
Chapter 7

Normed and Inner Product Spaces

7.1 Normed Vector Spaces

Recall that the length of a vector x = (x1, x2, x3) in R
3 is

‖x ‖ =
√

|x1|2 + |x2|2 + |x3|2

Norm is a generalization of the concept of length to vectors of abstract spaces.

7.1.1 Vector Norms

Let X be a vector space over F, where F is either R or C. A function which associates
with every vector x ∈ X a real value denoted ‖x ‖ is called a norm on X if it satisfies
the following.

N1. ‖x ‖ > 0 for any x 6= 0.

N2. ‖ cx ‖ = | c | ‖x ‖ for all x ∈ X and c ∈ F.

N3. ‖x + y ‖ ≤ ‖x ‖ + ‖y ‖ for all x,y ∈ X.

A vector space with a norm defined on it is called a normed vector space.
Note that property N2 implies that ‖ 0 ‖ = 0. Property N3 is known as the

triangle inequality.
If x is a nonzero vector in X, then 1

‖ x ‖x has unity norm, and is called a unit
vector.

Example 7.1

A simple norm on R
n is

‖x ‖1 = |x1| + · · · + |xn|

which is called the uniform norm. Obviously, it satisfies properties N1 and N2, and
N3 follows from the property of the absolute value that |a + b| ≤ |a| + |b| for a, b ∈ R.

In fact, for any real number p ≥ 1

‖ (x1, . . . , xn) ‖p = (

n
∑

i=1

|xi|p )1/p (7.1)

is a norm on R
n, which reduces to the uniform norm for p = 1. Again, properties N1 and

N2 are satisfied trivially. Proof of the triangle inequality for p > 1 is left to the reader
(see Exercises 7.3 and 7.4).
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244 Normed and Inner Product Spaces

In particular,

‖x ‖2 =
√

|x1|2 + · · · + |xn|2

is a norm, called the Euclidean norm. The Euclidean norm is a straightforward gen-
eralization of length in R

2 or R
3.

Letting p → ∞, we observe that

‖x ‖∞ = max { |x1|, . . . , |xn| }

is also a norm on R
n, called the infinity norm.

As an illustration, if x = (4,−12, 3) then

‖x ‖1 = 4 + 12 + 3 = 19

‖x ‖2 =
√

16 + 144 + 9 = 13

‖x ‖∞ = max {4, 12, 3} = 12

Corresponding norms on C
n, R

n×1 and C
n×1 are defined similarly.

Example 7.2

Recall from Example 3.4 that a real n-tuple (x1, x2, . . . , xn) can be viewed as a function
f : n → R such that

f [k] = xk , k ∈ n (7.2)

Hence for any p ≥ 1

‖ f ‖ = (

n
∑

k=1

|f(k)|p )1/p

defines a norm on the function space F(n,R).
Now consider the function space C0(I,R) of real-valued continuous functions defined

on a closed interval I = [ a, b ]. Replacing the summation in (7.2) with an integral, we
observe that for any p ≥ 1

‖ f ‖p = (

∫ b

a

|f(t)|p dt )1/p (7.3)

is a norm on C0(I,R) (see Exercise 7.5).1 In particular,

‖ f ‖1 =

∫ b

a

|f(t)| dt

‖ f ‖2 = (

∫ b

a

|f(t)|2 dt)1/2

‖ f ‖∞ = max
a≤t≤b

{ |f(t)| }

are norms on C0(I,R), which are also called the uniform, Euclidean and infinity norms,
respectively.

1The reason for restricting our attention to C0(I,R) rather than F(I,R) is to guarantee the
convergence of the integral in (7.3).
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As an illustration, if

f(t) = sin t , −π ≤ t ≤ π

then

‖ f ‖1 =

∫ π

−π

| sin t| dt = 2

∫ π

0

sin t dt = 4

‖ f ‖2 = (

∫ π

−π

sin2 t dt)1/2 = (
1

2

∫ π

−π

(1 − cos 2t) dt )1/2 =
√

π

‖ f ‖∞ = max
−π≤t≤π

{ | sin t| } = 1

Example 7.3

Consider the vector space C0(I,Rn×1), where I = [ a, b ] is a closed interval. Recall from
Example 3.5 that a vector-valued function f ∈ C0(I, Rn×1) can be viewed as a stack of
scalar functions f1, . . . , fn such that f(t) = col [ f1(t), . . . , fn(t) ] for every t ∈ I.

