r2, r4} and R3 = {r1, r3, r4} are linearly independent.
Therefore, all subsets of these three sets, which include all singletons and pairs of r1, r2, r3

and r4, are also linearly independent.
However, the set R4 = {r2, r3, r4} is linearly dependent, because

r2 − r3 + r4 = (0, 0, 0) = 0

Therefore, R = {r1, r2, r3, r4} is also linearly dependent.
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Example 3.13

In C
3, let

x1 = (1, i, 0) , x2 = (i, 0, 1) , x3 = (0, 1, 1)

Then {x1,x2} is linearly independent, because for c1 = a1 + ib1 and c2 = a2 + ib2,

0 = c1x1 + c2x2

= (a1 + ib1,−b1 + ia1, 0) + (−b2 + ia2, 0, a2 + ib2)

= ((a1 − b2) + i(b1 + a2),−b1 + ia1, a2 + ib2))

implies a1 = b1 = a2 = b2 = 0, or equivalently, c1 = c2 = 0.
Similarly, the sets {x1,x3} and {x2,x3} are linearly independent. On the other hand,

{x1,x2,x3} is linearly dependent, because

ix1 − x2 + x3 = 0

* Example 3.14

A set of functions f1, . . . , fk ∈ F (I,F) is linearly dependent if

c1f1 + · · · + ckfk = 0

for some scalars c1, . . . , ck ∈ F, not all 0. This is a functional equality, which is equivalent
to

c1f1(t) + · · · + ckfk(t) = 0 for all t ∈ I (3.2)

Consider the real-valued functions φ1(t) = eσ1t and φ2(t) = eσ2t, where σ1 6= σ2 ∈ R.
Unless c1 = c2 = 0, the equality

c1e
σ1t + c2e

σ2t = 0

can be satisfied for at most a single value of t (the graphs of c1e
σ1t and −c2e

σ2t either do
not intersect, or intersect at a single point). Therefore, φ1 and φ2 are linearly independent
on any interval I.

Now consider two complex-valued functions ψ1(t) = eλ1t and ψ2(t) = eλ2t, where
λ1 6= λ2 ∈ C. The graphical argument above is of no use for we cannot plot graphs of
complex-valued functions, and we need an algebraic method to test linear independence
of ψ1(t) and ψ2(t). Such a method is based on the observation that if

c1ψ1(t) + c2ψ2(t) = 0 for all t ∈ I

then

c1ψ
′
1(t) + c2ψ

′
2(t) = 0 for all t ∈ I

provided ψ1 and ψ2 are differentiable on I. For the given ψ1 and ψ2, which are differen-
tiable everywhere, these two equations can be written in matrix form as

[

eλ1t eλ2t

λ1e
λ1t λ2e

λ2t

] [

c1
c2

]

=

[

0
0

]

A simple elementary operation reduces the system to
[

eλ1t eλ2t

0 (λ2 − λ1)e
λ2t

] [

c1
c2

]

=

[

0
0

]
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Since λ2 − λ1 6= 0 and eλ2t 6= 0 for all t, the second equation gives c2 = 0. Similarly,
since eλ1t 6= 0 for all t, the first equation gives c1 = 0. Hence ψ1 and ψ2 too are linearly
independent on any interval I.

Using the same technique we can show that the real-valued functions ξ1(t) = eσt and
ξ2(t) = teσt are also linearly independent.

Note that the function pairs in the above three cases are solutions of a second order

linear differential equation with constant coefficients whose characteristic polynomial has

either the real roots s1,2 = σ1,2 or the complex conjugate roots s1,2 = λ1,2 = σ∓ iω or a

double real root s = σ. In each case, the corresponding solutions are linearly independent

either as elements of F (I,R) or as elements of F (I,C).

* Example 3.15

If fj = gj + ihj , f
∗
j = gj − ihj , j = 1, . . . , k, are 2k linearly independent functions in

F (I,C), then their real and imaginary parts, gj , hj , j = 1, . . . , k, are linearly independent
in F (I,R). To show this, suppose that

k
∑

j=1

(ajgj + bjhj) = 0

Noting that

gj =
1

2
(fj + f∗

j ) and hj =
1

2i
(fj − f∗

j )

the above expression becomes

1

2

k
∑

j=1

(cjfj + c∗jf
∗
j ) = 0

where cj = aj − ibj . Linear independence of {fj , f
∗
j | j = 1, . . . , k} implies cj = 0, j =

1, . . . , k, and therefore, aj = bj = 0, j = 1, . . . , k.

Observe that this example explains why the real and imaginary parts of complex

solutions of second order linear differential equation with constant coefficients, whose

characteristic polynomial has a pair of complex-conjugate roots, are linearly independent

real solutions.

3.2.3 Elementary Operations

Consider an m × n matrix A partitioned into its rows

A =











α1

α2

...
αm











∈ F
m×n

Since the rows of A are vectors in F
1×n (as noted in Example 3.2), the elementary

row operations on A discussed in Section 1.4 can be viewed as operations involving
the elements of the ordered set R = (α1, . . . , αm) ⊂ F

1×n. This observation suggests
that similar operations can be defined for any ordered subset of a vector space.

The following operations on a finite ordered set of vectors R = (r1, r2, . . . , rk) are
called elementary operations.
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I: Interchange any two vectors

II: Multiply any vector by a nonzero scalar

III: Add a scalar multiple of a vector to another one

As we discussed in connection with elementary row operations, to every elementary
operation there corresponds an inverse operation of the same type such that if R′ is
obtained from R by a single elementary operation, then R can be recovered from R′

by performing the inverse operation.
Let R′ be obtained from R = (r1, r2, . . . , rk) by a single elementary operation.

If it is a Type I or Type II operation, then it is clear that span (R′) = span (R).
Suppose it is a Type III operation that consists of adding α times rp to rq for some
p 6= q. That is,

r′i =

{

ri, i 6= q
rq + αrp, i = q

(3.3)

For an arbitrary x ∈ span (R′)

x = c1r
′
1 + · · · + cpr

′
p + · · · + cqr

′
q + · · · + ckr

′
k

= c1r1 + · · · + cprp + · · · + cq(rq + αrp) + · · · + ckrk

= c1r1 + · · · + (cp + αcq)rp + · · · + cqrq + · · · + ckrk (3.4)

so that x ∈ span (R). Hence, span (R′) ⊂ span (R). Considering the inverse el-
ementary operation, it can similarly be shown that span (R) ⊂ span (R′). Hence
span (R′) = span (R). Obviously, this property also holds if R′ is obtained from R

by a finite sequence of elementary operations.
Another property of elementary operations is the preservation of linear indepen-

dence: If R′ is obtained from R by a finite sequence of elementary operations, then
R′ is linearly independent if and only if R is linearly independent. Again, the proof
is trivial if R′ is obtained from R by a single Type I or Type II elementary opera-
tion. Suppose that R′ is obtained from R by a single Type III elementary operation
as described in (3.3), and consider a linear combination as in (3.4) with x = 0. If
R is linearly independent then all the coefficients in the last linear combination in
(3.4) must be zero, which implies that all ci’s are zero, so that R′ is also linearly
independent. By considering the inverse elementary operation the converse can also
be shown to be true.

These properties of elementary operations can be used to characterize the span of
a set or to check its linear independence as illustrated by the following example.

Example 3.16

Consider the set R1 = (r1, r2, r3) in Example 3.12. Identifying r1, r2 and r3 with the
rows of the matrix

R1 =

[

0 0 1
0 1 −1
1 0 1

]

and performing elementary row operations on R1, we observe that

R1 −→ I



3.3 Bases and Representations 97

Thus

R1 −→ E = (e1, e2, e3)

where

e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1)

correspond to rows of I . Since E is linearly independent then so is R1. Also

span (R1) = span (E) = { (x, y, z) |x, y, z ∈ R } = R
3

Now consider the set R4 = (r2, r3, r4). Performing elementary operations on R4 as
above, we obtain

R4 −→ S = (r2, r3,0)

Then

span (R4) = span (S) = span (r2, r3) = U

Also, since S is linearly dependent then so is R4.

Note that these results have already been obtained in Examples 3.10 and 3.12.

3.3 Bases and Representations

If R is a spanning set then any x ∈ X can be expressed as a linear combination
of vectors in R. A significant question is whether we need all the vectors in R to
be able to do that for every x ∈ X. For example, the set R = {r1, r2, r3, r4} in
Example 3.10 spans R

3, but so also do R1 = {r1, r2, r3}, R2 = {r1, r2, r4}, and
R3 = {r1, r3, r4}. That is, any one of r2, r3, or r4 can be removed from R without
losing the spanning property. On the other hand, if r1 is removed from R, then the
resulting set R4 = {r2, r3, r4} no longer spans R

3. Apparently, the sets R1, R2 and
R3 have a property that R4 does not have. Referring to Example 3.12 we find out
that the first three sets are linearly independent while the last is not, and this may
be a clue.

Lets take another look at one of those linearly independent spanning sets, say R1.
If we remove one more vector from R1, then the resulting set of two vectors will only
span a plane (a subspace), not the whole space. Thus R1 is a minimal spanning set.
On the other hand, if we add any vector r different from r1, r2, and r3 to R1, then
the resulting set {r1, r2, r3, r} will no longer be linearly independent, because r can be
expressed as a linear combination of the others. Hence R1 is also a maximal linearly
independent set. The same are true also for R2 and R3.

These observations motivate a need to investigate the link between the concepts
of span and linear independence.

3.3.1 Basis

The following theorem, which is one of the fundamental results of linear algebra,
characterizes a linearly independent spanning set.
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Theorem 3.1 Let R be a subset of a vector space X. Then the following are equiv-
alent.

a) R is linearly independent and spans X.

b) R spans X, and no proper subset of R spans X. (That is, R is a minimal
spanning set.)

c) R is linearly independent, and no proper superset of R is linearly independent.
(That is, R is a maximal linearly independent set.)

d) Every vector x ∈ X can be expressed as a linear combination of the vectors of
R in a unique way. That is,

x =

k
∑

i=1

αiri

for some r1, . . . , rk ∈ R and α1, . . . , αk ∈ F, all of which are uniquely deter-
mined by x.

Proof We will show that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).

(a) ⇒ (b):

By the second part of the hypothesis R spans X. If a proper subset S ⊂ R spans X,
then there exists a vector r ∈ R − S that can be written as a linear combination of
some vectors in S. This implies that R is linearly dependent, contradicting the first
part of the hypothesis. Hence no proper subset of R can span X.

