
Chapter 4

Rank, Inverse and Determinants

4.1 Row and Column Spaces and The Rank

Let A be an m× n matrix partitioned into its rows:

A =











α1

α2

...
αm











where αi ∈ F
1×n, i = 1, . . . , m. The span of the rows of A is a subspace of F

1×n, and
is called the row space of A, denoted rs (A):

rs (A) = span (α1, α2, . . . , αm ) ⊂ F
1×n

If {α1, α2, . . . , αm } is linearly independent then it is a basis for rs (A). Otherwise,
it can be reduced to a basis by means of elementary row operations. From the
discussion in Section 1.4 and Section 3.2.1 it is clear that if

R =











ρ1
...
ρr

O











is the reduced row echelon form of A then

a) rs (A) = rs (R)

b) {ρ1, . . . , ρr } is a basis for rs (A)

c) dim (rs (A)) = r

Thus the row rank of a matrix defined in Section 1.4 is the dimension of its row space.
Now let us partition A into its columns:

A = [a1 a2 · · · an ]

where aj ∈ F
m×1, j = 1, . . . , n. The span of the columns of A, which is a subspace of

F
m×1, is called the column space of A, denoted cs (A):

cs (A) = span (a1,a2, . . . ,an ) ⊂ F
m×1
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Again, if { a1,a2, . . . ,an } is linearly independent then it is a basis for cs (A).
Otherwise, it can be reduced to a basis by means of elementary column operations on
A (see Exercise 1.32). If

C = [ c1 · · · cρ O ]

is the reduced column echelon form of A, where ρ (the number of nonzero columns of
C) is the column rank of A, then

a) cs (A) = cs (C)

b) { c1, . . . , cρ } a basis for cs (A)

c) dim (cs (A)) = ρ

It is interesting to examine the relation between the row rank and the column
rank of a matrix. Consider the reduced row echelon form of A, and rename the basic
columns of A as b1, . . . ,br and the non-basic columns as g1, . . . ,gν , where ν = n− r.
Then with the notation of Section 1.5

[ B G ]
e.r.o.
−→

[

Ir H
O O

]

(4.1)

or equivalently

[ B gj ]
e.r.o.
−→

[

Ir hj

O 0

]

, j = 1, . . . , ν (4.2)

where B and G are m × r and m × ν submatrices of A consisting of its basic and
non-basic columns respectively. (4.2) implies that each of the m× r systems

Bu = gj , j = 1, . . . , ν

is consistent and has a solution u = hj , that is,

gj = Bhj , j = 1, . . . , ν

This shows that every non-basic column can be written as a linear combination of the
basic columns. In other words,

gj ∈ cs (B) , j = 1, . . . , ν

Thus

cs (A) = cs [ B G ] = cs (B)

Moreover, since r(B) = r, the only solution of the homogeneous system Bu = 0 is the
trivial solution u = 0. This shows that columns of B are also linearly independent,
and therefore, form a basis for cs (A). Since B has r columns, we have

R1. ρ(A) = r(A)

The common value of the row and column ranks of A is simply called the rank of A.
Thus the row and column spaces of a given matrix, which are subspaces of different
vector spaces, have the same dimension r, which is the maximum number of linearly
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independent rows and also the maximum number of linearly independent columns of
that matrix.

Recall that the image of an m× n matrix A is defined as

im (A) = {y |y = Ax, x ∈ F
n×1}

Since for any x, Ax is a linear combination of the columns of A (coefficients being
the components of x), it follows that

im (A) = cs (A)

That explains why we use the same term “rank” for both the dimension of the image
of a linear transformation and the dimension of the column space of a matrix that
defines a linear transformation.

Example 4.1

Let us find bases for the row and column spaces of the matrix

A =

[

1 1 −1 2
3 3 −2 5
2 2 −1 3

]

The reduced row echelon form of A is obtained as

A
e.r.o.
−→

[

1 1 0 1
0 0 1 −1
0 0 0 0

]

= R

from which we conclude that r = 2, that rows 1 and 2 of R form a basis for the row
space of A, and that the basic columns 1 and 3 of A form a basis for the column space
of A. Let us verify these conclusions.

Any x ∈ rs (A) is of the form

x = c1 [ 1 1 − 1 2 ] + c2 [ 3 3 − 2 5 ] + c3 [ 2 2 − 1 3 ]

= (c1 + 3c2 + 2c3) [ 1 1 0 1 ] + (−c1 − 2c2 − c3) [ 0 0 1 − 1 ]

Thus rows 1 and 2 of R span the row space of A. Since rows 1 and 2 of R are also linearly
independent, they form a basis for rs (A).

Any y ∈ cs (A) is of the form

y = c1

[

1
3
2

]

+ c2

[

1
3
2

]

+ c3

[

−1
−2
−1

]

+ c4

[

2
5
3

]

(4.3)

= (c1 + c2 + c4)

[

1
3
2

]

+ (c3 − c4)

[

−1
−2
−1

]

so that columns 1 and 3 of A (the basic columns) span the column space of A. It is easy
to verify that they are also linearly independent, and therefore, form a basis for cs (A).

We can also find a basis for cs (A) by considering its reduced column echelon form,
which is obtained by the sequence elementary column operations described below.

[

1 1 −1 2
3 3 −2 5
2 2 −1 3

]

−C1 + C2 → C2

C1 + C3 → C3

−2C1 + C4 → C4

−→

[

1 0 0 0
3 0 1 −1
2 0 1 −1

]
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C2 ←→ C3

C1 − 3C2 → C1

C2 + C4 → C4

−→

[

1 0 0 0
0 1 0 0

−1 1 0 0

]

Thus the nonzero columns 1 and 2 of the reduced column echelon form of A form a basis
for its column space. This can also be verified by observing that a typical vector in the
column space given in (4.3) can be expressed as

y = c1

[

1
3
2

]

+ c2

[

1
3
2

]

+ c3

[

−1
−2
−1

]

+ c4

[

2
5
3

]

= (c1 + c2 − c3 + 2c4)

[

1
0

−1

]

+ (3c1 + 3c2 − 2c3 + 5c4)

[

0
1
1

]

A square matrix of order k is called nonsingular if r(A) = k, and singular if
r(A) < k. Let A be an m× n matrix, and consider the m× r submatrix B in (4.1)
that consists of the basic columns of A, where r = r(A). Since r(B) = r(A) = r,
dim (rs (B)) = r. Let C be the r × r submatrix of B consisting of the basic rows
of B (the rows corresponding to the pivot elements in the reduced column echelon
form of B). Then r(C) = r(B) = r, so that C is a nonsingular submatrix of A. This
shows that if r(A) = r, then A contains an r × r nonsingular submatrix. Suppose
r < min{m, n}, and consider any k × k submatrix of A with k > r. Since any
k columns of A are linearly dependent, so are the columns of this submatrix, and
therefore, it must be singular. We thus conclude that

R2. the rank of a matrix is the order of its largest nonsingular submatrix.

Example 4.2

Since the matrix A in Example 4.1 has rank 2, it must have a nonsingular submatrix of
order 2, and all square submatrices of order 3 must be singular.

Indeed, the 2 × 2 submatrix
[

1 −1
3 −2

]

consisting of first and second rows and first and third columns is nonsingular as can
easily be shown by observing that its reduced row echelon form is I2.

Now consider the 3 × 3 submatrix consisting of columns 1, 2, 3. Since the first two
columns of this submatrix are identical, subtracting one from the other produces a zero
column, showing immediately that the submatrix has rank less than 2, that is, it is
singular. The same is true for the submatrix consisting of columns 1, 2, 4. The 3 × 3
submatrices consisting of columns 1, 3, 4 and of columns 2, 3, 4 are identical, and have
the reduced column echelon forms

[

1 0 0
0 1 0

−1 1 0

]

and therefore, they are also singular. Thus all 3 × 3 submatrices formed by picking any

three columns out of four are singular.