Let

‖ f ‖ = max
t∈I

{
n

∑

i=1

| fi(t) | } (7.4)

Then ‖ · ‖ trivially satisfies properties N1 and N2 of a norm. Since

‖ f + g ‖ = max
t∈I

{
n

∑

i=1

| fi(t) + gi(t) | }

≤ max
t∈I

{
n

∑

i=1

| fi(t) | +
n

∑

i=1

| gi(t) | }

≤ max
t∈I

{
n

∑

i=1

| fi(t) | } + max
t∈I

{
n

∑

i=1

| gi(t) | } = ‖ f ‖ + ‖ g ‖

it also satisfies property N3. Hence it is a norm on C0(I, Rn×1).
The summation in (7.4) is the uniform norm of the vector f(t) ∈ R

n×1. Let us denote
its value by νf (t) to indicate its dependence on f and t:

νf (t) = ‖ f(t) ‖1 for all t ∈ I (7.5)

(7.5) defines a scalar continuous function νf ∈ C0(I, R). The maximum value of νf on I
is its infinity norm. Thus (7.4) can be rewritten as

‖ f ‖ = ‖ νf ‖∞ (7.6)

The norms in (7.5) and (7.6) bear no special significance in defining ‖ f ‖, and they
can be replaced with arbitrary norms. By letting

νf

p(t) = ‖ f(t) ‖p for all t ∈ I (7.7)

and

‖ f ‖p,q = ‖ νf

p ‖q (7.8)

for arbitrary p, q ≥ 1, we can define many different norms on C0(I,Rn×1). For details,

the reader is referred to Exercises 7.7 and 7.8.
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7.1.2 Matrix Norms

Since C
m×n is a vector space, we may attempt to define a norm for matrices. For

example, it is rather easy to show that

‖A ‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2 (7.9)

is a matrix norm, called the Frobenius norm. For m = 1 or n = 1, it reduces to the
Euclidean norm. In fact, Frobenius norm of an m×n matrix A is the Euclidean norm
of an mn× 1 column vector formed by stacking the columns of A. In addition to the
properties of a norm, the Frobenius norm also satisfies the consistency condition

‖AB ‖F ≤ ‖A ‖F ‖B ‖F

which is useful and often desired in matrix operations.
For any p ≥ 1, let

‖A ‖p = max
x 6=0

{
‖Ax ‖p

‖x ‖p
} = max

‖x ‖p=1
{ ‖Ax ‖p } (7.10)

Then we have the following properties of ‖ · ‖p.

a) Since ‖Ax ‖p ≥ 0 and ‖x ‖p > 0 for x 6= 0, ‖A ‖p ≥ 0. If A 6= O, then there
exists x 6= 0n×1 such that Ax 6= 0m×1, so that

0 < ‖Ax ‖p ≤ ‖A ‖p‖x ‖p

that is ‖A ‖p > 0.

b) For any scalar c

‖ cA ‖p = max
‖x ‖p=1

{ | c | ‖Ax ‖p } = | c | max
‖x ‖p=1

{ ‖Ax ‖p } = | c | ‖A ‖p

c) Since ‖ (A + B)x ‖p ≤ ‖Ax ‖p + ‖Bx ‖p, we have

‖A + B ‖p = max
‖ x ‖p=1

{ ‖Ax + Bx ‖p }

≤ max
‖ x ‖p=1

{ ‖Ax ‖p + ‖Bx ‖p }

≤ max
‖ x ‖p=1

{ ‖Ax ‖p } + max
‖ x ‖p=1

{ ‖Bx ‖p }

= ‖A ‖p + ‖B ‖p

Hence ‖ · ‖p is a norm on C
m×n, called the matrix norm subordinate to the

p-vector norm.2

2In this definition, a matrix is interpreted as a mapping between two vector spaces rather than a
vector: For x 6= 0, the ratio ‖Ax ‖p/‖x ‖p is the factor by which the strength ‖x ‖p of the vector x

(as measured by its p-norm) changes while undergoing the transformation represented by the matrix
A. Hence ‖A ‖p represents the maximum possible change in the strength of a vector x when it
is transformed into Ax. This interpretation of the norm of a matrix can be generalized to linear
transformations between arbitrary normed vector spaces (see Exercise 7.13).