(b) ⇒ (c):

If R is linearly dependent, then there exists r ∈ R which can be written as a linear
combination of some other vectors in R. This implies that R − {r} also spans X,
contradicting the second part of the hypothesis. Hence R is linearly independent.
On the other hand, since every vector x /∈ R can be written as a linear combina-
tion of vectors of R (because R spans X), no proper superset of R can be linearly
independent.

(c) ⇒ (d):

If there exists a nonzero vector x which cannot be expressed as a linear combination
of vectors in R, then R∪{x} is linearly independent (see Exercise 3.13), contradicting
the second part of the hypothesis. Hence every vector can be expressed in terms of the
vectors of R. Now if a vector x can be expressed as two different linear combinations
of the vectors of R as

x =

k
∑

i=1

αiri =

k
∑

i=1

βiri

then

k
∑

i=1

(αi − βi)ri = 0

where at least one coefficient αi − βi is nonzero. This means that R is linearly
dependent, contradicting the first part of the hypothesis. Hence the expression for x

in terms of the vectors of R is unique.
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(d) ⇒ (a):

By hypothesis R spans X. If R is linearly dependent, then there exists a vector
r ∈ R which can be expressed as

r =

k
∑

i=1

ciri

for some r1, . . . , rk ∈ R, which means that r has two different expressions in terms of
r, r1, . . . , rk ∈ R, contradicting the hypothesis. Hence R is also linearly independent.

A set R having the properties in Theorem 3.1 is called a basis for X. A basis is
a generalization of the concept of a coordinate system in a plane to abstract vector
spaces. Consider the vectors i = (1, 0) and j = (0, 1) along the x and y axes of the xy
plane (R2). Since any vector x = (α, β) has a unique representation as x = αi + βj,
the vectors i and j form a basis for the xy plane. The basis vectors of a vector space
play exactly the same role as do the vectors i and j in the xy plane.

Example 3.17

Let e1, e2, e3 denote columns of I3. The set E = {e1, e2, e3} spans R
3×1, because any

x = col [x1, x2, x3 ] can be expressed as

x =

[

x1

x2

x3

]

= x1e1 + x2e2 + x3e3 (3.5)

E is also linearly independent, because a linear combination of e1, e2, e3 as above is 0

only if all the coefficients x1, x2 and x3 are zero. Hence E is a basis for R
3×1, called the

canonical basis. Canonical bases for F
n,F1×n and F

n×1 can be defined similarly. For
example, the set E in Example 3.16 is the canonical basis for R

3.

We now claim that the set R = {r1, r2, r3}, where

r1 =

[

1
0
0

]

, r2 =

[

1
1
0

]

, r3 =

[

1
1
1

]

is also a basis for R
3×1. To check if an arbitrary vector x = col [x1, x2, x3 ] can be

expressed in terms of the vectors in R we try to solve

[

x1

x2

x3

]

= α1

[

1
0
0

]

+ α2

[

1
1
0

]

+ α3

[

1
1
1

]

=

[

1 1 1
0 1 1
0 0 1

][

α1

α2

α3

]

for α1, α2 and α3. Since the coefficient matrix of the above equation in already in a row
echelon form, we obtain a unique solution by back substitution as

[

α1

α2

α3

]

=

[

x1 − x2

x2 − x3

x3

]

Thus

x = (x1 − x2)r1 + (x2 − x3)r2 + x3r3 (3.6)
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which shows that R spans R
3×1. Moreover, since the coefficients of r1, r2 and r3 in the

above expression are uniquely determined by x, R must also be linearly independent.
Indeed,

c1r1 + c2r2 + c3r3 =

[

c1 + c2 + c3
c2 + c3
c3

]

= 0

implies c1 = c2 = c3 = 0. This proves our claim that R is also a basis for R
3×1.

* Example 3.18

In the vector space C[s] of polynomials, let Q = {q0, q1, . . .}, where the polynomials qi

are defined as

qi(s) = si , i = 0, 1, . . .

Since any polynomial p(s) = c0 + c1s+ · · · + cns
n can be expressed as

p = c0q0 + c1q1 + · · · + cnqn

Q spans C[s].
Consider the finite subset Qn = {q0, q1, . . . , qn} of Q, and let p be a linear combination

of q0, q1, . . . , qn expressed as above. If p = 0 then p(s) = p′(s) = p′′(s) = · · · = 0 for all
s. Evaluating at s = 0, we get c1 = c2 = · · · = cn = 0, which shows that Qn is linearly
independent. Since any finite subset of Q is a subset of Qn for some n, it follows that
every finite subset of Q is linearly independent. Hence Q is linearly independent, and
therefore, it is a basis for C[s].

The reader can show that the set R = {r0, r1, . . .}, where

ri(s) = 1 + s+ · · · + si , i = 0, 1, . . .

is also a basis for C[s]. In fact, R can be obtained from Q by a sequence of elementary

operations.7

From the two examples above we observe that a vector space may have a finite or
an infinite basis. A vector space with a finite basis is said to be finite dimensional,
otherwise, infinite dimensional. Thus R

3×1 in Example 3.17 is finite dimensional,
and C[s] in Example 3.18 is infinite dimensional. These examples also illustrate that
basis for a vector space is not unique.

The following corollary of Theorem 3.1 characterizes bases of a finite dimensional
vector space.

Corollary 3.1.1 Let X have a finite basis R = {r1, r2, . . . , rn}. Then

a) No subset of X containing more than n vectors is linearly independent.

b) No subset of X containing less than n vectors spans X.

c) Any basis of X contains exactly n vectors.

d) Any linearly independent set that contains exactly n vectors is a basis.

e) Any spanning set that contains exactly n vectors is a basis.

7Although we defined elementary operations on a finite set only, the definition can easily be
extended to infinite sets.
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Proof

a) Consider a set of of vector S = {s1, s2, . . . , sm}, where m > n. Since R is a basis,
each sj can be expressed in terms of r1, r2, . . . , rn as

sj =

n
∑

i=1

aijri , j = 1, 2, . . . ,m

Let A = [ aij ]n×m. Since n < m, the linear system Ac = 0 has a nontrivial solution,
that is, there exist c1, c2, . . . , cm, not all zero, such that

m
∑

j=1

aijcj = 0 , i = 1, 2, . . . , n

Then
m

∑

j=1

cjsj =

m
∑

j=1

cj(

n
∑

i=1

aijri ) =

n
∑

i=1

(

m
∑

j=1

aijcj )ri = 0

which shows that S is linearly dependent.

b) Suppose that a set of vectors S = {s1, s2, . . . , sm}, where m < n, spans X. Then
each rj can be expressed as

rj =

m
∑

i=1

bijsi , j = 1, 2, . . . , n

Let B = [ bij ]m×n. Since m < n, we can show by following the same argument as in
part (a) that there exist c1, c2, . . . , cn, not all zero, such that

n
∑

j=1

cjrj =

n
∑

j=1

cj(

m
∑

i=1

bijsi ) =

m
∑

i=1

(

n
∑

j=1

bijcj )si = 0

Since this contradicts the assumption that R is linearly dependent S cannot span X.

c) If S is a basis containing m vectors, then by (a) m ≤ n, and by (b) m ≥ n, that is,
m = n.

d) Let S = {s1, s2, . . . , sn} be a linearly independent set. Then, by (a) no proper
superset of S is linearly independent, and by Theorem 3.1, S is a basis.

e) Let S = {s1, s2, . . . , sn} be a spanning set. Then, by (b) no proper subset of S spans
X, and by Theorem 3.1, S is a basis.

By Corollary 3.1(c), all bases of a finite dimensional vector space contain the same
number of basis vectors. This fixed number is called the dimension of X, denoted
dim (X). If X is a trivial vector space containing only the zero vector, then it has no
basis and dim (X) = 0.

From Example 3.17 we conclude that

dim (Fn) = dim (F1×n) = dim (Fn×1) = n

Example 3.19

From Examples 3.10 and 3.12 we conclude that the sets R1, R2 and R3 are all bases
for R

3. Since dim (R3) = 3, the set R, which contains four vectors, must be linearly
dependent. Although the set R4 also contains three vectors, it is not a basis, because
it is not linearly independent. Then it cannot span R

3. These results had already been
obtained in Example 3.12.
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Referring to the same example, we also observe that the set {r2, r3} is a basis for
the subspace U in Example 3.6. Hence dim (U) = 2. This is completely expected as U

is essentially the same as the two-dimensional xy plane (or the yz or xz planes) except
that it is tilted about the origin. The linearly independent vectors

s1 = (1, 1, 0) and s2 = (2, 1, 1)

form another basis for U.

Example 3.20

Any two vectors not lying on the same straight line are linearly independent in R
2.

Since dim (R2) = 2, any two such vectors form a basis for R
2. For example, the vectors

u1 = (2.0, 1.0) and u2 = (1.0, 2.0) shown in Figure 3.2 are linearly independent and form
a basis for R

2. The vectors v1 = (1.1, 1.0) and v2 = (1.0, 1.1) shown in the same figure
are also linearly independent and form another basis for R

2.

0 1 2 3 4
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2

3
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v
1
 

v
2
 

u
2
 

x 

x’ 

Figure 3.2: Two different bases for R
2

Although U = {u1,u2} and V = {v1,v2} are both bases, they are quite different
from a computational point of view. Consider two vectors x = (3.2, 3.1) and x′ =
(3.1, 3.2) which represent two close points in R

2. We expect that when we express them
in terms of a basis, then their corresponding coefficients multiplying the basis vectors
should also be close. This is indeed the case for U, where

x = 1.1u1 + 1.0u2

x
′ = 1.0u1 + 1.1u2

On the other hand, when x and x′ are expressed in terms of V as

x = 2.0v1 + 1.0v2

x
′ = 1.0v1 + 2.0v2

their corresponding coefficients differ greatly.
To explain the situation we observe that finding the coefficients c1 and c2 of a given

vector x = (x, y) = c1v1 + c2v2 is equivalent to solving the linear system
[

1.1 1.0
1.0 1.1

][

c1
c2

]

=

[

x
y

]
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Since this system is ill-conditioned, its solution (the coefficients c1 and c2) are very

sensitive to small changes in x and y. The ill-conditioning of the system results from

v1 and v2 being very much aligned with each other. We can say that they are closer to

being linearly dependent than u1 and u2 are.8

Example 3.21

Any A ∈ R
2×2 can be expressed as

A =

[

a11 a12

a21 a22

]

= a11

[

1 0
0 0

]

+ a12

[

0 1
0 0

]

+ a21

[

0 0
1 0

]

+ a22

[

0 0
0 1

]

= a11M11 + a12M12 + a21M21 + a22M22

Hence the set M = {M11,M12,M21,M22} spans R
2×2. Since it is also linearly indepen-

dent, it is a basis for R
2×2. (The same conclusion can also be reached by observing that

the coefficients of Mij in the above expression are uniquely determined by A.) Therefore,
dim (R2×2) = 4.