4.1 Row and Column Spaces, Rank 139

Let C = AB. If y ∈ cs (C) then y = Cx = A(Bx) ∈ cs (A) for some x, so
that cs (C) ⊂ cs (A). Hence r(C) ≤ r(A). Similarly, rs (C) ⊂ rs (B), and therefore,
r(C) ≤ r(B). As a result, we have

R3. r(AB) ≤ min { r(A), r(B) }

Example 4.3

Let C = AB, where

A =

[

1 1 −1 2
3 3 −2 5
2 2 −1 3

]

, B =







−1 1 0
0 −1 −1
0 0 1
1 0 1







We established in Example 4.1 that r(A) = 2. Also, from

B
e.c.o.
−→







1 0 0
0 1 0
0 0 1

−1 −1 0







we get r(B) = 3. Hence we must have r(C) ≤ min{ 2, 3 }, that is, r(C) = 0, 1 or 2.
Indeed, computing C as

C =

[

1 0 0
2 0 0
1 0 0

]

we find r(C) = 1.

Example 4.4

Computing the rank of a matrix may pose numerical difficulties, similar to those encoun-
tered when dealing with ill-conditioned systems, when some rows or columns are nearly
linearly dependent.

Consider the matrix

A =

[

0.9502 0.2312 0.7189
0.6067 0.4859 0.1208
0.8913 0.7621 0.1292

]

A calculator that operates with 4-digit floating point arithmetic computes the reduced
row echelon form of the matrix using Gaussian elimination as

R =

[

1.0000 0.0000 0.9999
0.0000 1.0000 −0.9998
0.0000 0.0000 0.0000

]

and therefore, its row rank as r = 2. On the other hand, the same calculator computes
the reduced column echelon form of A as C = I , and therefore, its column rank as ρ = 3.
Apparently, Gaussian elimination is not reliable in computation of the rank.

The fact is that A is nonsingular, and therefore, has rank r = 3. (The reader can
verify this by using MATLAB’s built-in function rank). However, the matrix

Ã =

[

0.9502 0.2312 0.7190
0.6067 0.4859 0.1208
0.8913 0.7621 0.1292

]
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which differs from A only in the fourth decimal digit of the element in the (1, 3) position

has rank r̃ = 2. (The third column of Ã is the difference of the first two; hence Ã has

only two linearly independent columns.) Thus although A has rank r = 3, it is very close

to a matrix with rank r̃ = 2. Whether A should be viewed as having rank two or rank

three depends on the numerical accuracy desired in the particular application it appears.

4.2 Inverse

In Section 3.3.2 we stated the following facts concerning a linear transformation A :
X→ Y without proof:

a) If A is one-to-one (that is, ker (A) = { 0 }) then it has a left inverse ÂL :
Y→ X, not necessarily unique, such that

ÂL(A(x)) = x for all x ∈ X

b) If A is onto (that is, im (A) = Y) then it has a right inverse ÂR : Y → X, not
necessarily unique, such that

A(ÂR(y)) = y for all y ∈ Y

c) If A is both one-to-one and onto then it has a unique inverse Â : Y→ X such
that

Â(A(x)) = x for all x ∈ X and A(Â(y)) = y for all y ∈ Y

In this section, we will prove these statements for a linear transformation defined
by a matrix. To be precise, we first define left inverse, right inverse, and (two-sided)
inverse of a matrix:

a) A matrix ÂL that satisfies ÂLA = I is called a left inverse of A.

b) A matrix ÂR that satisfies AÂR = I is called a right inverse of A.

c) A matrix Â that satisfies ÂA = AÂ = I is called an inverse of A.

It is a simple exercise to show that for A ∈ F
m×n, ker (A) = { 0 } if and only if

r(A) = n and im (A) = Y if and only if r(A) = m. With this observation, we state
facts (a)-(c) above and few additional facts as a theorem, whose proof will be given
in the next subsection.

Theorem 4.1 Let A ∈ F
m×n. Then

a) A has a left inverse ÂL if and only if r(A) = n.

b) A has a right inverse ÂR if and only if r(A) = m.

c) A has an inverse Â if and only if r(A) = m = n, that is, A is square and
nonsingular.

d) If r(A) = m = n then ÂL, ÂR and Â are unique and ÂL = ÂR = Â.

Note that since r(A) ≤ min {m, n }, A can have a left inverse only when n ≤ m
and a right inverse only when m ≤ n.
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Assuming that parts (a)-(c) of Theorem 4.1 are true, part (d) can be proved by a
simple argument: If r(A) = m = n then A has an inverse Â, which is certainly also
a left inverse. Suppose that A has another left inverse ÂL that satisfies ÂLA = I.
Then postmultiplying both sides with Â we obtain

Â = (ÂLA)Â = ÂL(AÂ) = ÂLI = ÂL

contradicting the assumption. It can similarly be shown that Â is the only right
inverse of A.

Because of the fact stated in Theorem 4.1(c), a nonsingular matrix is also called
invertible. It is customary to denote the unique inverse of a square, nonsingular
matrix A by A−1.

4.2.1 Elementary Matrices

A matrix obtained from the identity matrix by a single elementary row or column
operation is called an elementary matrix. Corresponding to the three types of
elementary operations there are three types of elementary matrices. For example,

E1 =









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









, E2 =









1 0 0 0
0 c 0 0
0 0 1 0
0 0 0 1









, E3 =









1 0 0 0
0 1 0 0
0 0 1 0
0 2 0 1









are 4 × 4 elementary matrices of Type I, Type II, and Type III, respectively. E1 is
obtained from I4 by interchanging the first and the third rows (or columns), E2 by
multiplying the second row (or column) by the scalar c 6= 0, and E3 by adding 2 times
the second row to the forth row (or 2 times the fourth column to the second column).

It is left to the reader to show that an elementary row operation on an m × n
matrix A can be represented by premultiplying A with the corresponding m × m
elementary matrix. For example, if

A =





1 0 3 −1
−2 1 −4 3

3 −2 −1 0





2R1 + R2 → R2

−→





1 0 3 −1
0 1 2 1
3 −2 −1 0



 = B

then B = EA, where

E =





1 0 0
2 1 0
0 0 1



 (4.4)

is an elementary matrix obtained from I by the same elementary row operation.
Similarly, an elementary column operation on an m× n matrix A can be represented
by postmultiplying A with the corresponding n× n elementary matrix. Moreover, if
E is an n×n elementary matrix that represents an elementary operation on the rows
of a square matrix of order n, then Et is also an elementary matrix that represents
the same operation on the corresponding columns of A.

Let E be an elementary matrix that represents an elementary row operation on
I, and let Ê represent the inverse operation. Then clearly,

ÊE = I
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On the other hand, the same E can also be considered as representing an elementary
column operation on I, and Ê the inverse operation. Then

EÊ = I

As a result Ê is the unique inverse of E, that is,

E−1 = Ê

Moreover, E−1 is also an elementary matrix of the same type as E. For example, the
inverse of the elementary matrix E in (4.4) is

E−1 =





1 0 0
−2 1 0

0 0 1





which represents the inverse operation operation of adding −2 times the first row to
the second row.