7.1 Normed Vector Spaces 247

All matrix p-norms satisfy the consistency condition. This follows from the fact
that

‖ABx ‖p ≤ ‖A ‖p ‖Bx ‖p ≤ ‖A ‖p ‖B ‖p ‖x ‖p

so that

‖AB ‖p = max
x 6=0

{
‖ABx ‖p

‖x ‖p
} ≤ ‖A ‖p ‖B ‖p

It is left to the reader (see Exercise 7.11) to show that the matrix norm subordinate
to the uniform vector norm is the maximum column sum

‖A ‖1 = max
1≤j≤n

{

m
∑

i=1

|aij | } = max
1≤j≤n

{ ‖ aj ‖1 }

where aj denotes the jth column of A, and the matrix norm subordinate to the infinity
vector norm is the maximum row sum

‖A ‖∞ = max
1≤i≤m

{

n
∑

j=1

|aij | } = max
1≤i≤m

{ ‖αi ‖1 }

where αi denotes the ith row of A.3 Note that

‖Ah ‖∞ = ‖A ‖1 , ‖Ah ‖1 = ‖A ‖∞

We shall consider the matrix norm subordinate to the Euclidean vector norm in
Chapter 8.

MATLAB provides a built-in function to compute the uniform, Euclidean, infinity
and Frobenius norms of vectors and matrices. The function norm(X,p) returns the
p-norm of X , where p = 1, 2,∞ for p-norms or ‘fro’ for Frobenius norm.

Example 7.4

Let

A =

[

2 3 5
3 4 1

]

Then

‖A ‖F =
√

4 + 9 + 25 + 9 + 16 + 1 = 8

‖A ‖1 = max { (2 + 3), (3 + 4), (5 + 1) } = 7

‖A ‖∞ = max { (2 + 3 + 5), (3 + 4 + 1) } = 10

3These definitions are valid for m × n matrices with m ≥ 2. For a row matrix α = [ a1, . . . , an ],
the definition would result in inconsistent identities ‖α‖∞ = ‖α‖1 and ‖α‖1 = ‖α‖∞ where ‖ · ‖
denotes the vector norm on the right and the subordinate matrix norm on the left.
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7.2 Inner Product Spaces

Let X be a vector space over F, where F is either R or C. A function which associates
with every pair of vectors x,y ∈ X a complex scalar denoted 〈x |y 〉 is called an
inner product on X if it satisfies the following.

I1. 〈x |x 〉 ≥ 0 for all x ∈ X, and 〈x |x 〉 = 0 if and only if x = 0.

I2. 〈x |y 〉∗ = 〈y |x 〉 for all x,y ∈ X.

I3. 〈x | ay + bz 〉 = a 〈x |y 〉 + b 〈x | z 〉 for all x,y, z ∈ X and a, b ∈ F

A vector space with an inner product defined on it is called an inner product space.
If X is a real vector space, then property I2 reduces to 〈x |y 〉 = 〈y |x 〉.

The following properties of inner product are immediate consequences of the def-
inition.

a) 〈x |0 〉 = 〈0 |x 〉 for all x ∈ X

b) 〈 ax + by | z 〉 = a∗〈x |y 〉 + b∗〈x | z 〉 for all x,y, z ∈ X, and a, b ∈ F

Example 7.5

The standard inner product on C
n×1 is defined as

〈x |y 〉 = x
h
y =

n
∑

i=1

x∗
i yi

Clearly,

〈x |x 〉 =

n
∑

i=1

|xi|2 ≥ 0

and 〈x |x 〉 = 0 if and only if xi = 0 for all i, or equivalently, x = 0. Also

〈x |y 〉∗ = (xh
y)h = y

h
x = 〈y |x 〉

and

〈x | ay + bz 〉 = x
h(ay + bz) = ax

h
y + bx

h
z = a 〈x |y 〉 + b 〈x | z 〉

Similarly, the standard inner product for R
n×1 is

〈x |y 〉 = x
t
y =

n
∑

i=1

xiyi

Another common example is the standard inner product

〈 f | g 〉 =

∫ b

a

f∗(t)g(t)dt (7.11)

defined on C0([ a, b ],C). All three properties of the inner product are immediate conse-

quences of the properties of the definite integral.

The following theorem states an important property of inner product.
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Theorem 7.1 (The Schwarz Inequality) In an inner product space X

| 〈x |y 〉 | ≤
√

〈x |x 〉
√

〈y |y 〉

for all x,y ∈ X, where equality holds if and only if x and y are linearly dependent.

Proof If x and y are linearly independent, then y 6= 0 and x− cy 6= 0 for any c ∈ F. Then

0 < 〈x − cy |x− cy 〉 = 〈x |x 〉 − c 〈x |y 〉 − c∗〈y |x 〉 + |c|2〈y |y 〉

With c = 〈y |x 〉/〈y |y 〉, we get

0 < 〈x |x 〉 − |〈x |y 〉|2
〈y |y 〉

from which the Schwarz inequality follows.