The set

R
2×2
s = {S ∈ R

2×2 |S is symmetric }

is a subspace of R
2×2. The matrices

S1 =

[

1 0
0 0

]

, S2 =

[

0 1
1 0

]

, S3 =

[

0 0
0 1

]

form a basis for R
2×2
s . Hence dim (R2×2

s ) = 3.
In general, dim (Fm×n) = mn, and the set

{Mij | 1 ≤ i ≤ m, 1 ≤ j ≤ n }

where Mij ∈ F
m×n consists of all 0’s except a single 1 in the (i, j)th position, is a basis

for F
m×n.

The following corollary is useful in constructing a basis for a vector space.

Corollary 3.1.2 Let dim (X) = n.

a) Any spanning set containing m > n vectors can be reduced to a basis by deleting
m − n vectors from the set.

b) Any linearly independent set containing k < n vectors can be completed to a
basis by including n − k more vectors into the set.

Proof

a) Let R = {r1, . . . , rm},m > n, be a spanning set. By Corollary 3.1(a), it must be
linearly dependent, and therefore, one of its vectors can be expressed in terms of the
others. Deleting that vector from R reduces the number of vectors by one without
destroying the spanning property. Continuing this process we finally obtain a subset
of R which contains exactly n vectors and spans X. By Corollary 3.1(e), it is a basis.

8We will mention about a measure of linear independence in Chapter 7.
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The process of reducing R to a basis can be summarized by an algorithm:

R = {r1, . . . , rm}
For i = m : 1

If span (R − {ri}) = X, R = R − {ri}
End

b) Let R1 = {r1, . . . , rk}, k < n, be a linearly independent set, and let {rk+1, . . . , rk+n}
be any basis for X. Then R = {r1, . . . , rk, rk+1, . . . , rk+n} is a spanning set with
m = k + n elements. Application of the algorithm in part (a) to R reduces it to a
basis which includes the first k vectors. Details are worked out in Exercise 3.14.

Example 3.22

Consider Example 3.10 again. The linearly independent set {r1, r2} can be completed

to a basis by adding r3 or r4. The spanning set {r1, r2, r3, r4} can be reduced to a basis

by deleting r2, or r3, or r4.

3.3.2 Representation of Vectors With Respect to A Basis

Let dim (X) = n, and let R = (r1, . . . , rn) be an ordered basis for X. Then any vector
x ∈ X can be expressed in terms of the basis vectors as

x = α1r1 + · · · + αnrn

for some unique scalars αi, i = 1, . . . , n. The column vector

α = col [ α1, α2, . . . , αn ] ∈ F
n×1

is called the representation of x with respect to the basis R. This way we establish
a one-to-one correspondence between the vectors of X and the n×1 vectors of F

n×1.9

Example 3.23

Consider the basis E of R
3×1 in Example 3.17. From (3.5) we observe that the represen-

tation of a vector x = col [x1, x2, x3 ] with respect to E is itself. That is why E is called
the canonical basis for R

3×1.
Now consider the basis R in the same example. From (3.6), the representation of

x = col [x1, x2, x3 ] with respect to R is obtained as

α =

[

x1 − x2

x2 − x3

x3

]

Example 3.24

The set (r2, r3) in Example 3.10 is a basis for the subspace U in Example 3.6. The
representation of u = (x, y, x−y) ∈ U with respect to this basis is obtained by expressing
u in terms of r2 and r3 as

u = x r2 + y r3

9Note that although αi are unique, their locations in α depend on the ordering of the basis
vectors. To guarantee that every vector has a unique column representation and that every colum
represents a unique vector, it is necessary to associate an order with a basis. For this reson, from
now on, whenever we deal with representations of vectors with respect to a basis, we will assume
that the basis is ordered.
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which gives

α =

[

x
y

]

The set S = (s1, s2) in Example 3.19 is also a basis for U. The representation of
u = (x, y, x− y) with respect to S is obtained by expressing u in terms of s1 and s2 as

u = 2y s1 + (x− y) s2

to be

β =

[

2y
x− y

]

Note that dim (U) = 2, and therefore, α,β ∈ R
2×1.

* Example 3.25

Let DN = ( 0, 1, . . . , N − 1 ), and consider the vector space F(DN ,C) of complex-valued
functions defined on DN .

Let the functions ep ∈ F(DN ,C) be defined as

ep[k] =

{

1, k = p
0, k 6= p

, p = 0, 1, . . . , N − 1

Then any f ∈ F(DN ,C) can be expressed in terms of ep uniquely as

f =

N−1
∑

p=0

apep , ap = f [p] , p = 0, 1, . . . , N − 1

because

(

N−1
∑

p=0

apep )[k] =

N−1
∑

p=0

apep[k] =

N−1
∑

p=0

f [p]ep[k] = f [k] , k ∈ DN

Hence ( e0, e1, . . . , eN−1 ) is a basis for F(DN ,C), and therefore dim (F(DN ,C)) = N .
From the expression above it also follows that the representation of f with respect to
this basis is the column vector

f = col [ a0, a1, . . . , aN−1 ] = col [ f [0], f [1], . . . , f [N − 1] ]

There is nothing surprising about this result. F(DN ,C) is essentially the same as
C

N×1, and a function f ∈ F(DN ,C) is the same as the column vector f . The functions
e0, e1, . . . , eN−1 correspond to the canonical basis vectors e1, e2, . . . , eN of C

N×1. That
is why the representation of a function with respect to (ep) is a column vector consisting
of the values of f at k = 0, 1, . . . , N − 1.

Things become more interesting when we consider another basis for F(DN ,C). Let

φp[k] = eip
2π

N
k , p = 0, 1, . . . , N − 1

It can be shown (see Exercise 3.20) that any function f ∈ F(DN ,C) can be expressed in
terms of φp uniquely as

f =

N−1
∑

p=0

cpφp , cp =
1

N

N−1
∑

k=0

f [k]φ∗
p[k] , p = 0, 1, . . . , N − 1 (3.7)
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Hence (φ0, φ1, . . . , φN−1 ) is also a basis for F(DN ,C), and the representation of f with
respect to (φp) is

F = col [ c0, c1, . . . , cN−1 ]

The representation of f as a linear combination of φp is known as the discrete Fourier

series of f , and the coefficients cp as the discrete Fourier coefficients of f .

As a specific example, suppose N = 4. Then the basis functions φp have the values
tabulated below.

φ0[k] φ1[k] φ2[k] φ3[k]

k = 0 1 1 1 1
k = 1 1 i −1 −i
k = 2 1 −1 1 −1
k = 3 1 −i −1 i

Let

f [k] =











2, k = 0
4, k = 1

−2, k = 2
0, k = 3

Then the discrete Fourier coefficients of f are computed as

c0 = 1
4

(2 + 4 − 2 + 0) = 1

c1 = 1
4

(2 − 4i+ 2 + 0) = 1 − i

c2 = 1
4

(2 − 4 − 2 + 0) = −1

c3 = 1
4

(2 + 4i+ 2 + 0) = 1 + i

Hence the discrete Fourier series of f is

f = φ0 + (1 − i)φ1 − φ2 + (1 + i)φ3

and the representation of f with respect to (φp) is

F =







1
1 − i
−1
1 + i







From the examples above we observe that although the representation of a vector is
unique with respect to a given basis, it has a different (but still unique) representation
with respect to another basis. We now investigate how different representations of
the same vector with respect to different bases are related.

Let R = (r1, r2, . . . , rn) and R′ = (r′1, r
′
2, . . . , r

′
n) be two ordered bases for X.10

Suppose that a vector x has the representations

α = col [ α1, . . . , αn ] and α′ = col [ α′
1, . . . , α

′
n ]

10Keep in mind that even when R and R′ contain exactly the same vectors, if their orderings are
different then R and R′ are different.
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with respect to R and R′. That is,

x =

n
∑

j=1

αjrj =

n
∑

i=1

α′
ir

′
i

Let the jth basis vector rj be expressed in terms of the vectors of R′ as

rj =

n
∑

i=1

qijr
′
i , j = 1, . . . , n

so that it has a representation

qj = col [ q1j , . . . , qnj ] , j = 1, . . . , n

with respect to R′. Then

x =

n
∑

j=1

αjrj =

n
∑

j=1

αj (

n
∑

i=1

qijr
′
i ) =

n
∑

i=1

(

n
∑

j=1

qijαj ) r′i =

n
∑

i=1

α′
ir

′
i

By uniqueness of the representation of x with respect to R′, we have

α′
i =

n
∑

j=1

qijαj , i = 1, . . . , n

By expressing these equalities in matrix form, we observe that the representations α′

and α are related as

α′ = Q α

The matrix

Q = [q1 q2 · · · qn ] = [ qij ]n×n

which is defined uniquely by R and R′, is called the matrix of change–of–basis

from R to R′.
Now interchange the roles of the bases R and R′. Let the jth basis vector r′j be

expressed in terms of the vectors of R as

r′j =

n
∑

i=1

pijri , j = 1, . . . , n

so that it has a representation

pj = col [ p1j , . . . , pnj ] , j = 1, . . . , n

with respect to R. Defining

P = [p1 p2 · · · pn ] = [ pij ]n×n

to be the matrix of change–of–basis from R′ to R, we get

α = P α′

The reader might suspect that the matrices Q and P are related. Indeed, since
α = Pα′ = PQα and α′ = Qα = QPα′ for all pairs α, α′ ∈ R

n×1, we must have

PQ = QP = In

We will investigate such matrices in Chapter 4.
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Example 3.26

Consider Example 3.17. Expressing the vectors of the canonical basis E in terms of R

as

e1 = r1

e2 = −r1 + r2

e3 = −r2 + r3

we obtain the matrix of change–of–basis from E to R as

Q =

[

1 −1 0
0 1 −1
0 0 1

]

Hence the representation of a vector x = col [x1, x2, x3 ] with respect to R is related to
its canonical representation x as

α = Qx =

[

1 −1 0
0 1 −1
0 0 1

][

x1

x2

x3

]

=

[

x1 − x2

x2 − x3

x3

]

which is the same as in Example 3.23.
Since the representations of rj with respect to E are themselves, the matrix of change–

of–basis from R to E is easily obtained as

P = [ r1 r2 r3 ] =

[

1 1 1
0 1 1
0 0 1

]

If x has a representation

α = col [ a, b, c ]

with respect to R, then

x = ar1 + br2 + cr3 =

[

a+ b+ c
b+ c
c

]

= Pα

The reader should verify that QP = PQ = I .