If E1, E2, . . . , Ek are elementary matrices of order n, the product

Es = Ek · · ·E2E1

represents a sequence of elementary row operations on In. Then the product

Ês = E−1
1 E−1

2 · · ·E
−1
k

represents a sequence of elementary row operations that undo the operations rep-
resented by Es, so that ÊsEs = I. Similarly, EsÊs = I. We thus conclude that
Ês = E−1

s , that is,

(Ek · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E

−1
k (4.5)

An elementary matrix of Type I is also called an elementary permutation

matrix for the obvious reason that it permutes (reorders) the rows or columns of the
matrix that it multiplies. The reader can show that if P is an elementary permutation
matrix then

P−1 = P t

Let Ps = Pk · · ·P2P1, where P1, P2, . . . , Pk are elementary permutation matrices.
Since a permutation followed by another permutation is also a permutation, we can
conveniently call Ps a permutation matrix.1 Note that a permutation matrix
contains a single 1 in every row and column. The inverse of such a permutation
matrix can be found by means of (4.5) to be

P−1
s = P−1

1 P−2
2 · · ·P−1

k = P t
1P t

2 · · ·P
t
k = (Pk · · ·P2P1)

t = P t
s

For example,








0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0









−1

=









0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0









t

=









0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0









1Permutations are discussed in Section 4.4.
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4.2.2 Left, Right and Two-Sided Inverses

If A ∈ F
m×n has a left inverse ÂL ∈ F

n×m so that ÂLA = In then

r(ÂLA) = n ≤ r(A) ≤ min {m, n }

and we must have r(A) = n. This proves the necessity part of Theorem 4.1(a). (As
a byproduct, we also find that r(ÂL) = n.) Conversely, if r(A) = n then

Eq · · ·E2E1A = QA = R =

[

In

O

]

(4.6)

for some elementary matrices E1, . . . , Eq, where R is the reduced row echelon form of
A, and Q represents the sequence of elementary row operations used to transform A
into R. Partitioning rows of Q in accordance with the partitioning of R, (4.6) can be
written as

[

Q1

Q2

]

A =

[

Q1A
Q2A

]

=

[

In

O

]

(4.7)

from which we observe that

ÂL = Q1 = RtQ

is a left inverse of A. Thus we not only prove the sufficiency part of Theorem 4.1(a),
but also give a method to construct a left inverse when the sufficiency condition is
satisfied.

Example 4.5

Consider the matrix

A =

[

1 1
2 3
0 1

]

in Example 3.37. The elementary row operations that transform A into its reduced row
echelon form can be summarized as

[

1 −1 0
0 1 0
0 0 1

][

1 0 0
0 1 0
0 −1 1

][

1 0 0
−2 1 0

0 0 1

][

1 1
2 3
0 1

]

=

[

3 −1 0
−2 1 0

2 −1 1

][

1 1
2 3
0 1

]

=

[

1 0
0 1
0 0

]

A left inverse of A is thus obtained as

ÂL =

[

3 −1 0
−2 1 0

]

Note that ÂL above is different from both of the left inverses mentioned in Example 3.37.
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The proof of part (b) of Theorem 4.1 follows similar lines: If A ∈ F
m×n has a

right inverse ÂR ∈ F
n×m so that AÂR = Im then from

r(AÂR) = m ≤ r(A) ≤ min {m, n }

we get r(A) = m. (We also have r(ÂR) = m.) On the other hand, if r(A) = m then

AE1E2 · · ·Ep = AP = C = [ Im O ] (4.8)

where C is the reduced column echelon form of A, and P represents the sequence of
elementary column operations used to transform A into C. Partitioning columns of
P in accordance with the partitioning of C, (4.8) can be written as

A [ P1 P2 ] = [ AP1 AP2 ] = [ Im O ] (4.9)

from which a right inverse of A is obtained as

ÂR = P1 = PCt

Example 4.6

The matrix

B =

[

1 2 1
0 1 2

]

considered in Example 3.38 can be transformed into its reduced column echelon form as

[

1 2 1
0 1 2

]

[

1 −2 −1
0 1 0
0 0 1

][

1 0 0
0 1 −2
0 0 1

]

=

[

1 2 1
0 1 2

]

[

1 −2 3
0 1 −2
0 0 1

]

=

[

1 0 0
0 1 0

]

from which a right inverse of B is obtained as

B̂R =

[

1 −2
0 1
0 0

]

Finally, part (c) of Theorem 4.1 follows from parts (a) and (b): If A has an inverse
Â then it is also a left inverse and a right inverse so that r(A) = m = n, that is, A is
square and nonsingular. Conversely, if r(A) = m = n then the row echelon form of A
is In so that (4.6) reduces to

Eq · · ·E2E1A = QA = In (4.10)

Thus Q is a left inverse of A. Premultiplying both sides of (4.10) with the product
E−1

1 E−1
2 · · ·E

−1
q , we obtain2

A = E−1
1 E−2

2 · · ·E
−1
q

2This expression shows that every nonsingular matrix can be expressed as a product of elementary

matrices.
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which implies that

AQ = E−1
1 E−2

2 · · ·E
−1
q Eq · · ·E2E1 = I

that is, Q is also a right inverse of A. Hence if r(A) = m = n then A has an inverse

A−1 = Q

This completes the proof of Theorem 4.1.
MATLAB provides a built-in command inv to compute the unique inverse of a

square, nonsingular matrix.
From (4.10) it follows that

Ek · · ·E2E1 [ A I ] = [ I Q ] = [ I A−1 ]

The expression above provides a convenient method to find the inverse of a nonsingular
matrix by means of elementary operations as illustrated by the following example.

Example 4.7

Show that the matrix

A =

[

1 −1 0
2 −1 2
3 0 5

]

is nonsingular, and then find its inverse.

We form the augmented matrix [ A I ], and perform elementary row operations to
reduce A into its reduced row echelon form.

[

1 −1 0 | 1 0 0
2 −1 2 | 0 1 0
3 0 5 | 0 0 1

]

→

[

1 −1 0 | 1 0 0
0 1 2 | −2 1 0
0 3 5 | −3 0 1

]

→

[

1 0 2 | −1 1 0
0 1 2 | −2 1 0
0 0 −1 | 3 −3 1

]

→

[

1 0 0 | 5 −5 2
0 1 0 | 4 −5 2
0 0 1 | −3 3 −1

]

Since the reduced row echelon form of A is I , it is nonsingular, and

A−1 =

[

5 −5 2
4 −5 2

−3 3 −1

]

MATLAB gives the same answer. The reader can also verify that A−1A = AA−1 = I .

The following properties of inverse are easy to show, and are left to the reader.

I1. I−1 = I.

I2. If A is nonsingular then so is Ah, and (Ah)−1 = (A−1)h.
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I3. If A1, A2, . . . , Ak are nonsingular matrices of order n then their product is
also nonsingular, and

(Ak · · ·A2A1)
−1 = A−1

1 A−2
2 · · ·A

−1
k

Note that the third property above is a generalization of (4.5) stated for a product of
elementary matrices to a product of arbitrary nonsingular matrices.

Some special matrices have special inverses. For example, a diagonal matrix

D = diag [ d1, d2, . . . , dn ]

is nonsingular if and only if di 6= 0 for all i, in which case

D−1 = diag [ 1/d1, 1/d2, . . . , 1/dn ]

Some other similar results are left to the reader as exercise.

4.2.3 Generalized Inverse

If ÂG is a left inverse or a right inverse or a two-sided inverse of A, then it certainly
satisfies both of the relations

AÂGA = A , ÂGAÂG = ÂG (4.11)

If none of the rank conditions of Theorem 4.1 holds, then A does not have a left or a
right inverse, nor a two-sided inverse. However, it may still be possible to construct
a matrix ÂG that satisfies the above relations. Such a matrix, if it exists, is called a
generalized inverse of A.