If x and y are linearly dependent, then either y = 0, in which case we have

|〈x |y 〉| = 0 =
√

〈x |x 〉
√

〈y |y 〉

or x = cy for some c ∈ F so that

|〈x |y 〉| = |c| |〈y |y 〉| = |c|
√

〈y |y 〉
√

〈y |y 〉 =
√

〈x |x 〉
√

〈y |y 〉

An important consequence of the Schwarz inequality is that if X is an inner product
space then

‖x ‖ =
√

〈x |x 〉

is a norm on X. Properties N1 and N2 follow immediately from the definition of
inner product, and property N3 follows by taking the square root of both sides of the
inequality

‖x + y ‖2 = 〈x + y |x + y 〉 = 〈x |x 〉 + 〈x |y 〉 + 〈y |x 〉 + 〈y |y 〉

= ‖x ‖2 + 2 Re {〈x |y 〉} + ‖y ‖2

≤ ‖x ‖2 + 2 |〈x |y 〉| + ‖y ‖2

≤ ‖x ‖2 + 2 ‖x ‖ ‖y ‖ + ‖y ‖2

= ( ‖x ‖ + ‖y ‖ )2

Example 7.6

The norm defined by the standard inner product in R
n×1 or C

n×1 is the Euclidean norm

‖x ‖2 =
√

xhx =
√

|x1|2 + · · · + |xn|2

Similarly, the standard inner product in C0([ a, b ], C) defines the Euclidean norm

‖ f ‖2 = (

∫ b

a

| f(t) |2 dt )1/2
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Example 7.7

Let for A,B ∈ C
m×n

〈A |B 〉 = tr (AhB) =

m
∑

i=1

n
∑

j=1

a∗
ijbij

Then

〈A |A 〉 =

m
∑

i=1

n
∑

j=1

a∗
ijaij =

m
∑

i=1

n
∑

j=1

| aij |2 ≥ 0

and 〈A |A 〉 = 0 if and only if A = O. Thus property I1 of inner product is satisfied.
Properties I2 and I3 are obvious from the definition. Hence 〈A |B 〉 = tr (AhB) is an
inner product on C

m×n.
The norm

‖A ‖ =
√

tr (AhA) = (

m
∑

i=1

n
∑

j=1

| aij |2 )1/2

defined by this inner product is nothing but the Frobenius norm defined previously.

7.3 Orthogonality

Let X be an inner product space. Two vectors x,y ∈ X are said to be orthogonal,
denoted x⊥y, if 〈x |y 〉 = 0. A vector x is said to be orthogonal to a set of vectors
R, denoted x⊥R, if it is orthogonal to every r ∈ R. Two sets R and S are said
to be orthogonal, denoted R⊥S, if r⊥ s for all r ∈ R and s ∈ S. A finite set
R = { r1, · · · , rk } is said to be orthogonal if ri 6= 0 for all i and ri ⊥ rj for all i 6= j.
If, in addition, ‖ ri ‖ = 〈 ri | ri 〉

1/2 = 1 for all i, then R is said to be an orthonormal
set.

We have the following properties concerning orthogonality.

a) 0 is orthogonal to every vector in X, and it is the only vector that is orthogonal
to every vector in X.

b) If x⊥y then ‖x + y ‖2 = ‖x ‖2 + ‖y ‖2.

c) If x⊥R then x⊥ span (R).

That 0 is orthogonal to every vector in X is obvious. If x is a vector that is
orthogonal to every vector in X, then ‖x ‖2 = 〈x |x 〉 = 0, and therefore, x = 0. This
proves (a). If x⊥y, then

‖x + y ‖2 = 〈x + y |x + y 〉

= 〈x |x 〉 + 〈x |y 〉 + 〈y |x 〉 + 〈y |y 〉

= 〈x |x 〉 + 〈y |y 〉 = ‖x ‖2 + ‖y ‖2

proving (b). Note that property (b) is a generalization of the Pythagorean theorem.
Finally, if x⊥R and y = c1r1 + · · · + ckrk for some r1, . . . , rk ∈ R, then

〈x |y 〉 = c1 〈x | r1 〉 + · · · + ck 〈x | rk 〉 = 0

as x⊥ ri for all i, and therefore, x⊥y.
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Example 7.8

In R
3×1 the vector r3 = col [ 1, 1, 1 ] is orthogonal to each of the vectors

r1 = col [ 1,−1, 0 ] and r2 = col [ 0,−1, 1 ]

with respect to the standard inner product, as rt
3r1 = rt

3r2 = 0. Therefore, r3 ⊥ span (r1, r2).
Indeed, for any

x = c1r1 + c2r2 =

[

c1

−c1 − c2

c2

]

rt
3x = 0.