3.4 Linear Transformations

Let X and Y be vector spaces over the same field F. A mapping A : X → Y is called
a linear transformation if for all x1,x2 ∈ X and for all c1, c2 ∈ F

A(c1x1 + c2x2) = c1A(x1) + c2A(x2) (3.8)

(3.8) is equivalent to

A(x1 + x2) = A(x1) + A(x2) (3.9)

and

A(cx) = cA(x) (3.10)
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which are known as superposition and homogeneity, respectively. (3.9) follows
from (3.8) on choosing c1 = c2 = 1, and (3.10) on choosing c1 = 1, c2 = 0 and x1 = x.
Conversely, (3.9) and (3.10) imply that

A(c1x1 + c2x2) = A(c1x1) + A(c2x2) = c1A(x1) + c2A(x2)

X and Y are the domain and the codomain of A. A linear transformation from
a vector space X into itself is called a linear operator on X.

If A : X → Y is a linear transformation then

A(0x) = 0y

which follows from (3.8) on taking c1 = c2 = 0.

Example 3.27

The zero mapping O : X → Y defined as

O(x) = 0y for all x ∈ X

is a linear transformation that satisfies (3.8) trivially.

The identity mapping I : X → X defined as

I(x) = x for all x ∈ X

is also a linear transformation, because

I(c1x1 + c2x2) = c1x1 + c2x2 = c1I(x1) + c2I(x2)

Hence I is a linear operator on X .

Example 3.28

The mapping A : R
3 → R

2 defined as

A(x1, x2, x3) = (x1 + x2, x2 − x3)

is a linear transformation. For u = (u1, u2, u3), v = (v1, v2, v3) and c, d ∈ F

A(cu + dv) = A(cu1 + dv1, cu2 + dv2, cu3 + dv3)

= (cu1 + dv1 + cu2 + dv2, cu2 + dv2 − cu3 − dv3)

= c(u1 + u2, u2 − u3) + d(v1 + v2, v2 − v3)

= cA(u) + dA(v)

However, none of the mappings

B(x1, x2, x3) = (x1 + x3, x2 + 1)

C(x1, x2, x3) = (x1 + x3, x
2
2)

D(x1, x2, x3) = (x1x3, x2)

is a linear transformation. B is not linear simply because B(0) 6= 0. The reader is urged

to explain why C and D are not linear.
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Example 3.29

Let A : F
n×1 → F

m×1 be defined as A(x) = Ax, where A is an m × n matrix with
elements from F. Since

A(ax + by) = aAx + bAy

A is a linear transformation. This example shows that every matrix defines a linear

transformation. Thus a linear transformation defined by an n× n matrix with elements

from F is a linear operator on F
n×1.

Example 3.30

Let X, Y, and Z be vector spaces over the same field, and let A : X → Y and B : Y → Z

be linear transformations. Then the compound mapping C : X → Z defined as

C(x) = (B ◦ A)(x) = B(A(x))

is also a linear transformation, because

C(c1x1 + c2x2) = B(A(c1x1 + c2x2))

= B(c1A(x1) + c2A(x2))

= c1B(A(x1)) + c2B(A(x2))

= c1C(x1) + c2C(x2)

* Example 3.31

In Section 2.5 we defined the differential operator D as a mapping from a set of functions
into itself such that D(f) = f ′. We now take a closer look at D.

Recall from Example 3.8 that

C0(I,R) ⊃ C1(I,R) ⊃ · · · ⊃ C∞(I,R)

are subspaces of F (I,R). Also, if f ∈ Cm(I,R) then

f ′ ∈ Cm−1(I,R) , f ′′ ∈ Cm−2(I,R) , . . . , f (m) ∈ C0(I,R)

Hence, for any m > 1, the differential operator D is a mapping from Cm(I,R) into
Cm−1(I,R), and therefore, into C0(I,R). The property in (2.34) implies that D is a
linear transformation. Then, as discussed in Example 3.30, the operator D2 that is
defined in terms of D as

D2(f) = (D ◦D)(f) = D(D(f)) = D(f ′) = f ′′

is also a linear transformation. Consequently, each Dk, k = 1, . . . , n ≤ m, which can be
defined recursively as

Dk(f) = (D ◦Dk−1)(f) = D(Dk−1(f)) = D(f (k−1)) = f (k)

is a linear transformations from Cm(I,R) into Cm−k(I,R), and therefore, into C0(I,R).

Finally, an nth order linear differential operator L(D) is a linear transformation

from Cn(I,R) into C0(I,R) (see Exercise 3.31). In fact, this is precisely the reason for

calling L(D) a linear operator.
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* Example 3.32

Recall that a vector x ∈ R
n×1 can also be viewed as a function f ∈ F(n,R). The linear

operator A : R
n×1 → R

n×1 defined by a matrix A ∈ R
n×n can similarly be interpreted

as a a linear operator A : F(n,R) → F(n,R) such that the image g = A(f) of a function
f is defined pointwise as

g[p] =

n
∑

q=1

apqf [q] , p ∈ n

Now consider the vector space F(Z,R) of infinite sequences. We can define a linear
operator H on F(Z,R) such that if g = H(f) then

g[p] =

∞
∑

q=−∞

h[p, q]f [q] , p ∈ Z (3.11)

where h[p, q] ∈ R.11 We can think of H as defined by an infinitely large matrix H with
elements h[p, q] such that



















...

g[−1]

g[ 0 ]

g[ 1 ]
...



















=



















...
...

...

· · · h[−1,−1] h[−1, 0] h[−1, 1] · · ·

· · · h[ 0,−1] h[ 0, 0] h[ 0, 1] · · ·

· · · h[ 1,−1] h[ 1, 0] h[ 1, 1] · · ·
...

...
...



















=



















...

f [−1]

f [ 0 ]

f [ 1 ]
...



















Let us go one step further, and consider the vector space F(R,R) of real-valued
functions defined on R. Now the domain of the functions is a continuum, and the infinite
summation in (3.11) must be replaced with an integral: We can then define a linear
operator H on F(R,R) such that g = H(f) is characterized by

g(t) =

∫ ∞

−∞

h(t, τ )f(τ )dτ , t ∈ R (3.12)

In the special cases when h[p, q] = h[p − q] and h(t, τ ) = h(t − τ ), the operators

defined by (3.11) and (3.12) are known as convolution, and are widely used in system

analysis.

3.4.1 Matrix Representation of Linear Transformations

Let dim (X) = n, let dim (Y) = m, let R = ( r1, . . . , rn ) and S = ( s1, . . . , sm ) be
ordered bases for X and Y, and let A : X → Y be a linear transformation.

Consider A(rj). Since it is a vector in Y, it has a unique representation aj ∈ F
m×1

with respect to the basis S. That is,

A(rj) =

m
∑

i=1

aijsi , j = 1, . . . , n

11Of course, this definition requires that the infinite series in (3.11) converges for all p ∈ Z, which
puts some restrictions not only on h[p, q] but also on f . These technical difficulties can be worked
out by restricting f to a subspace of F(Z, R) and by choosing h[p, q] suitably.
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and

aj = col [ a1j , a2j , . . . , amj ] , j = 1, . . . , n

The m × n matrix

A = [a1 a2 · · · an ] = [ aij ]

which is uniquely defined by A, R and S, is called the matrix representation of a

linear transformation of A with respect to the basis pair (R,S).
The significance of the matrix representation of A is that if x ∈ X has a represen-

tation α ∈ F
n×1 with respect to R and y = A(x) ∈ Y has a representation β ∈ F

m×1

with respect to S, then the two representations are related as β = Aα. To show this,
suppose

x =

n
∑

j=1

αjrj , y = A(x) =

m
∑

i=1

βisi

Then

y =

n
∑

j=1

αjA(rj) =

n
∑

j=1

αj (

m
∑

i=1

aijsi ) =

m
∑

i=1

(

n
∑

j=1

aijαj )si =

m
∑

i=1

βisi

Since the representation of y in terms of si is unique, we must have

βi =
n

∑

j=1

aijαj , i = 1, . . . , m

or in matrix form

β = Aα

In conclusion, not only does an m× n matrix define a linear transformation from
F

n×1 into F
m×1, but also a linear transformation from an n-dimensional vector space

X into an m-dimensional vector space Y can be represented by an m×n matrix once
a pair of bases for X and Y are fixed.12

Like the column representation of a vector with respect to basis, a linear transfor-
mation has different representations with respect to different bases. If A has a repre-
sentation A with respect to (R,S) and a representation A′ with respect to (R′,S′),
then

A′ = QyAPx

where Qy is the matrix of change–of–basis from S to S′ in Y, and Px is the matrix of
change–of–basis from R′ to R in X. This follows from the fact that if α and α′ are
representations of x with respect to R and R′, and β and β′ are representations of
y = A(x) with respect to S and S′, then

A′α′ = β′ = Qyβ = QyAα = QyAPxα′

12The question of whether a similar result can be derived for linear transformations between infinite
dimensional vector spaces is beyond the scope of this book.
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The relations between the vectors of X and Y and their representations are sum-
marized by the diagram in Figure 3.3. From the diagram it is clear that A, QyA,
APx and QyAPx all represent the same linear transformation, each with respect to a
different pair of bases. QyA represents A with respect to (R,S′), and APx represents
A with respect to (R′,S).

-

-

-�

�-

� �

�

6

6

6

6

?

?

?

?

α ∈ F
n×1

x ∈ X

α′ ∈ F
n×1

β ∈ F
m×1

y ∈ Y

β′ ∈ F
m×1

Px Qy

R′

R

S′

S

A′

A

A

Figure 3.3: Matrix representation of a linear transformation

Example 3.33

Consider the linear transformation A : F
n×1 → F

m×1 defined by a matrix Am×n ∈ F
m×n.

Let En = (en
1 , . . . , e

n
n ) and Em = ( em

1 , . . . , e
m
m ) denote the canonical bases for F

n×1 and

F
m×1, respectively. Then since Aen

j = aj (the jth column of A), and since the column

representation of aj with respect to Em is itself, it follows that the matrix representation

of A with respect to the canonical bases of F
n×1 and F

m×1 is the matrix A itself.