Let A ∈ F
m×n with r(A) = r, and let

QA =

[

Q1

Q2

]

A =

[

R1

O

]

= R

where R is the reduced row echelon form of A and Q represents the sequence of
elementary row operations that transform A into R. Since r(R) = r(R1) = r

RP =

[

R1

O

]

[ P1 P2 ] =

[

Ir O
O O

]

= N

where N is the reduced column echelon form of R, and P represents the sequence of
elementary column operations that transform R into N . The matrix

N = QAP =

[

Q1

Q2

]

A [ P1 P2 ] =

[

Ir O
O O

]

(4.12)

is called the normal form of A.3

Let

ÂG = PN tQ = P1Q1

3Of course, the normal form can also be obtained by first obtaining the reduced column echelon

form C of A and then finding the reduced row echelon form of C.



4.2 Inverse 147

Noting that

A = Q−1NP−1 (4.13)

NN tN = N , and N tNN t = N t, straightforward multiplications give

AÂGA = (Q−1NP−1)(PN tQ)(Q−1NP−1)

= Q−1NN tNP−1 = Q−1NP−1 = A

ÂGAÂG = (PN tQ)A(PN tQ)

= PN tNN tQ = PN tQ = ÂG

Hence ÂG is a generalized inverse of A.
The MATLAB command pinv(A) computes a special generalized inverse of A,

which reduces to a left inverse when r = n and to a right inverse when r = m.

Example 4.8

The matrix

A =

[

1.0 −0.8 0.6
−0.5 0.4 −0.3

]

can be reduced to its normal form by means of elementary operations that are summa-
rized as

[

1.0 0.0
0.5 1.0

][

1.0 −0.8 0.6
−0.5 0.4 −0.3

]

[

1.0 0.8 −0.6
0.0 1.0 0.0
0.0 0.0 1.0

]

=

[

1 0 0
0 0 0

]

A generalized inverse of A is then obtained as

ÂG =

[

1
0
0

]

[

1 0
]

=

[

1 0
0 0
0 0

]

The normal form of A can also be obtained by a different sequence of elementary
operations:

[

0.0 −2.0
1.0 2.0

][

1.0 −0.8 0.6
−0.5 0.4 −0.3

]

[

1.0 −0.8 0.6
0.0 1.0 0.0
0.0 0.0 1.0

]

=

[

1 0 0
0 0 0

]

which result in a different generalized inverse

ÂG =

[

1
0
0

]

[

0 −2
]

=

[

0 −2
0 0
0 0

]

The MATLAB command pinv computes yet another generalized inverse

ÂG =

[

0.4000 −0.2000
−0.3200 0.1600

0.2400 −0.1200

]
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* 4.3 Equivalence and Similarity

Recall from Section 3.2.1 that if Q is the matrix of transition from a basis R of an
n-dimensional vector space X to another basis R′, and if P is the matrix of transition
from R′ to R, then QP = PQ = In. This shows that Q and P are both nonsingular,
and are inverses of each other. Conversely, any nonsingular n × n matrix Q can
be viewed as a matrix of transition from a basis R to another basis R′ in some n-
dimensional vector space X, say F

n×1. In other words, if R = ( r1, . . . , rn ) is a basis
for X, and r′j are defined as

r′j =

n
∑

i=1

pijri , j = 1, . . . , n (4.14)

where P = [ pij ] is nonsingular, then R′ = ( r′1, . . . , r′n ) is also a basis for X (see
Exercise 4.21). Moreover, the matrix of transition from R to R′ is precisely Q = P−1.

Also recall from Section 3.3.1 that if a linear transformation A : X→ Y has a
matrix representation A with respect to a pair of bases (R,S) and a representation
A′ with respect to another pair (R′,S′), then

A′ = QmAPn (4.15)

where Qm is the nonsingular matrix of transition from S to S′ in Y, and Pn is the
nonsingular matrix of transition from R′ to R in X. (Subscripts n and m refer to the
dimensions of X and Y.) In particular, if A : F

n×1 → F
m×1 is a linear transformation

defined by an m× n matrix A, then its representation with respect to the canonical
bases (En,Em) of F

n×1 and F
m×1 is the A matrix itself (see Example 3.33). Thus if

A′ is an m × n matrix that is related to A as in (4.15) then it represents the same
linear transformation with respect to a different pair of bases, which are uniquely
defined by the matrices Pn and Pm = Q−1

m .

From the discussion in Section 4.1 we observe that two m× n matrices A′ and A
are row equivalent if they are related as A′ = QmA, where Qm is an m×m nonsingular
matrix that stands for the elementary row operations performed on A to obtain A′.
Thus all row equivalent m×n matrices represent the same linear transformation with
respect to a fixed basis in F

n×1 and different bases in F
m×1. Their common (unique)

reduced row echelon form can be considered as a canonical form that represents the
equivalence class formed by these row equivalent matrices. Similarly, two m × n
matrices A′ and A are column equivalent if they are related as A′ = APn, where
Pn is an n× n nonsingular matrix that stands for the elementary column operations
performed on A to obtain A′. All column equivalent m × n matrices represent the
same linear transformation with respect to a fixed basis in F

m×1 and different bases in
F

n×1. Their common (unique) reduced column echelon form is a canonical form that
represents the equivalence class formed by column equivalent matrices. Combining
the two types of equivalence, we call A and A′ equivalent if they are related as in
(4.15) for some nonsingular matrices Qm and Pn. Thus equivalent matrices represent
the same linear transformation with respect to different bases, and their common
(unique) normal form is a canonical form that represents the equivalence class formed
by equivalent matrices.
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Example 4.9

The class of matrices that are row equivalent to

A =

[

1 2 1 4
2 4 1 5
3 6 2 9

]

is represented by its reduced row echelon form

R =

[

1 2 0 1
0 0 1 3
0 0 0 0

]

and the class of matrices that are column equivalent to A are represented by its column
echelon form

C =

[

1 0 0 0
0 1 0 0
1 1 0 0

]

The reduced column echelon form of R

N =

[

1 0 0 0
0 1 0 0
0 0 0 0

]

which is also the reduced row echelon form of C, represents all matrices that are equiv-

alent to A, that is, all 4 × 3 matrices with rank r = 2.

When a square matrix A of order n is viewed as the representation of a linear
transformation from an n-dimensional vector space X into another n-dimensional
vector space Y, then by choosing suitable bases for X and Y, A can be transformed
into its normal form N as in (4.12). However, if it is viewed as a linear operator on
F

n×1, that is, as a linear transformation from F
n×1 into itself, then it is natural to

use the same basis in both its domain and codomain. In this case, the equivalence
relation in (4.12) becomes

A′ = P−1AP (4.16)

Two square matrices related as in (4.16) are called similar. Thus similarity is a
special case of equivalence. We will discuss similarity transformations in detail in the
next chapter.

4.4 LU Decomposition

Some applications require solving an n× n system of equations

Ax = b (4.17)

for several values of b. Since the elementary row operations involved in reducing A
into a row echelon form are independent of b, it would be a waste of time to repeat
the same operations for each new value of b.
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LU decomposition is an algorithm, based on Gaussian Elimination, for factoring
a nonsingular matrix A into a product

A = L U (4.18)

where L is a lower triangular matrix with unity diagonal elements and U is an upper
triangular matrix.

With A factored as in (4.18), (4.17) is written as

LUx = b (4.19)

Defining z = Ux, the last equation is decomposed into two n× n systems

L z = b

Ux = z
(4.20)

Since L is lower triangular, for any given b the first system in (4.20) can easily
be solved for z by means of forward substitutions. Once z is obtained, the second
system in (4.20), whose coefficient matrix is upper triangular, can be solved by means
of backward substitutions to obtain a solution for x. If (4.17) is to be solved for a
different b, all we have to do is to solve the two systems in (4.20) using simple forward
and backward substitutions.