Clearly, orthogonality of two vectors depends on the particular inner product
chosen (see Exercise 7.17). In the rest of this chapter we shall use the standard inner
product for C

n×1 (Rn×1) or C0([ a, b ],C), and unless we indicate otherwise, we shall
use the notation ‖ · ‖ to denote the Euclidean norm defined by the standard inner
product.

Let R = ( r1, · · · , rk ) be a finite ordered set. The matrix G = [ 〈 ri | rj 〉 ]k×k is
called the Gram matrix of the vectors r1, · · · , rk. We claim that

d) R is linearly independent if and only if G is nonsingular

e) if R is orthogonal then R is linearly independent.

If R is linearly dependent then there exists scalars ci, not all zero, such that

k
∑

j=1

cjrj = 0

Taking inner product of both sides with ri, we obtain

k
∑

j=1

〈 ri | rj 〉cj = 0 , i = 1, . . . , k

or equivalently, Gc = 0, where c = col [ c1, . . . , ck ] 6= 0. This implies that G is
singular. Conversely, if G is singular then Gc = 0 for some c 6= 0. Then

0 = chGc =

k
∑

i=1

k
∑

j=1

c∗i 〈 ri | rj 〉cj = 〈

k
∑

i=1

ciri |

k
∑

j=1

cjrj 〉 = ‖

k
∑

i=1

ciri ‖
2

and therefore

k
∑

i=1

ciri = 0

implying that R is linearly dependent. This proves (d). (e) follows from (d) on noting
that if R is orthogonal then G = diag [ ‖ r1 ‖

2, . . . , ‖ rk ‖
2 ].

Let dim (X) = n and let R be an orthogonal (orthonormal) set containing n
vectors. Then since R is linearly independent, by Corollary 3.1 it is a basis for X,
called an orthogonal (orthonormal) basis.
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Example 7.9

Let r1, . . . , rk ∈ C
n×1 be arranged as the column of an n × k matrix:

R = [ r1 · · · rk ]

Since 〈 ri | rj 〉 = rh
i rj it follows that the Gram matrix is

G = RhR

Consider the vectors in Example 7.8. Constructing

R =

[

1 0 1
−1 −1 1

0 1 1

]

, G = RtR =

[

2 1 0
1 2 0
0 0 3

]

we observe that G is nonsingular. Hence, ( r1, r2, r3 ) is linearly independent, and there-

fore, is a basis for R
3×1.

7.4 The Projection Theorem

Let X be an inner product space with dim (X) = n and let U ⊂ X be a subspace
with dim (U) = k. The set

U⊥ = {x |x⊥U }

is called the orthogonal complement of U.
Let R = ( r1, . . . , rk ) be an ordered basis for U. If x⊥U then obviously x⊥ ri

for all i. Conversely, if x⊥ ri for all i, then x⊥ span (R) = U. Thus U⊥ can also be
characterized as

U⊥ = {x |x⊥ ri , i = 1, . . . , k }

Using this characterization, it can be shown that U⊥ is also a subspace of X (see
Exercise 7.19).

If x ∈ U ∩ U⊥ then x⊥x, and therefore, x = 0. This shows that U and U⊥ are
linearly independent.

Let x be an arbitrary vector in X, and consider the k×k linear system of equation






〈 r1 | r1 〉 · · · 〈 r1 | rk 〉
...

...
〈 rk | r1 〉 · · · 〈 rk | rk 〉













c1

...
ck






=







〈 r1 |x 〉
...

〈 rk |x 〉






(7.12)

Since the coefficient matrix is the Gram matrix of r1, . . . , rk, it is nonsingular and
hence (7.12) has a unique solution c = α = col [ α1, . . . , αk ]. Let

xu =

k
∑

j=1

αjrj , xv = x − xu

Then xu ∈ U, and since

〈 ri |xv 〉 = 〈 ri |x 〉 − 〈 ri |xu 〉 = 〈 ri |x 〉 −
k

∑

j=1

αj〈 ri | rj 〉 = 0 , i = 1, . . . , k

xv ∈ U⊥. This shows that U + U⊥ = X. Together with linear independence of U
and U⊥ proved earlier, we reach the following theorem.
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Theorem 7.2 (The Projection Theorem) X = U ⊕ U⊥.

The unique vector xu is called the orthogonal projection of x on U. Note that
xv is the orthogonal projection of x on U⊥.