Example 3.34

Consider the linear transformation in Example 3.28. If we choose the canonical bases
E3 = ( e3

1, e
3
2, e

3
3 ) and E2 = ( e2

1, e
2
2 ) for F

3 and F
2, then

A(e3
1) = A(1, 0, 0) = (1, 0) = e2

1

A(e3
2) = A(0, 1, 0) = (1, 1) = e2

1 + e2
2

A(e3
3) = A(0, 0, 1) = (0,−1) = −e2

2

and the matrix representation of A is

A =

[

1 1 0
0 1 −1

]

Now suppose we choose

r1 = (1, 0, 0) , r2 = (0, 1, 0) , r3 = (−1, 1, 1)

as a basis for F
3, and

s1 = (1, 0) , s2 = (1, 1)
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as a basis for F
2. Then, since

A(r1) = A( 1, 0, 0) = (1, 0) = s1

A(r2) = A( 0, 1, 0) = (1, 1) = s2

A(r3) = A(−1, 1, 1) = (0, 0) = 0

A has the matrix representation

A′ =

[

1 0 0
0 1 0

]

with respect to (R,S).

Let us form the change–of–basis matrices Qy and Px. Since

e2
1 = s1

e2
2 = −s1 + s2

the matrix of change–of–basis from E2 to S in F
2 is

Qy =

[

1 −1
0 1

]

The matrix of change–of–basis from R to E3 in F
3 is readily obtained as

Px =

[

1 0 −1
0 1 1
0 0 1

]

The reader can easily verify that A′ = QyAPx.

In Example 3.30 we have seen that if A : X → Y and B : Y → Z are linear
transformations, then the mapping C : X → Z defined as

C(x) = (B ◦ A)(x) = B(A(x))

is also a linear transformation. In particular, if A : F
n×1 → F

m×1 and B : F
m×1 → F

p×1

are linear transformations defined as

A(x) = Ax , B(y) = By

where A and B are m × n and p × m matrices then C is defined as

C(x) = B(A(x)) = B(Ax) = BAx

Conversely, if X,Y and Z are finite dimensional and A and B are represented by
matrices A and B with respect to some fixed bases of X,Y and Z, then C = B ◦A is
represented by the matrix C = BA with respect to the same bases (see Exercise 3.29).
Thus a matrix product can be viewed as the representation of a linear transformation
followed by another as illustrated in Figure 3.4.
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-

-

-

-

6 6 6

? ? ?

� �
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6

?
x ∈ X y ∈ Y z ∈ Z

α ∈ F
n×1 β ∈ F

m×1 γ ∈ F
p×1

A B

A B

R S T

C = BA

C = B ◦ A

Figure 3.4: An interpretation matrix multiplication

3.4.2 Kernel and Image of a Linear Transformation

Let A : X → Y be a linear transformation. The set

ker (A) = {x ∈ X | A(x) = 0 } ⊂ X

is called the kernel of A. Clearly, 0 ∈ ker (A). Furthermore, if x1,x2 ∈ ker (A) then
for any c1, c2 ∈ F

A(c1x1 + c2x2) = c1A(x1) + c2A(x2) = c10 + c20 = 0

so that c1x1 + c2x2 ∈ ker (A). That is, ker (A) is closed under vector addition and
scalar multiplication. Hence it is a subspace of X, which is also called the null space

of A and denoted by N (A). If it is finite dimensional, we define ν(A) = dim (ker (A))
to be the nullity of A.

The set

im (A) = {y ∈ Y | y = A(x) for some x ∈ X } ⊂ Y

is called the image of A. The reader can easily show that im (A) is a subspace of
Y, which is also called the range space of A and denoted as R (A). If it is finite
dimensional, then we define ρ(A) = dim (im (A)) to be the rank of A.

If A : F
n×1 → F

m×1 is a linear transformation defined by an m×n matrix A, then
we also use the notation ker (A) and im (A) to denote ker (A) and im (A).

Example 3.35

Consider the linear transformation A : R
4×1 → R

3×1 defined by the matrix

A =

[

1 0 −2 −2
1 −1 −1 1
0 −1 1 3

]

= [a1 a2 a3 a4 ]

Then

ker (A) = {x ∈ R
4×1 |Ax = 0 }
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that is, ker (A) is precisely the set of solutions of the homogeneous system Ax = 0. From
the reduced row echelon form of A

A −→

[

1 0 −2 −2
0 1 −1 −3
0 0 0 0

]

we obtain two linearly independent solutions

φ1 =







2
1
1
0







, φ2 =







2
3
0
1







Hence ker (A) = span (φ1,φ2), and therefore, ν(A) = 2.

Clearly,

im (A) = span (a1,a2,a3,a4)

Performing elementary operations on the columns of A as

A
2C1 + C3 → C3

2C1 + C4 → R+

−→

[

1 0 0 0
1 −1 1 3
0 −1 1 3

]

C2 + C3 → C3

3C2 + C4 → C4

−→

[

1 0 0 0
1 −1 0 0
0 −1 0 0

]

= [a1 a2 0 0 ]

we determine that im (A) = span (a1, a2), and hence ρ(A) = 2.

Example 3.36

Let A : R
2×2 → R

2×2 be defined as

A(M) = M +M t

It is easy to see that A is a linear transformation.
Since M +M t = O if and only if M is skew-symmetric,

ker (A) = span (

[

0 −1
1 0

]

)

and hence ν(A) = 1.
Since M +M t is symmetric for any M ,

im (A) = R
2×2
s

where R
2×2
s is the subspace in Example 3.21. Hence ρ(A) = 3.

* 3.4.3 Inverse Transformations

If ker (A) = { 0 } then to every y ∈ im (A) there corresponds a unique x ∈ X such
that A(x) = y, that is, A is one-to-one (see Exercise 3.38). It is then natural to
expect that there exists a linear transformation ÂL : Y → X that maps the image of
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every x ∈ X back to x as illustrated in Figure 3.5. Such a linear transformation, if it
exists, is called a left inverse of A.13

In general, ÂL is not unique because of the arbitrariness in defining ÂL(y) when
y /∈ im (A). However, by the very definition, it has the property that

ÂL(A(x)) = x for all x ∈ X

- -

-

u u u

u u

� �
?

x1 x1y1 ∈ im (A)

y2 /∈ im (A) x2 (arbitrary)

A ÂL

ÂL

ÂL ◦ A

Figure 3.5: Left inverse of a linear transformation

Example 3.37

Let A : R
2×1 → R

3×1 be defined by the matrix

A =

[

1 1
2 3
0 1

]

It can easily be verified that the only solution of Ax = 0 is the trivial solution x = 0,
that is, ker (A) = { 0 }. Let

ÂL =

[

1 0 −1
0 0 1

]

Then the mapping ÂL : R
3×1 → R

2×1 defined by ÂL is a left inverse of A, because
ÂLA = I so that

ÂL(A(x)) = ÂLAx = x for all x ∈ R
2×1

The reader can verify that the matrix

Â′
L =

[

−1 1 −2
2 −1 2

]

also defines a left inverse of A.

13The proof of existence of ÂL in the general case is beyond the scope of this book. Left inverse
of a linear transformation defined by a matrix is studied in Chepter 4.
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Now suppose that im (A) = Y. Then for every y ∈ Y there exists an x ∈ X, not
necessarily unique, such that A(x) = y, that is, A is onto. We can then define a linear
transformation ÂR : Y → X such that ÂR(y) = x, where x is any fixed vector that
satisfies A(x) = y. Because of the arbitrariness in choosing x (if there are more than
one x that satisfy A(x) = y), ÂR is not unique either. However, it has the property
that

A(ÂR(y)) = y

for all y ∈ Y. Thus ÂR maps every y ∈ Y to a vector whose image is y as illustrated
in Figure 3.6, and is called a right inverse of A.14

- - -

�
�

�
�

��3
u u u u

u

� �
?

x1

x2

y1 x1 y1

A

A

ÂR A

A ◦ ÂR

Figure 3.6: Right inverse of a linear transformation

Example 3.38

Let B : R
3×1 → R

2×1 be defined by the matrix

B =

[

1 2 1
0 1 2

]

Since r(B) = 2, the equation Bx = y is consistent for all y, that is, im (B) = R
2×1.

Let

B̂R =

[

1 1
0 −1
0 1

]

Then the mapping B̂R : R
2×1 → R

3×1 defined by B̂R is a right inverse of B, because
BB̂R = I , so that

B(B̂R(y)) = BB̂Ry = y for all y ∈ R
2×1

As an exercise the reader may try to find a different right inverse of B.

14Right inverse of a linear transformation defined by a matrix is also studied in Chepter 4.
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Finally, suppose that ker (A) = { 0 } and also im (A) = Y. Then A has both a
left inverse ÂL and a right inverse ÂR. Moreover, ÂL and ÂR are unique.15 Since
A(ÂR(y)) = y for all y ∈ Y, from the definition of left inverse it follows that

ÂL(y) = ÂL(A(ÂR(y))) = ÂR(y) for all y ∈ Y

that is, ÂL = ÂR. The unique common left and right inverse of A is simply called
the inverse of A, denoted A−1.

In summary, if ker (A) = { 0 } and im (A) = Y for a linear transformation A :
X → Y, then there exists a unique inverse transformation A−1 : Y → X such that

A−1(A(x)) = x for all x ∈ X

and

A(A−1(y)) = y for all y ∈ Y

This is somewhat an expected result, because if ker (A) = { 0 } and im (A) = Y then
A establishes a one-to-one correspondence between the elements of X and Y. Such a
linear transformation is called an isomorphism, and any two vector spaces related by
an isomorphism are called isomorphic. It is left to the reader to show that two finite
dimensional vector spaces X and Y are isomorphic if and only if dim (X) = dim (Y)
(Exercise 3.39).

Example 3.39

Let dim (X) = n, and let R be a basis for X. Let the unique representation of a vector
x ∈ X with respect to the basis R be αx ∈ F

n×1. Then the mapping A : X → F
n×1

defined as

A(x) = αx

is a linear transformation as can easily be shown using the definition of the column
representation of a vector.

Since αx is uniquely defined by x, x = 0 is the only vector whose representation

is 0n×1. Hence ker (A) = {0 }. Also since every α ∈ F
n×1 is the representation of

some x ∈ X, im (A) = F
n×1. Thus A is a one-to-one mapping from X onto F

n×1 (an

isomorphism). The inverse of A is defined as A−1(αx) = x.