Example 4.10

Obtain the LU decomposition of

A =

[

2 −2 1
−4 3 −3

6 −8 4

]

Let A1 = A. The Gaussian Elimination algorithm applied to the first column of A1

yields

[

1 0 0
2 1 0

−3 0 1

][

2 −2 1
−4 3 −3

6 −8 4

]

=

[

2 −2 1
0 −1 −1
0 −2 1

]

which we write in compact form as L1A1 = A2.

Now the algorithm applied to the second column of A2 yields

[

1 0 0
0 1 0
0 −2 1

][

2 −2 1
0 −1 −1
0 −2 1

]

=

[

2 −2 1
0 −1 −1
0 0 3

]

or L2A2 = U .

Thus L2L1A = U , and therefore, A = L−1

1 L−1

2 U = LU where

L = L−1

1 L−1

2 =

[

1 0 0
−2 1 0

3 0 1

][

1 0 0
0 1 0
0 2 1

]

=

[

1 0 0
−2 1 0

3 2 1

]
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From the example above we observe that the first column elements of the matrix
L, which are the first column elements of L−1

1 , can be obtained directly from the first
column elements of A1 as

li1 = a
(1)
i1 /a

(1)
11 , i = 2, . . . , n

Similarly, the second column elements of L are those that appear in L−1
2 , and can be

obtained from the second column elements of A2 as

li2 = a
(2)
i2 /a

(2)
22 , i = 3, . . . , n

and so on. We also observe that L and U can be stored on the original matrix A, L
on the lower left half of A and U on the upper right half and on the diagonal (since
the diagonal elements of L are all 1, they need not be stored). These observations
lead to the basic LU decomposition algorithm given in Table 4.1, which overwrites A
with L and U .

Table 4.1: Basic LU Decomposition Algorithm

1. For j = 1 : n− 1

2. For i = j + 1 : n

3. µij = aij/ajj

4. aij ← µij

5. For q = j + 1 : n

6. aiq ← aiq − µijajq

7. End

8. End

9. End

Clearly, the algorithm requires that ajj 6= 0 at every step. If ajj = 0 at any
step, then to continue the reduction the jth row of A must be interchanged with a
row below it to bring a nonzero element to the pivot position. Even if ajj 6= 0, for
reasons of numerical accuracy, the pivot element is chosen to be the largest element
in magnitude among { apj : p ≥ j }.4 Since row interchanges can conveniently be
represented by premultiplying A with a permutation matrix P , LU decomposition of
A with row interchanges is equivalent to basic LU factorization of PA. Rather than
using a permutation matrix P to keep track of the row interchanges, a permutation
list I serves the same purpose. With row interchanges, the LU factorization algorithm
is modified as in Table 4.2.

MATLAB provides the build in function lu for obtaining the LU decomposition.
The command [L,U,P]=lu(A) returns the matrices involved.

4This is known as partial pivoting.
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Table 4.2: LU Decomposition with Partial Pivoting

1. I = n

2. For j = 1 : n− 1

3. Find p ≥ j such that |apj | = max{ |aij | : i ≥ j }

4. Interchange row j of A with row p

5. Interchange jth element of I with the pth element

6. For i = j + 1 : n

7. µij = aij/ajj

8. aij ← µij

9. For q = j + 1 : n

10. aiq ← aiq − µijajq

11. End

12. End

13. End

Example 4.11

Obtain the LU factorization of

A =







1 0 2 2
−2 −4 2 0

4 8 0 4
2 8 −2 6







with partial pivoting.
The steps of the algorithm are summarized below.

j = 1 : p = 3 , I → { 3, 2, 1, 4 }

A −→







4 8 0 4
−2 −4 2 0

1 0 2 2
2 8 −2 6







−→







4 8 0 4
−1/2 0 2 2

1/4 −2 2 1
1/2 4 −2 4







j = 2 : p = 4 , I → { 3, 4, 1, 2 }

A −→







4 8 0 4
1/2 4 −2 4
1/4 −2 2 1

−1/2 0 2 2







−→







4 8 0 4
1/2 4 −2 4
1/4 −1/2 1 3

−1/2 0 2 2






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j = 3 : p = 4 , I → { 3, 4, 2, 1 }

A −→







4 8 0 4
1/2 4 −2 4

−1/2 0 2 2
1/4 −1/2 1 3







−→







4 8 0 4
1/2 4 −2 4

−1/2 0 2 2
1/4 −1/2 1/2 2







Thus

L =







1 0 0 0
1/2 1 0 0

−1/2 0 1 0
1/4 −1/2 1/2 1







, U =







4 8 0 4
0 4 −2 4
0 0 2 2
0 0 0 2







and

P =







0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0







The reader can verify that

LU = PA

4.5 Determinant of a Square Matrix

4.5.1 Permutations

A sequence of integers Jn = (j1, j2, . . . , jn) in which each integer from 1 to n appears
only once is called a permutation of (1, 2, . . . , n). The sequence (1, 2, . . . , n) is called
the natural order of the integers form 1 to n. There are n! permutations of n integers
including the natural order.

In every permutation other than the natural order there is at least one integer
which is followed by one or more smaller integers. The total number of integers that
follow a larger integer is called the number of inversions in a permutation. For
example, the permutation (4, 6, 1, 5, 2, 3) contains nine inversions since 4 is followed
by 1, 2, and 3; 6 is followed by 1, 5, 2 and 3; and 5 is followed by 2 and 3. The sign

of a permutation Jn is defined as s(Jn) = (−1)k, where k is the total number of
inversions. That is, a permutation has a positive sign if it contains an even number
of inversions, and a negative sign if it contains an odd number of inversions.

The interchange of any two integers in a permutation is called a transposition. A
transposition involving adjacent integers is an adjacent transposition. If the adjacent
integers jp and jp+1 of a permutation Jn are interchanged, then the total number of
inversions is either increased or decreased by exactly one depending on whether jp <
jp+1 or jp > jp+1. Thus an adjacent transposition changes the sign of a permutation.
Now consider the transposition of any two integers jp and jq with p < q. This can
be achieved by first placing jp between jq−1 and jq by means of q − p − 1 forward
adjacent transpositions, and then placing jq between jp−1 and jp+1 by means of q−p
backward adjacent transpositions. Thus transposition of jp and jq requires a total of
2q− 2p− 1 adjacent transpositions. Since 2q− 2p− 1 is an odd number, we conclude
that any transposition changes the sign of a permutation.
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Finally, we note that if a permutation has a total of k inversions, then it can be
reduced to the natural order by k adjacent transpositions. To show this, suppose that
in the permutation, n is followed by in smaller integers, n−1 by in−1 smaller integers,
etc. Then the total number of inversions is k = in + in−1 + · · · + i2. The integer n
can be brought into its natural position by in adjacent transpositions, at each step
interchanging n with the next integer. Then, n−1 can be put into its natural position
by in−1 adjacent transpositions, etc. Thus the permutation can be put into natural
order by in + in−1 + · · ·+ i2 = k adjacent transpositions.

4.5.2 Determinants

Let A be a square matrix of order n. The scalar associated with A

detA =
∑

Jn=(j1,...,jn)

s(Jn)a1j1a2j2 · · · anjn
(4.21)

where the sum is taken over all n! permutations of (1, . . . , n), is called the determi-

nant of A. Thus the determinant of a 2× 2 matrix is

det

[

a11 a12

a21 a22

]

= a11a22 − a12a21

and the determinant of a 3× 3 matrix is

det





a11 a12 a13

a21 a22 a23

a31 a32 a33



 = a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a12a21a33 − a13a22a31

(4.22)

Consider a typical product term a1j1a2j2 · · · anjn
in (4.21). Reordering the el-

ements so that the column indices appear in natural order, we obtain a product
term ai11ai22 · · · ainn, where In = (i1, . . . , in) is another permutation of the integers
(1, . . . , n). Clearly, s(Jn) = s(In) as the same transpositions are involved in putting
Jn into natural order and the natural order into In. Also, to each product term
a1j1a2j2 · · ·anjn

in (4.21) there corresponds a unique product term ai11ai22 · · ·ainn.
This shows that the determinant of A can also be expressed as

detA =
∑

In=(i1,...,in)

s(In)ai11ai22 · · ·ainn (4.23)

where the sum is again over all n! permutations. The expressions in (4.21) and (4.23)
are called the row expansion and the column expansion of detA.