As a consequence of the projection theorem we have the following result.

Corollary 7.2.1 Let xu be the orthogonal projection of x on U, and let xv = x−xu.

Then

min
u∈U

{ ‖x− u ‖ } = ‖xv ‖

and the minimum is achieved at u = xu.

Proof Writing x− u = xu − u + xv and noting that xu − u⊥xv, we have

‖x− u ‖2 = ‖xu − u ‖2 + ‖xv ‖2

from which the result follows.

An illustration of the projection theorem and its corollary is given in Figure 7.1
for X = R

2×1.
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xu
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x

U

U⊥

xv

‖x− u ‖

Figure 7.1: Illustration of the projection theorem

Equations (7.12) provide a computational procedure for determining xu. In par-
ticular, if R is an orthogonal basis for U then the solution of (7.12) is obtained as
cj = αj = 〈 rj |x 〉/〈 rj | rj 〉 and we have

xu =

k
∑

j=1

〈 rj |x 〉

〈 rj | rj 〉
rj

If R is orthonormal then this expression further reduces to

xu =
k

∑

j=1

〈 rj |x 〉 rj (7.13)

We can derive a compact formula for computating orthogonal projections in n-
spaces. Let X = C

n×1 and

U = span (r1, r2, . . . , rk) = im ( [ r1 r2 · · · rk ] ) = im (R)
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where r1, . . . , rk form a basis for U. For a given vector x let

xu = c1r1 + · · · + ckrk = Rc , c = col [ c1, . . . , ck ]

Since the Gram matrix of r1, r2, . . . , rk is G = RhR, (7.12) becomes

RhRc = Rhx

from which we obtain

c = (RhR)−1Rhx and xu = R(RhR)−1Rhx

Example 7.10

In R
3×1 the orthogonal projection of x = col [ x1, x2, x3 ]

a) on E1 = span (e1) is x1 = x1e1 = col [ x1, 0, 0 ]

b) on E2 = span (e2) is x2 = x2e2 = col [ 0, x2, 0 ]

c) on E12 = span (e1, e2) is x12 = x1e1 + x2e2 = col [ x1, x2, 0 ]

The reader can interpret x1, x2 and x12 as the components of the vector x on the x1

axis, on the x2 axis, and on the x1x2 plane, respectively.
Now let u = col [ 1, 1, 1 ] and U = span (u). Then the orthogonal projection of x on

U is

xu = u(ut
u)−1

u
t
x =

utx

utu
u =

x1 + x2 + x3

3

[

1
1
1

]

The reader can easily verify that xu ⊥x− xu.

Orthogonal projections are not restricted to finite dimensional vector spaces as we
illustrate by the following example.

* Example 7.11

In C0([ 0, 1 ], R), let

f1(t) = 1 , f2(t) = 2
√

3(t − 1/2)

Since

〈 f1 | f1 〉 =

∫ 1

0

dt = 1 , 〈 f2 | f2 〉 =

∫ 1

0

12(t − 1/2)2 dt = 1

and

〈 f1 | f2 〉 = 〈 f2 | f1 〉 =

∫ 1

0

2
√

3(t − 1/2) dt = 0

(f1, f2) is an orthonormal set.
Let U = span ( f1, f2 ) and f(t) = t2. The orthogonal projection of f on U is

fu = α1f1 + α2f2, where

α1 = 〈 f1 | f 〉 =

∫ 1

0

t2 dt =
1

3
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and

α2 = 〈 f2 | f 〉 =

∫ 1

0

2
√

3(t − 1/2)t2 dt =
1

2
√

3

Thus

fu(t) = (1/3) + (t − 1/2) = t − 1/6

Referring to Figure 7.1, we observe that the angle between the straight lines that
contain the vectors x and u is given by

θ(x,u) = cos−1 ‖xu ‖

‖x ‖
= cos−1 |〈u |x 〉|

‖x ‖ ‖u ‖
, 0 ≤ θ ≤ π/2

where the second equality follows from

‖xu ‖ = ‖
〈u |x 〉

〈u |u 〉
‖ =

|〈u |x 〉|

‖u ‖2
‖u ‖

Note that since ‖xu ‖ ≤ ‖x ‖, θ(x,u) is well-defined. This definition of angle between
two vectors in the plane can readily be generalized to vectors of any inner product
space. It can be used as a measure of alignment, and therefore, linear independence of
two vectors: The larger the angle between two vectors the more linearly independent
they are. Thus orthogonal vectors are maximally linearly independent. This explains
why the vectors u1 = (2.0, 1.0) and u2 = (1.0, 2.0) in Example 3.20 can be considered
to be more linearly independent than the vectors v1 = (1.1, 1.0) and v2 = (1.0, 1.1)
of the same example: Comparing the angles between vectors of each pair, we see that