3.5 Linear Equations

In Chapter 1 we considered linear systems of the form

Ax = b

where A is an m × n matrix. We have seen that a general solution is of the form

x = φp + φc

15A rigorous proof of this statement is beyond the scope of this book. However, we can argue that
since there exists no y /∈ im (A), there is no arbitrariness in ÂL. Also, since for any y ∈ Y, the

vector x that satisfies A(x) = y is unique, there is no arbitrariness in ÂR either.
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where x = φp is a particular solution, and x = φc is a complementary solution that
contains arbitrary constants and satisfies the associated homogeneous equation.

In Chapter 2 we considered first and second order linear differential equations of
the form

L(D)(y) = u(t)

where L(D) is a linear differential operator with constant coefficients. Again, the
solution is of the form

y = φp(t) + φc(t)

where y = φp is a particular solution, and y = φc is a complementary solution.
The similarities between the nature of solutions of linear differential equations and

linear systems are striking but not surprising. Both a matrix and a linear differential
operator are linear transformations, and both a linear system and a linear differential
equation can be viewed as an equation

A(x) = y (3.13)

where A : X → Y is a linear transformation and y ∈ Y is a given vector. In the case
of linear systems X and Y are F

n×1 and F
m×1, and in the case of linear differen-

tial equations, the set of real-valued piece-wise continuous functions defined on some
interval. We now recall some definitions of Chapter 1 and Chapter 2.

An equation of the form (3.13), where A is a linear transformation, is called a
linear equation. If y = 0 then the equation is homogeneous. A vector x = φ

is called a solution of (3.13) if A(φ) = y. If (3.13) has no solution, it is said to be
inconsistent. Clearly, (3.13) is consistent if and only if y ∈ im (A).

Consider the homogeneous linear equation

A(x) = 0 (3.14)

which is consistent as x = 0 is a trivial solution. Clearly, the set of all solutions of
(3.14) is ker (A). Suppose that dim (ker (A)) = ν(A) = ν, and let {φ1, . . . , φν } be a
basis for ker (A). Then any solution of (3.14) can be expressed in terms of the basis
vectors as

x = c1φ1 + · · · + cνφν (3.15)

for some choice of the constants c1, . . . , cν .
Now consider the non-homogeneous linear equation (3.13). Assume that y ∈

im (A), so that it has at least one particular solution x = φp. Then for arbitrary
c1, . . . , cν

x = φp + c1φ1 + · · · + cνφν (3.16)

is also a solution, because

A(φp + c1φ1 + · · · + cνφν) = A(φp) +
ν

∑

i=1

ciA(φi) = y +
ν

∑

i=1

ci0 = y

Conversely, if x = φ is any solution of (3.13), then since

A(φ − φp) = A(φ) −A(φp) = y − y = 0
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φ − φp is a solution of the associated homogeneous equation (3.14), and therefore,
can be expressed as in (3.15). This, in turn, implies that φ is of the form (3.16). Thus
(3.16) characterizes the solution set of (3.13), and is called a general solution.

Note that neither φp nor φi, i = 1, . . . , ν, are unique. If φ′
p is another particular

solution, and φ′
i, i = 1, . . . , ν, form another basis for ker (A), then

x = φ′
p + c′1φ

′
1 + · · · + c′νφ

′
ν (3.17)

is also a general solution. Although the expressions in (3.16) and (3.17) are different,
they nevertheless define the same family of solutions (see Exercise 3.41).

Example 3.40

Consider the linear system

[ 1 2 3 ]

[

x1

x2

x3

]

= 2

whose coefficient matrix is already in reduced row echelon form.
Following the standard procedure of Chapter 1, a general solution is obtained as

x =

[

2
0
0

]

+ c1

[

−2
1
0

]

+ c2

[

−3
0
1

]

where φp = col [ 2, 0, 0 ] is a particular solution, and φ1 = col [−2, 1, 0 ] and φ2 =
col [−3, 0, 1 ] form a basis for the kernel of the coefficient matrix.

On the other hand, φ′
p = col [ 0, 1, 0 ] is also a particular solution (obtained from

the general solution above by choosing c1 = 1 and c2 = 0), and φ′
1 = col [−2, 1, 0 ] and

φ′
2 = col [ 0,−3, 2 ] form another basis for the kernel of the coefficient matrix. Thus

x =

[

0
1
0

]

+ c′1

[

−2
1
0

]

+ c′2

[

0
−3

2

]

is also a general solution.

The reader can verify that any solution obtained from the second expression by

choosing arbitrary values for c′1 and c′2 can also be obtained from the first expression by

choosing c1 = 1 + c′1 − c′2 and c2 = 2c′2, and vice versa.

Linear equations of the form (3.13) are not limited to linear differential equations
and linear systems. In the following two examples, we consider different types of
linear equations.

Example 3.41

Consider the linear equation

A(M) = M +M t = N =

[

6 2
2 −4

]

where A is the linear transformation considered in Example 3.36. Since the matrix on
the right-hand side of the above equation is symmetric, it is in im (A), and hence, the
equation is consistent.
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A particular solution can be obtained by inspection to be

Mp =
1

2
N =

[

3 1
1 −2

]

(Since N is symmetric, then so is Mp, and hence Mp +M t
p = 2Mp = N .)

The general solution can then be obtained by complementing Mp with ker (A), which
has already been characterized in Example 3.36, as

M =

[

3 1
1 −2

]

+ c

[

0 −1
1 0

]

Thus

M =

[

3 0
2 −2

]

is also a solution obtained from the general solution with c = 1. Indeed

M +M t =

[

3 0
2 −2

]

+

[

3 2
0 −2

]

=

[

6 2
2 −4

]

= N

Example 3.42

Suppose that we are interested in finding a sequence f ∈ F(N,C) which satisfies an
equation of the form

f [k + 2] + a1f [k + 1] + a2f [k] = u[k] , k ≥ 1 (3.18)

where a1, a2 are fixed (complex) coefficients, and u ∈ F(N,C) is a given sequence. Such
an equation is called a (second order) difference equation.16

Obtaining a solution to a difference equation is easy: Choose f [1] and f [2] arbitrarily,
and calculate f [3], f [4], etc., recursively from (3.18). Thus

f [1] = c1

f [2] = c2

f [3] = −a2f [1] − a1f [2] + u[1] = −a2c1 − a1c2 + u[1]

f [4] = −a2f [2] − a1f [3] + u[2] = (a1a2)c1 + (a2
1 − a2)c2 + u[2] − a1u[1]

and so on. Certainly, any term of a solution sequence can be obtained after sufficient
number of substitutions. However, it would be useful to have a formula for the kth term,
which could be evaluated without working out all the intermediate terms.

Let us try to formulate the problem as a linear equation. For this purpose we define
a shift operator ∆ : F(N,C) → F(N,C) as

(∆f)[k] = f [k + 1] , k ∈ N

Defining ∆2,∆3, etc., similar to the powers of the differential operator D, the difference
equation in (3.18) can be expressed as

L(∆)(f) = u[k] (3.19)

where

L(∆) = ∆2 + a1∆ + a2I

16Note that the recursion relations we considered in Section 2.8 in connection with numerical
solution of differential equations are difference equations with specified initial conditions.
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is a polynomial shift operator on F(N,C).

It is left to the reader to show that L(∆) is a linear operator on F(N,C). Hence
the linear difference equation (3.18) is a linear equation. Then it must have a general
solution of the form

f = φp[k] + φc[k]

where φp is any particular solution sequence, and φc is a complementary solution sequence
expressed as a linear combination of the basis vectors of ker (L(∆)).

To be more specific, let us consider the difference equation

f [k + 2] −
5

6
f [k + 1] +

1

6
f [k] = 1 , k ∈ N

or in operator notation

(∆2 −
5

6
∆ +

1

6
I)(f) = 1 , k ∈ N

Since the right-hand side of the given equation is a constant, we suspect that a
constant sequence f [k] = C might be a solution. Substituting the assumed solution into
the equation, and noting that ∆2(C) = ∆(C) = C, we get

C − (5/6)C + (1/6)C = (1/3)C = 1

giving C = 3. A particular solution is thus obtained as φp[k] = 3.

To find the complementary solution, we try a sequence of the form f [k] = zk. Sub-
stituting the trial solution into the homogeneous equation, we get

L(∆)(zk) = (zk+2 − (5/6)zk+1 + (1/6)zk) = 0

or equating the corresponding terms

zk+2 − (5/6)zk+1 + (1/6)zk = zk(z2 − (5/6)z + (1/6)) = 0

From the last equation, we observe that φ[k] = zk is a solution if and only if z is a root
of the characteristic equation

z2 − (5/6)z + (1/6) = 0

Since the characteristic equation has two real roots, µ1 = 1/2 and µ2 = 1/3, each of the
sequences

φ1[k] = (1/2k) and φ2[k] = (1/3k)

is a solution of the homogeneous equation. It can be shown that φ1 and φ2 are linearly
independent sequences, and thus form a basis for ker (L(∆)). The general solution of the
non-homogeneous difference equation is thus obtained as

f = φ[k] = 3 + c1/2
k + c2/3

k , c1, c2 ∈ C
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* 3.6 Direct Sum and Projections

Consider an arbitrary vector x = (x1, x2, x3) ∈ R
3. In terms of the canonical basis

vectors e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1), x can be expressed uniquely as

x = x1e1 + x2e2 + x3e3 (3.20)

Let Ui = span (ei), i = 1, 2, 3, be the one-dimensional subspaces of R
3 defined by

the canonical basis vectors. (They represent the x, y and z axes in the the xyz space).
Then we can interpret (3.20) as

x = u1 + u2 + u3

which is a decomposition of x into three components u1 = x1e1,u2 = x2e2,u3 = x3e3

in the subspaces U1,U2,U3.
Now let V1 = span (e1, e2) and V2 = span (e3), where V1 is a two-dimensional

subspace (the xy plane) and V2 is a one-dimensional subspace (the z axis). Then
(3.20) can also be written as

x = v1 + v2

which gives a decomposition of x into two components v1 = x1e1+x2e2 and v2 = x3e3

in the subspaces V1 and V2. Obviously, these components are uniquely determined
by x and the subspaces V1 and V2.

This example suggests that the idea of decomposing a vector into components
along the one-dimensional subspaces defined by a given basis can be generalized to a
decomposition into components in higher dimensional subspaces.

Let U1,U2, . . . ,Uk be subspaces of a vector space X. Their algebraic sum is
defined as

k
∑

i=1

Ui = {x |x =

k
∑

i=1

ui,ui ∈ Ui, i = 1, . . . , k }

It is easy to show that the algebraic sum is also a subspace of X.
The subspaces U1,U2, . . . ,Uk are said to be linearly independent if for ui ∈

Ui, i = 1, . . . , k

k
∑

i=1

ui = 0

is satisfied only when ui = 0, i = 1, . . . , k.
If U1,U2, . . . ,Uk are said to be linearly independent their algebraic sum is called

a direct sum, denoted
⊕k

i=1
Ui.