MATLAB function det computes the determinant of a square matrix.
The following properties of determinants follow from the definition.

D1. detAt = det A.

D2. If B is obtained from A by a Type I elementary row (column) operation, then
detB = − detA.

D3. If any two rows (columns) of A are identical, then det A = 0.

D4. If B is obtained from A by multiplying a row (column) by a scalar c (Type II
elementary operation), then detB = c ·det A. As a consequence, if A contains
a zero row (column), then det A = 0.
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D5. If a row of A is expressed as the sum of two rows as

A =

















α1

...
α

′

p + α
′′

p

...
αn

















then detA = detA′ + det A′′, where

A′ =

















α1

...
α

′

p

...
αn

















, A′′ =

















α1

...
α

′′

p

...
αn

















A corresponding property holds for columns of A.

D6. If B is obtained from A by a Type III elementary operation, then detB =
detA.

To prove property D1, we note that if At = B = [ bij ] so that bij = aji for all (i, j)
then

detAt =
∑

Jn

s(Jn)b1j1b2j2 · · · bnjn

=
∑

Jn

s(Jn)aj11aj22 · · ·ajnn = det A

To prove property D2, suppose B is obtained by interchanging the pth and qth
rows of A. Then

detB =
∑

In

s(i1, . . . , ip, . . . , iq, . . . , in)bi11 · · · bipp · · · biqq · · · binn

=
∑

In

−s(i1, . . . , iq, . . . , ip, . . . , in)ai11 · · · aiqp · · · aipq · · ·ainn

= − detA

The same property also holds if B is obtained from A by interchanging any two
columns, because then Bt will be obtained from At by interchanging the corresponding
rows so that det B = detBt = − detAt = − detA. In fact, because of property D1,
any result about the determinant of a matrix involving its rows is also valid for its
columns, and need not be proved separately.

To prove D3, let B be obtained from A by interchanging the identical rows. Then
B = A, so that det B = detA. However, by property D2, we also have detB =
− detA. So, detA = 0.
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To prove D4, let B be obtained from A by multiplying pth row by a scalar c. If
A = [ aij ] and B = [ bij ], then

bij =

{

aij , i 6= p
capj , i = p

and

detB =
∑

Jn

s(Jn)b1j1 · · · bpjp
· · · bnjn

=
∑

Jn

s(Jn)a1j1 · · · capjp
· · · anjn

= c ·
∑

Jn

s(Jn)a1j1 · · · apjp
· · · anjn

= c · detA

Property D5 follows from

detA =
∑

Jn

s(Jn)a1j1 · · · (a
′

pjp
+ a′′

pjp
) · · · anjn

=
∑

Jn

s(Jn)a1j1 · · · a
′

pjp
· · ·anjn

+
∑

Jn

s(Jn)a1j1 · · · a
′′

pjp
· · · anjn

= detA′ + detA′′

Finally, to prove D6, let B be obtained from A by adding c times row p to row q,
that is,

B =



























α1

...
αp

...
αq + cαp

...
αn



























=



























α1

...
αp

...
αq

...
αn



























+



























α1

...
αp

...
cαp

...
αn



























= A + C

Then, by D5 and D3, detB = detA + detC = detA.
Using the definition and the properties above, we can find explicit expressions

for the determinants of some special matrices. For example, if A is a block upper
triangular matrix of the form

A =

[

B c

0 a

]

(4.24)

then since anjn
= 0 when jn 6= n, (4.21) reduces to

detA =
∑

Jn

s(Jn)a1j1 · · · an−1,jn−1
anjn

=
∑

Jn−1

s(Jn−1)a1j1 · · ·an−1,jn−1
ann
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= a ·
∑

Jn−1

s(Jn−1)b1j1 · · · bn−1,jn−1

= a · detB

Similarly, if

A =

[

a 0

γ B

]

then detA = a · detB.
Using the last result repeatedly we observe that if A is a lower triangular matrix

then

det











a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 an2 · · · ann











= a11. det







a22 · · · 0
...

. . .
...

an2 · · · ann







...

= a11a22 · · · ann

Obviously, the same is true for an upper triangular matrix. An immediate consequence
of this result is that

det(diag [ d1, d2, . . . , dn ]) = d1d2 · · · dn

As a special case, we have

det I = 1

4.5.3 Laplace Expansion of Determinants

Consider the determinant of the 3× 3 matrix in (4.22). Grouping the product terms
on the right-hand side of the expression, we can write the determinant as

det





a11 a12 a13

a21 a22 a23

a31 a32 a33





= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11 det

[

a22 a23

a32 a33

]

− a12 det

[

a21 a23

a31 a33

]

+ a13 det

[

a21 a22

a31 a32

]

In the above expression, each determinant multiplying a first row element a1j is
precisely the determinant of a 2× 2 submatrix of A which is obtained by deleting the
first row and the jth column of A. A different grouping of the product terms in (4.22)
would result in a similar expression. We now generalize this observation to matrices
of arbitrary order.

Let A = [ aij ] be a square matrix of order n. The determinant of the k × k
submatrix of A obtained by deleting any n− k rows and any n − k columns of A is
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called a minor of A. Let Aij denote the (n− 1) × (n− 1) submatrix of A obtained
by deleting the ith row and the jth column of A, and let the corresponding minor
be denoted by mA

ij = detAij . The signed minor (−1)i+jmA
ij is called the cofactor of

the element aij . We then have

D7. For any fixed 1 ≤ i ≤ n,

detA =

n
∑

j=1

(−1)i+jaijm
A
ij (4.25)

Alternatively, for any fixed 1 ≤ j ≤ n,

detA =

n
∑

i=1

(−1)i+jaijm
A
ij (4.26)

The expressions in (4.25) and (4.26) are called the Laplace expansion of detA with
respect to the ith row and the jth column.

To prove (4.25) let us first consider the special case of i = n, and express the last
row of A as the sum of n rows, the jth one of which contains all 0’s except anj at its
jth position. Then, by repeated use of property D5, we can express detA as

detA = detA1 + · · ·+ detAj + · · ·+ detAn

where

Aj =











a11 · · · a1j · · · a1n

...
...

...
an−1,1 · · · an−1,j · · · an−1,n

0 · · · anj · · · 0











Let Bj be obtained from Aj by moving the jth column to the last position by means
of n− j adjacent transpositions, so that

detAj = (−1)n−j · detBj = (−1)n+j · detBj , j = 1, . . . , n

We also observe that

Bj =

[

Anj bj

0 anj

]

where bj = col [ a1j , . . . , an−1,j ], so that

detBj = anj · detAnj = anjm
A
nj

Hence

detA =

n
∑

j=1

detAj =

n
∑

j=1

(−1)n+janjm
A
nj

This establishes (4.25) for i = n.
Now, for any fixed i, let B be the matrix obtained from A by moving the ith

row to the nth position by means of n − i adjacent transpositions, so that detB =
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(−1)n−i detA. Also, for any j, bnj = aij , and the submatrix Bnj is the same as the
submatrix Aij . Thus

detA = (−1)i−n detB = (−1)i−n

n
∑

j=1

(−1)n+jbnjm
B
nj =

n
∑

j=1

(−1)i+jaijm
A
ij

which proves (4.25) for an arbitrary i. Finally, (4.26) follows from (4.25) on using
property D1.