θ(u1,u2) = cos−1 4.0

5.0
= 0.6435 (≈ 36.9◦)

whereas

θ(v1,v2) = cos−1 2.20

2.21
= 0.0952 (≈ 5.5◦)

7.4.1 The Gram-Schmidt Orthogonalization Process

Let Rm = ( r1, r2, . . . , rm ) be an ordered linearly independent set in an inner product
space X. Define vectors u1,u2, . . . ,um successively as

u1 = r1

ui = ri −

i−1
∑

j=1

〈 ri |uj 〉

〈uj |uj 〉
uj , i = 2, . . . , m (7.14)

We claim that

a) ui 6= 0, i = 1, . . . , m, so that the process continues to the end without encoun-
tering a problem of division by zero

b) the set Um = (u1,u2, . . . ,um ) is orthogonal

c) span (Um) = span (Rm)
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We prove the claims by induction on m. Since u1 = r1 6= 0, they are obviously
true for m = 1. Suppose they are true for m = k, and consider the case m = k + 1.
Since

vk+1 =
k

∑

j=1

〈 rk+1 |uj 〉

〈uj |uj 〉
uj

is the orthogonal projection of rk+1 on span (Uk) = span (Rk) we have

uk+1 = rk+1 − vk+1 6= 0

for otherwise, rk+1 = vk+1 ∈ span (Rk) contradicting linear independence of Rk+1.
Also, since uk+1 ⊥Uk and Uk is orthogonal by induction hypothesis, Uk+1 is also
orthogonal. Finally,

span (Uk+1) = span (Uk) ⊕ span (uk+1)

= span (Rk) ⊕ span (uk+1)

= span (Rk) ⊕ span (rk+1) = span (Rk+1)

The process described above, which generates an orthogonal set from a linearly
independent set, is known as the Gram-Schmidt orthogonalization process
(GSOP).

The GSOP can also be used to check if a given set is linearly independent: Suppose
that the subset Rk is linearly independent, but Rk+1 is not for some k ≤ m. Then,
since rk+1 ∈ span (Rk) = span (Uk), the process gives uk+1 = 0 at the (k +1)st step.
Conversely, if the process continues up to the kth step, and gives uk+1 = 0, then we
conclude that Rk is linearly independent, but Rk+1 is not.

Example 7.12

Let us complete {r} to an orthogonal basis for R
3×1, where r = col [ 1, 1, 0 ].

Referring to Corollary 3.2, all we have to do is to apply the GSOP to the set
(r, e1, e2, e3) and obtain an orthogonal set while eliminating the vectors that are lin-
early dependent on the previous ones. The process continues as follows.

u1 = r =

[

1
1
0

]

u2 = e1 −
et
1u1

ut
1u1

u1 =

[

1
0
0

]

− 1

2

[

1
1
0

]

=

[

1/2
−1/2

0

]

u3 = e2 − et
2u1

ut
1u1

u1 − et
2u2

ut
2u2

u2

=

[

0
1
0

]

− 1

2

[

1
1
0

]

− −1/2

1/2

[

1/2
−1/2

0

]

=

[

0
0
0

]

Since u3 = 0, we conclude that e2 is linearly dependent on u1 and u2 (equivalently, on r

and e1), discard e2, and continue with e3. Observing that e3 ⊥{u1,u2}, we immediately
take

u3 = e3 =

[

0
0
1

]
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7.4.2 The Least-Squares Problem

Let A ∈ F
m×n and y ∈ F

n×1. Recall from Section 3.5 that if y /∈ im (A) then the
linear equation

Ax = y

has no solution. In such a case, we might be interested in finding an approximate
solution x = φ such that Aφ is as close to y as possible with respect to a suitable
measure. If we use the Euclidean norm on F

m×1 as a measure of closeness, the problem
can be formulated as

min
x∈F

n×1
{ ‖y − Ax ‖ } (7.15)

Since

{Ax |x ∈ F
n×1 } = im (A)

problem (7.15) is a matter of finding the orthogonal projection of y on im (A). Let
yA be the orthogonal projection of y on im (A). Then

min
x∈F

n×1
{ ‖y − Ax ‖ } = ‖y − yA ‖

and the minimum is achieved at a solution x = φLS of the consistent equation

Ax = yA (7.16)

Such a solution is called a least-squares solution of the equation Ax = y, for the
reason that it minimizes the sum of the squares of the differences between the elements
of y and those of Ax.