Note that algebraic sum of a family of subspaces is a generalization of the concept
of span of a set of vectors. Similarly, linear independence of a family of subspaces
is a generalization of the concept of linear independence of a set of vectors. The
following theorem characterizes two linearly independent subspaces. The extension
of the theorem to more than two subspaces is left to the reader as an exercise (see
Exercise 3.43).
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Theorem 3.2 Let R = { r1, r2, . . . } and S = { s1, s2, . . . } be bases for the subspaces
U and V. Then the following are equivalent.

a) U and V are linearly independent.

b) U ∩V = { 0 }.

c) T = { r1, r2, . . . , s1, s2, . . . } is a basis for U + V.

Proof We will show that (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b):

By contradiction. Suppose that there exists 0 6= x ∈ U ∩ V. Let u = x ∈ U,v =
−x ∈ V. Then u 6= 0 6= v and u + v = x − x = 0.

(b) ⇒ (c):

By contradiction. Since span (T) = U + V, if T is not a basis for U + V then it
must be linearly dependent, in which case there exist scalars αi and βj , not all zero,
such that

∑

i

αiri +
∑

j

βjsj = 0

Let

x =
∑

i

αiri = −
∑

j

βjsj

Then x ∈ U ∩ V, and x 6= 0 as R and S are linearly independent.

(c) ⇒ (a):

Suppose u + v = 0 for some

u =
∑

i

αiri and v =
∑

j

βjsj

that is,
∑

i

αiri +
∑

j

βjsj = 0

Since T is a basis, we must have αi = 0 for all i implying u = 0, and also βj = 0 for
all j implying v = 0.

Example 3.43

In R
3, let

U1 = span (e1, e2) , U2 = span (e2, e3) , U3 = span (e3)

where e1, e2, e3 are the canonical basis vectors. Then

U1 + U2 = U1 + U3 = span (e1, e2, e3) = R
3

U1 and U2 are not linearly independent, because e2 ∈ U1 ∩ U2. However, U1 and
U3 are linearly independent, because {e1, e2, e3} is a basis for U1 + U3. Hence

R
3 = U1 ⊕U3

The reader can interpret these findings by identifying R
3 with the xyz space, and

U1,U2 and U3 with the xy plane, yz plane, and the z axis respectively.
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From Theorem 3.2 it is clear that if T = { t1, t2, . . . , tn } is a basis for X, parti-
tioned arbitrarily into two disjoint sets, say

R = { t1, t2, . . . , tk } and S = { tk+1, tk+2, . . . , tn }

then

X = span (R) ⊕ span (S)

On the other hand, if R = { r1, r2, . . . , rk } is a basis for a k-dimensional subspace U,
then by Corollary 3.2, it can be completed to a basis by including n−k more vectors.
Let these additional vectors form a set S, and let V = span (S). Then X = U ⊕ V.
The subspace V thus constructed is called a complement of U. Since S can be
chosen in many different ways, complement of U is not unique. For example, for any
vector v = (a, b, c) with c 6= 0, V = span (v) is a complement of U1 in Example 3.43,
and in particular, so is U3. However, all complements of U must have the same
dimension.

We also observe that if X is finite dimensional and is decomposed into a direct
sum as X = U ⊕ V then

dim (X) = dim (U) + dim (V)

Let X = U ⊕ V, and let R = ( r1, . . . , rk ) and S = ( s1, . . . , sn−k ) be ordered
bases for U and V. Since T = R ∪ S is a basis for X, any vector x ∈ X can be
expressed as

x =

k
∑

i=1

αiri +

n−k
∑

j=1

βjsj = u + v (3.21)

The vectors u ∈ U and v ∈ V, which are uniquely defined by x, are called the
components of x in U and V.

Let P : X → X be a mapping which maps every vector in X to its component in
U, that is,

P(x) = u

P is called a projection on U along V. It is left to the reader to show that

a) P is a linear transformation

b) im (P) = U

c) ker (P) = V

The reader should note that the mapping Q : X → X defined as Q(x) = v is also a
projection (on V along U).

The matrix P that represents P with respect to the basis T is called a projection

matrix. Since

P(P(x)) = P(u) = u = P(x)

for any x ∈ X, it follows that P 2α = Pα for any α ∈ F
n×1 that stands for the column

representation of some vector. Thus if P is a projection matrix then P 2 = P . Such a
matrix is called idempotent. Conversely, if P is an n× n idempotent matrix, then

F
n×1 = im (P ) ⊕ ker (P )

and P defines a projection in F
n×1 on im (P ) along ker (P ) (see Exercise 3.51).
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Example 3.44

In Example 3.43, the projection on U1 along U3 is defined by the matrix

P =

[

1 0 0
0 1 0
0 0 0

]

and the projection on U3 along U1 is defined by the matrix

Q =

[

0 0 0
0 0 0
0 0 1

]

Note that P 2 = P and Q2 = Q.
Now consider the matrix

R =
1

3

[

2 1 −1
1 2 1

−1 1 2

]

Since R is idempotent, it defines a projection in R
3×1 on

im (R) = span (

[

1
1
0

]

,

[

0
1
1

]

) = span (u1,u2 )

along

ker (R) = span (

[

1
−1

1

]

) = span (u3 )

The components of an arbitrary vector x = col [ a, b, c ] in im (R) and ker (R) are

u = Rx =
1

3

[

2a + b− c
a+ 2b+ c

−a+ b+ 2c

]

=
2a+ b− c

3
u1 +

−a+ b+ 2c

3
u2

and

v = (I −R)x =
1

3

[

a− b+ c
−a+ b− c
a− b+ c

]

=
a− b+ c

3
u3

Example 3.45

In C[s], let

Ce[s] = { p(s) = p0 + p1s
2 + · · · + pms

2m | m = 0, 1, . . . }

Co[s] = { q(s) = q0s+ q1s
3 + · · · + qms

2m+1 | m = 0, 1, . . . }

Then C[s] = Ce[s] ⊕ Co[s].
If

r(s) = r0 + r1s+ r2s
2 + · · · + r2n+1s

2n+1

then

re(s) = r0 + r2s
2 + · · · + r2ns

2n

is the projection of r on Ce[s] along Co[s].

This example illustrates that direct sum decomposition and projections are not lim-

ited to finite dimensional vector spaces.
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3.7 Exercises

1. Prove properties (a-f) on p.87 of a vector space.

2. Show that a plane through the origin is a subspace of R
3.

3. Write down the equation of a line passing through two given points p,q ∈ R
n. Under

what conditions on p,q does the line represent a subspace?

4. Discuss how an m× n real matrix A can be interpreted as a function f : n → R
m×1.

5. Show that if U and V are subspaces of X, then so is U∩V. Is U∪V also a subspace?

6. Show that span (span (R)) = span (R) for any subset R ⊂ X.

7. Prove facts (a-c) on p.93 concerning linear independence.

8. Let R be a finite set of vectors and let R′ be obtained from R by a single Type I or
Type II elementary operation.

(a) Explain why span (R′) = span (R).

(b) Explain why R′ is linearly independent if and only if R is.

9. Show that C is a vector space over R, and find a basis for it.

10. Show that the set of all 3× 3 real skew-symmetric matrices is a subspace of R
3×3, and

find a basis for it.

11. Show that the set R = { r0, r1, . . . } in Example 3.18 is a basis for R[s].

12. An n× n matrix N is said to be nilpotent of index k if Nk = O but Nk−1 6= O.

(a) Let v be such that Nk−1v 6= 0. Show that the vectors v, Nv, . . . , Nk−1v are
linearly independent.

(b) Show that the index of nilpotency cannot exceed n.

13. Suppose R is linearly independent, and x /∈ span (R). Show that R ∪ {x } is also
linearly independent. Hint: Consider a finite subset S ⊂ R ∪ {x }. If x /∈ S then S ⊂
R, and therefore S must be linearly independent. If x ∈ S then S = { r1, . . . , rk,x }
for some r1, . . . , rk ∈ R.

14. Since the set R = { r1, . . . , rk, rk+1, . . . , rk+n } in the proof of Corollary 3.2(b) is
linearly dependent, there exist some c1, . . . , cn+k, not all zero, such that

n+k
∑

i=1

ciri = 0

Show that at least one of ck+1, . . . , cn+k must be nonzero. Explain why this implies
that the set obtained by deleting the corresponding vector from R includes the first
k vectors and still spans X. On the basis of this reasoning, explain also why the
algorithm in the proof of Corollary 3.2(a) reduces R to a basis that includes R1.

15. Let U = span (u1,u2, ..., up) and V = span (v1,v2, ...,vq) be subspaces of R
n×1. Give

an algorithm to obtain a basis for U ∩ V.

16. In a two-dimensional vector space X, a vector x has the representation α = col [ 1,−1 ]
with respect to some ordered basis R = ( r1, r2 ). Let

r
′
1 = r1 + r2 and r

′
2 = r1 + 2r2

(a) Show that R′ = ( r′1, r
′
2 ) is also a basis for X.

(b) Find the matrix of change–of–basis Q from R to R′, and the matrix of change–
of–basis P from R′ to R. Verify that QP = PQ = I .
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(c) Obtain the representation α′ of x with respect to R′.

17. Refer to Example 3.25. Let N = 4.

(a) Find the matrix of change–of–basis Q from (ep) to (φp).

(b) Verify that F = Q f for the sequence f considered in the example.

18. Let f = (3,−1,−3, 5, 3, 5) ∈ F(D6,C).

(a) Compute the discrete Fourier coefficients of f .

(b) Verify your result by using the MATLAB commands

f=[3 -1 -3 5 3 5];

c=fft(f)

19. Refer to Example 3.25.

(a) Show that

ψp[k] =



















1, p = 0

cos π2 k p = 1

sin π2 k p = 2

cos πk p = 3

is also a basis for F(D4,C).

(b) Find the representation of f with respect to (ψp).

20. Show (3.7) for f ∈ F(DN ,C). Hint: Each of the complex numbers

sp = e
ip

2π

N , p = 0, 1, . . . , N − 1

satisfies

sN
p = 1

Use this fact to show that

N−1
∑

p=0

e
ip

2π

N
q

=

{

N, q = 0
0, q 6= 0

21. Consider F(D,R) with D = { 1, 2, 3 }.

(a) Show that (g1, g2, g3), where

g1[k] = 1 , k = 1, 2, 3

g2[k] =

{

1, k = 1, 2
0, k = 3

g3[k] =

{

0, k = 1
1, k = 2, 3

is a basis for F(D,R).