Example 4.12

Find the determinant of

A =







3 0 −1 2
−1 1 3 0

2 2 0 4
−4 0 1 1







Since the second column contains most zeros, we prefer to expand detA with respect to
the second column, because we do not need to calculate the cofactors of zero elements.
Thus

det A

= (−1)2+2.1. det

[

3 −1 2
2 0 4

−4 1 1

]

+ (−1)3+2.2. det

[

3 −1 2
−1 3 0
−4 1 1

]

= {(−1)1+2.(−1). det

[

2 4
−4 1

]

+ (−1)3+2.1. det

[

3 2
2 4

]

}

−2.{(−1)1+3.2. det

[

−1 3
−4 1

]

+ (−1)3+3.1. det

[

3 −1
−1 3

]

}

= {(2 + 16) − (12 − 4)} − 2.{2.(−1 + 12) + (9 − 1)} = −50

Example 4.13

Laplace expansion becomes even more convenient when coupled with elementary opera-
tions of Type III as we illustrate below.

det







i 0 1 + i i
0 i 1 − i −1
i −i −1 1

−1 0 2 + i i







= det







i 0 1 + i i
0 i 1 − i −1
i 0 −i 0

−1 0 2 + i i







= i · det

[

i 1 + i i
i −i 0

−1 2 + i i

]

= i · det

[

i 1 + i i
i −i 0

−1 − i 1 0

]

= i2 · det

[

i −i
−1 − i 1

]

= −1
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From properties D2, D4 and D6 we observe that for an elementary matrix

detE =











−1, if E is a Type I elementary matrix

c, if E is a Type II elementary matrix

1, if E is a Type III elementary matrix

This observation allows us to conclude that if E is an elementary matrix then

a) detE 6= 0

b) det(EA) = det(AE) = (detE)(det A)

Let R = Ek · · ·E1A be the reduced row echelon form of A, so that detR =
(detEk) · · · (det E1)(det A). If A is singular then detR = 0 (as it contains one or more
zero rows), and we must have detA = 0. If, on the other hand, A is nonsingular,
then R = I so that detR = 1, and therefore, detA 6= 0. We thus obtain the following
result.

D8. A is nonsingular if and only if det A 6= 0.

Now consider a product AB. If A is singular then so is AB, and we have
detAB = 0. If A is nonsingular then we can represent it as a product of ele-
mentary matrices as A = Ek · · ·E1. Then AB = Ek · · ·E1B so that detAB =
(detEk) · · · (det E1)(det B) = (det A)(detB). In either case, we have

D9. det(AB) = (detA)(det B)

An immediate consequence of Property D9 is that for a nonsingular matrix A

detA−1 = (det A)−1

4.5.4 Cramer’s Rule and a Formula for A
−1

Let A be a nonsingular matrix of order n. The Cramer’s rule states that the unique
solution of the system

Ax = b (4.27)

is given by

xj =
detBj

detA
, j = 1, 2, . . . , n

where Bj is obtained by replacing the jth column of A with b, that is,

Bj =











a11 . . . a1,j−1 b1 a1,j+1 . . . a1n

a21 . . . a2,j−1 b2 a2,j+1 . . . a2n

...
...

...
...

...
an1 . . . an,j−1 bn an,j+1 . . . ann











Expanding det Bj with respect to the jth column we get

xj =
1

detA

n
∑

p=1

(−1)p+jbpm
A
pj , j = 1, 2, . . . , n (4.28)
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That xj ’s given by (4.28) satisfy the system can be verified by substitution and using
the properties of determinants as follow.

n
∑

j=1

aijxj =
1

detA

n
∑

j=1

aij [
n

∑

p=1

(−1)p+jbpm
A
pj ]

=
1

detA

n
∑

p=1

bp [

n
∑

j=1

(−1)p+jaijm
A
pj ]

=
1

detA

n
∑

p=1

δip(detA)bp

= bi , i = 1, 2, . . . , n

where we used the symbol

δip =

{

1, p = i
0, p 6= i

to express the fact that

n
∑

i=1

(−1)p+jaijm
A
pj =

{

detA, p = i
0, p 6= i

Example 4.14

Cramer’s rule applied to a 2 × 2 system
[

a11 a12

a21 a22

][

x1

x2

]

=

[

b1

b2

]

gives

x1 =
1

det A
det

[

b1 a12

b2 a22

]

=
a22b1 − a12b2

a11a22 − a12a21

x2 =
1

det A
det

[

a11 b1

a21 b2

]

=
a11b2 − a21b1

a11a22 − a12a21

or in matrix form
[

x1

x2

]

=
1

detA

[

a22 −a12

−a21 a11

] [

b1

b2

]

Since the unique solution of the system Ax = b is x = A−1b, the matrix on
the right-hand side of the last expression in Example 4.14 must be the inverse of the
coefficient matrix. This example shows that the Cramer’s rule can be used to obtain
a formula for the inverse of a 2× 2 nonsingular matrix in terms of determinants. Let
us generalize this result to higher order matrices.

Let the inverse of an n×n nonsingular matrix A = [ aij ] be expressed in terms of
its columns as

A−1 = [ â1 â2 · · · ân ]
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Since

I = [ e1 e2 · · · en ] = AA−1 = [ Aâ1 Aâ2 · · · Aân ]

each âj is the unique solution of the system Ax = ej . Thus if

âj = col [ â1j , . . . , ânj ]

then by Cramer’s rule we have

âij =
1

detA

n
∑

p=1

(−1)p+iδpjm
A
pi

=
1

detA
(−1)i+jmA

ji , i, j = 1, . . . , n

We thus obtain the formula

A−1 =
1

detA
adj A (4.29)

for the inverse of A, where

adj A = [ (−1)i+jmA
ij ]t

is called the adjugate of A. Note that adj A is the transpose of a matrix consisting
of the cofactors of A.

Example 4.15

The determinant and the minors of the matrix

A =

[

1 2 −1
−1 0 3

1 2 0

]

are found as

det A = det

[

1 2 −1
−1 0 3

0 0 1

]

= det

[

1 2
−1 0

]

= 2

and

m11 = det

[

0 3
2 0

]

= −6 m12 = det

[

−1 3
1 0

]

= −3

m13 = det

[

−1 0
1 2

]

= −2 m21 = det

[

2 −1
2 0

]

= 2

m22 = det

[

1 −1
1 0

]

= 1 m23 = det

[

1 2
1 2

]

= 0

m31 = det

[

2 −1
0 3

]

= 6 m32 = det

[

1 −1
−1 3

]

= 2

m33 = det

[

1 2
−1 0

]

= 2
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Then

A−1 =
1

2

[

−6 3 −2
−2 1 0

6 −2 2

]t

=
1

2

[

−6 −2 6
3 1 −2

−2 0 2

]

In practice, formula (4.29) is seldom used to calculate the inverse of a matrix.
Gaussian Elimination (as in Example 4.7) is preferred for reasons of efficiency and
numerical accuracy.

4.6 Exercises

1. Find bases for the row and the column spaces of the coefficient matrices in Exercise
1.21.

2. Prove that if two m × n matrices R1 and R2 in reduced row echelon form are row
equivalent, then R1 = R2. Explain how this result implies that the reduced row
echelon form of a matrix is unique. Hint: Since rs (R1) = rs (R2), r1 = r2. Also,
column indices of the leading entries of R1 and R2 must be the same.

3. Use MATLAB command rank(A) to find the rank of matrices in Exercise 1.21. Do
the results agree with the results you obtained in Exercise 4.1?

4. A famous example of ill-conditioned matrices are Hilbert matrices.5 A Hilbert matrix
of order n is defined as

Hn = [
1

i + j − 1
]n×n

Thus

H2 =

[

1 1/2
1/2 1/3

]

and H3 =

[

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

]

It is known that Hilbert matrices are nonsingular, that is, r(Hn) = n.

(a) Use MATLAB command rref to find reduced row echelon forms and ranks of
Hn for n = 10, 11, 12, 13.

(b) Use MATLAB command rank to find ranks of Hn for n = 10, 11, 12, 13. Appar-
ently, MATLAB does not use the reduced row echelon form to compute the rank
of a matrix.6

5. Show that an elementary row (column) operation on an m× n matrix A is equivalent
to premultiplying (postmultiplying) A with the corresponding elementary matrix.

6. Show that if E is an elementary matrix which represents an elementary operation
on the rows of a square matrix A, then Et represents the same operation on the
corresponding columns of A.

7. Write down the inverses of the following elementary matrices.

E1 =

[

1 0 3
0 1 0
0 0 1

]

, E2 =

[

1 0 0
0 5 0
0 0 1

]

5An application involving Hilbert matrices is considered in Exercise 7.33.
6We will consider the algorithm used by MATLAB in Chapter 8.
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8. Show that if P is a permutation matrix, then P−1 = P t.

9. (a) Referring to (4.7), show that ÂL = Q1 + XQ2 is a left inverse of A for arbitrary
choice of X.

(b) Express each of the left inverses of A considered in Example 3.37 as above.

10. (a) Referring to (4.9), show that ÂR = P1 +P2Y is a right inverse of A for arbitrary
choice of Y .

(b) Express the right inverse of B considered in Example 3.38 as above.

11. Let A ∈ F
m×n. Show that

(a) ker (A) = {0 } if and only if r(A) = n.

(b) im (A) = F
m×1 if and only if r(A) = m.

12. (a) Find inverses of the following matrices by using Gaussian Elimination.

(b) Use MATLAB command inv to compute the inverses of the same matrices.

A =

[

3 2 −1
1 1 1
2 1 −1

]

, B =







1 + i 2i −1 −2i
1 − 2i −1 − i 1 + i 1
1 − 2i −1 1 + i 1 − i

2i −1 −1 − i 1 + i







13. Write the matrices in Exercise 4.12 as products of elementary matrices.

14. Find the inverses of

C =







1 1 0 0
0 1 0 0
0 1 1 1
1 0 0 1







, D =













1 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 1













n×n

by inspection.

15. Execute the following MATLAB commands and comment on the result.

A=hilb(10); B=inv(A);

C=A*B

16. Use MATLAB command pinv to find a left inverse of the A matrix in Example 4.5 and
a right inverse of the B matrix in Example 4.6. Verify that ÂLA = I and BB̂R = I .

17. Find two different generalized inverses of the matrix

A =

[

1 + i 1 i
1 1 − i i
i −1 1 + i

]

18. (a) Referring to (4.12), show that ÂG = (P1 + P2Y )(Q1 + XQ2) is a generalized
inverse of A for arbitrary choices of X and Y .

(b) Express the generalized inverse computed by MATLAB in Example 4.8 as above.

19. Let

A =

[

A11 O
A21 A22

]

where A11 and A22 are square submatrices.
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(a) Show that A is nonsingular if and only if A11 and A22 are both nonsingular.

(b) Assuming A is nonsingular, find A−1 in terms of A−1

11 , A−1

22 and A21.

20. Let A ∈ F
m×n and B ∈ F

n×m be such that Im + AB is nonsingular.

(a) Show that In + BA is also nonsingular. Hint: If In + BA is singular, then
(In + BA)c = 0 for some c 6= 0. Premultiply both sides with A.

(b) Show that (Im + AB)−1A = A(In + BA)−1.

(c) Verify (b) for

A =

[

1
0
2

]

, B = [−1 1 1]

21. Show that if R = ( r1, . . . , rn ) is an ordered basis for X and r′j are as defined in (4.14),
where P = [ pij ] is nonsingular, then R′ = ( r′1, . . . , r

′

n ) is also a basis for X. Hint:
Show that R′ is linearly independent.

22. (a) Obtain the normal forms of the coefficient matrices in Exercise 1.21.

(b) Verify your results by using the MATLAB commands

R=rref(A); % Reduced row echelon form of A

N=rref(R’)’; % Reduced column echelon form of R

23. Find bases for R
4×1 and R

3×1 with respect to which the matrix A in Example 4.9 has
the representation R, C or N .

24. Let A be an m× n matrix with r(A) = r. Show that it can be expressed as A = BC,
where B is an m × r matrix with full column rank (that is, r(B) = r) and C is an
r × n matrix with full row rank (that is, r(C) = r). Hint: Partition Q−1 and P−1 in
(4.13) suitably.

25. Obtain the LU decompositions of the matrices in Exercises 4.12 and 4.14

(a) without row interchanges

(b) with arbitrary row interchanges.

26. Use MATLAB command lu to find the LU decompositions of the matrices in Exercises
4.12 and 4.14.

27. Obtain an LU decomposition of

A =







2 −1 1 3
−2 1 −1 −1

0 1 1 −2
4 −3 3 8







28. Execute the following MATLAB commands and comment on the result.

A=hilb(5);

[L,U,P]=lu(A);

C=PA-L*U

29. Explain why permuting the rows of A does not cause any difficulty in the use of LU
decomposition in solving linear systems. Hint: (4.19) becomes

LUx = Pb

and accordingly, the first equation in (4.20) has to be slightly modified.
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30. Find determinants of the following matrices.

A =







1 0 2 3
−2 0 −4 −5

2 1 4 0
0 1 3 4







, B =









0 · · · 0 1
0 · · · 1 0
...

...
...

1 · · · 0 0









n×n

31. (a) Use MATLAB command det to find the determinant of the A matrix in Exercise
4.30.

(b) Use MATLAB command rand to generate several random matrices (of various
orders), and compute their determinants using the det command. Observe that
all the matrices you generated randomly are nonsingular.

(c) Generate Hilbert matrices of order n = 2, . . . , 20, using the MATLAB command
hilb, and compute their determinants using the MATLAB command det. Com-
ment on the result.

32. Show that for the block lower triangular matrix A in Exercise 4.19

detA = (detA11)(detA22)

Hint: The result is obvious if A11 is singular. If A11 is nonsingular, let A11 = E1 · · ·Ek,
where Ej ’s are elementary matrices.

33. Let p,q ∈ R
3×1 be fixed linearly independent vectors. Show that the set of all x ∈ R

3×1

for which

det [x p q ] = 0

is a subspace of R
3×1, and find a basis for it.

34. Show that the equation

det

[

1 x y
1 x1 y1

1 x2 y2

]

= 0

describes a straight line through the points (x1, y1) and (x2, y2) in the xy plane.

35. (a) Let a ∈ R
n×1 and q ∈ R be given. Obtain a linear system in x ∈ R

n×1 whose
solutions are exactly the same as the solutions of

det

[

1 aT

x In

]

= q

(b) Find all solutions of the above equation for a = col [ 1, 2, 3 ] and q = 0.

36. Let

V =









1 1 · · · 1
r1 r2 · · · rn

...
...

...
rn−1

1 rn−1

2 · · · rn−1
n









Use induction on n to show that

detV =

n
∏

i=2

i−1
∏

j=1

(ri − rj)

V is called a Vandermonde’s matrix.
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37. Solve the following linear system of equations by using the Cramer’s rule.
[

1 2 3
2 6 6
1 2 1

][

x1

x2

x3

]

=

[

1
0
3

]

38. Use formula (4.29) to calculate inverses of A in Exercise 4.12 and C in Exercise 4.14.
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