(b) Find the column representation of

f [k] = k , k = 1, 2, 3

with respect to (g1, g2, g3).
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22. Prove that F(N,R) is infinite dimensional. Hint: Assume that it has a finite dimension,
say, M , and try to find a subspace of F(N,R) with dimension larger than M .

23. Let A : R
2×1 → R

2×1 be a linear transformation defined by the matrix

A =

[

2 1
1 2

]

Can you find a basis for R
2×1 with respect to which A is represented by a diagonal

matrix?

24. Let A : R
3 → R

2 be defined as A(x, y, z) = (x+ y, y− 2z). Choose arbitrary bases for
R

3 and R
2 (other than the canonical bases) and obtain the matrix representation of

A with respect to these bases.

25. Let

R3[s] = { p(s) = p0 + p1s+ p2s
2 + p3s

3 | p0, p1, p2, p3 ∈ R }

(a) Find a basis R for R3[s].

(b) Find the column representation of q(s) = 1 + s2 − 2s3 with respect to R.

(c) Let A : R3[s] → R3[s] be defined as A(p) = p′, where p′ denotes the derivative
of p. Show that A is a linear transformation, and find its matrix representation
with respect to R.

26. Let A : R
2×2 → R

2×2 be defined as A(X) = CX, where

C =

[

0 1
−2 3

]

Find the matrix representation of A with respect to the basis in Example 3.21.

27. (a) Show that the matrices

M1 =

[

1 0
0 0

]

, M2 =

[

0 0
0 1

]

, M3 =

[

0 1
1 0

]

, M4 =

[

0 1
−1 0

]

form an ordered basis M = (M1,M2,M3,M4) for R
2×2.

(b) Let A : R
2×2 → R

2×2 be defined as in Example 3.36. Find Y = A(X) for

X =

[

1 0
2 −3

]

(c) Find the column representations α and β of X and Y with respect to M.

(d) Find the matrix representation A of A with respect to M, and show that β = Aα.

28. In special theory of relativity, the space and time coordinates of an object measured
in two coordinate systems moving in the x direction at a constant relative speed are
related by the Lorentz transformation

L(v) : x′ = kv(x− vt)

t′ = kv(−
v

c2
x+ t)

where c is the speed of light, v < c is the relative speed of the coordinate systems, and
kv = 1/

√

1 − (v/c)2.

(a) Show that the Lorentz transformation is a linear transformation from R
2 into

itself, mapping (x, t) to (x′, t′).
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(b) Find the matrix representation L(v) of the Lorentz transformation with respect
to the canonical basis in R

2.

(c) Show that L(u)L(v) = L(w) for some w, and find w in terms of u and v.

29. Let R = ( r1, . . . , rn ),S = ( s1, . . . , sm ) and T = ( t1, . . . , tp ) be bases for the vec-
tor spaces X,Y and Z, respectively, and let A : X → Y and B : Y → Z be linear
transformations. Show that if A and B are represented by the matrices A and B with
respect to the given bases, then C : X → Z defined as C(x) = B(A(x)) is represented
by the matrix C = BA. Hint: By definition

A(rj) =

m
∑

k=1

akjsk , B(sk) =

p
∑

i=1

bikti , C(rj) =

p
∑

i=1

cijti

Find an expression for cij in terms of bik and akj .

30. Let X and Y be vector spaces over the same field F.

(a) Show that the set of all linear transformations from X into Y is also vector space
over F. This vector space is denoted by L(X,Y). Define clearly the addition
and scalar multiplication operations on L(X,Y), as well as the null vector and
the additive inverse.

(b) Find dim (L(X,Y)) if dim (X) = n and dim (Y) = m.

31. In the light of the previous exercise, explain why L(D) is a linear transformation from
Cn(I,R) into C0(I,R).

32. Let

f [k] =

{

1 + (−1)k, k ≥ 0
0, k < 0

(a) Find the sequence g defined by (3.11) for

h[p, q] =

{

1/2, q = p or q = p− 1
0, q 6= p, p− 1

Plot f and g pointwise for −2 ≤ k ≤ 5.

(b) Repeat part(a) for

h[p, q] =

{

1/2, q = p
−1/2, q = p− 1

0, q 6= p, p− 1

33. Let

h(t, τ ) =

{

1, t− 1 < τ < t
0, τ < t− 1 or τ > t

and

f(t) =

{

e−t, t > 0
0, t < 0

Find the function g defined by (3.12). Plot f and g for −1 ≤ t ≤ 5.

34. Show that if A : X → Y is a linear transformation, then im (A) is a subspace of Y.

35. Let A : R
3 → R

3 be defined as A(x, y, z) = (x+ y, x+ 2z, 2x+ y+ 2z). Find bases for
im (A) and ker (A).
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36. Let A be the LT defined in Exercise 3.25. Find bases for for im (A) and ker (A).

37. Find a 3 × 3 real matrix A such that 0 6= ker (A) ⊂ im (A) 6= R
3×1.

38. Let A : X → Y be a linear transformation.

(a) Show that if {A(x1), . . . ,A(xk) } is linearly independent, then so is {x1, . . . ,xk }.

(b) Show that A is one-to-one if and only if ker (A) = {0}. Hint: Suppose that
corresponding to some y ∈ im (A) there exist x1 6= x2 such that A(x1) =
A(x2) = y. Let x = x1 − x2 6= 0, and consider A(x).

(c) Show that if A is a one-to-one LT, and {x1, . . . ,xk } is linearly independent,
then {A(x1), . . . ,A(xk) } is also linearly independent.

39. (a) Let dim (X) = n and let A : X → Y be an isomorphism. Prove that dim (Y) = n.
Hint: Let ( r1, . . . , rn ) be a basis for X. Show that (A(r1), . . . ,A(rn) ) is a basis
for Y.

(b) Let X and Y be vector spaces over F, and let ( r1, . . . , rn ) and ( s1, . . . , sn ) be
bases for X and Y. Define A : X → Y such that

x =

n
∑

i=1

ciri =⇒ A(x) =

n
∑

i=1

cisi

Show that A is an isomorphism.

40. Let A : X → Y, where X,Y are finite dimensional. Show that there exist bases for
X,Y with respect to which A has a matrix representation

A =

[

I 0
0 0

]

41. Let φp and φ′
p be any two particular solutions of (3.13), and let ( φ1, . . . ,φν ) and

( φ′
1, . . . ,φ

′
ν ) be any two bases for ker (A). Show that

x = φp + c1φ1 + c2φ2 + · · · + cνφν

and

x = φ
′
p + c′1φ

′
1 + c′2φ

′
2 + · · · + c′νφ

′
ν

define the same family of solutions, and therefore, are both general solutions. Hint:
Since φ′

p is a solution, it is a member of the first family. Also, each φ′
j can be expressed

in terms of φi , i = 1, . . . , ν.

42. Show that the polynomial shift operator L(∆) in Example 3.42 is a linear operator on
the vector space of F(N,C).

43. State and prove Theorem 3.2 for more than two subspaces Ui, i = 1, . . . , k. Hint: Part
(b) will be

(b)Ui ∩
∑

j 6=i
Uj = {0 } , i = 1, . . . , k

44. (a) Show that the set U = { col [ x, x, y ] | x, y ∈ R } is a subspace of R3×1.

(b) Find a basis for U. What is the dimension of U?

(c) Obtain the representation of the vector u = col [ 1, 1, 2 ] ∈ U with respect to the
basis chosen in (b).

(d) Characterize another subspace V such that R3×1 = U ⊕ V
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45. Let U = span (u1,u2), where

u1 =

[

1
2
0

]

, u2 =

[

1
0
1

]

(a) Characterize a subspace V such that U ⊕ V = R
3×1.

(b) Find the projection of x = col [ 0, 2, 1 ] on U along V.

(c) Find a matrix P such that for any x ∈ R3×1, Px is the projection of x on U.

46. Let U = span (u1,u2), V = span (v1,v2), where

u1 =







1
1
1
1







, u2 =







0
0
1
1







, v1 =







0
1
1
1







, v2 =







0
0
0
1







(a) Show that U ⊕ V = R
4×1.

(b) Find the projection of x = col [x1, x2, x3, x4 ] on U along V.

(c) Construct a matrix P such that for any x ∈ R
4×1, the projection of x on U along

V is Px.

47. Let X be the set of all semi-infinite sequences f ∈ F(N,R) such that

f [k + 2] = f [k] + f [k + 1] , k ∈ N

Such a sequence is known as a Fibonacci sequence.

(a) Show that X is a vector space over R.

(b) Show that the sequences

s1 = (1, 1, 2, 3, 5, 8, 13, ...) and s2 = (−1, 1, 0, 1, 1, 2, 3, ...)

form a basis for X.

(c) Find the projection of the sequence f = (1, 2, 3, 5, 8, 13, ...) on span (s2) along
span (s1).

(d) Let A : X → R
2 be defined as A(f) = (f [3], f [4]). Find the matrix representation

of A with respect to the basis of X in part (b) and the canonical basis of R
2.

48. Let X = U ⊕ V, and let R = ( r1, . . . , rk ) and S = ( s1, . . . , sn−k ) be bases for U

and V so that T = ( r1, . . . , rk, s1, . . . , sn−k ) is a basis for X. Let P be a projection
on U along V.

(a) Find the matrix representation of P with respect to T if P is interpreted as a
LT from X into itself.

(b) Find the matrix representation of P with respect to (T,R) if P is interpreted as
a LT from X into U.

49. Show that P : R
2 → R

2 defined as

P(α, β) = (
α− β

2
,
β − α

2
)

is a projection. Characterize im (P) and ker (P). Illustrate the decomposition of a
vector into components in im (P) and ker (P) with the help of a picture.

50. Prove facts (a-c) on p.126 concerning a projection.
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51. Show that if P ∈ F
n×n is idempotent, then it defines a projection on im (P ) along

ker (P ). Hint: For any x ∈ F
n×1, let u = Px ∈ im (P ) and v = (I − P )x, and show

that v ∈ ker (P ).

52. A projection in the xyz space projects every point onto the plane described by

x+ y + z = 0

along its normal n = col [ 1, 1, 1 ].

(a) Find the projection u of the point x = col [ a, b, c ] on the plane.

(b) Find a matrix P such that u = Px.

(c) Verify that P 2 = P .