Let r(A) = r and let the columns of R = [ r1 · · · rr ] be a basis for im (A). Then
the orthogonal projection of y on im (A) is

yA = Rα = R(RhR)−1Rhy

Once yA is found, a least-squares solution can be obtained by solving (7.16).

In the special case when r(A) = n, we can choose R = A. Then

yA = A(AhA)−1Ahy

and (7.16) becomes

Ax = A(AhA)−1Ahy

Clearly, the formula

x = φLS = (AhA)−1Ahy (7.17)

gives a least-squares solution.
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Example 7.13

A constant quantity x is measured three times, and the values x1 = 14.6, x2 = 15.6, x3 =
14.8 are obtained. What is the best estimate of x based on the measurements? In what
sense?

The problem can be formulated as a linear equation as
[

1
1
1

]

x =

[

14.6
15.6
14.8

]

which is obviously inconsistent. A least-squares solution can be obtained from (7.17) as

x = φLS =
1

3
[ 1 1 1 ]

[

14.6
15.6
14.8

]

=
14.6 + 15.6 + 14.8

3
= 15.0

Observe that the least-squares solution x = 15.0 is simply the average of x1, x2

and x3. It is the best estimate in Euclidean norm in the sense that it minimizes the
sum-square error

e2 = (x − 14.6)2 + (x − 15.6)2 + (x − 14.8)2

If the error were measured with infinity norm, then we would try to minimize the
absolute error

e = max{ |x − x1|, |x − x2|, |x − x3| }

In this case the best estimate would be x = 15.1.

* Example 7.14

An operation analyst conducts a study to analyze the relationship between production
volume and manufacturing expenses in the auto tyre industry. He assumes a linear
relation

y = ax + b

between the number of tyres produced per day (x) and the daily manufacturing cost (y),
and collects data (xi, yi) from N companies. His problem is to compute a and b such
that the assumed model fits best the collected data.

Clearly, he is faced with a least-squares problem involving the linear system








x1 1
x2 1
...

...
xN 1









[

a

b

]

=









y1

y2

...
yN









the solution of which is given by (7.17). Straightforward computations yield
[

a

b

]

=
1

N
∑

x2
i − (

∑

xi)
2

[

N
∑

xiyi − (
∑

xi)(
∑

yi)

(
∑

yi)(
∑

x2
i ) − (

∑

xi)(
∑

xiyi)

]

Letting

µx =
1

N

∑

xi , σ2
x =

1

N

∑

(xi − µx)2

µy =
1

N

∑

yi , σxy =
1

N

∑

(xi − µx)(yi − µy)
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the least-squares solution above can be manipulated into

a =
σxy

σ2
x

, b = µy − aµx

As a numerical example, suppose that the operation analyst collects the following
data from N = 10 selected firms, where y is in thousands of dollars:

x : 600 700 825 925 1050 1125 1200 1275 1400 1500
y : 14.8 15.8 16.9 18.0 19.5 19.9 22.4 25.0 26.3 28.7

The solution of the least-squares problem yields a linear model

y = 0.01392 x + 5.975

the graph of which is shown in Figure 7.2 together with the data points. The parameters
a and b of the linear model are chosen so as to minimize the total sum-square-error

e2 =

N
∑

i=1

d2
i =

N
∑

i=1

(axi + b − yi)
2 = ‖Ax− y ‖2

Based on this model, the analyst expects the total cost of a firm that produces x = 1000
tyres to be

y = (0.01392)(1000) + 5.975 = 19.895

thousand dollars.

600 800 1000 1200 1400 1600
12

14

16

18

20

22

24

26

28

30

(x
i
,y

i
) 

y = ax+b

d
i
 

Figure 7.2: Data points and the least-squares linear model

7.4.3 Fourier Series

Let X be an n-dimensional inner product space, let (u1,u2, . . . ,un) be an orthonormal
basis for X, and let the subspaces V1,V2, . . . ,Vn be defined as

V1 = span (u1)

V2 = span (u1,u2)

...

Vn = span (u1,u2, . . . ,un)
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Consider an arbitrary vector x ∈ X. The orthogonal projections of x on V1,V2, . . . ,Vn

are computed as

x1 = c1u1

x2 = c1u1 + c2u2

... (7.18)

xn = c1u1 + c2u2 + · · · + cnun

where

cp = 〈up |x 〉 , p = 1, 2, . . . , n

Note that each cpup is the orthogonal projection of x on the one dimensional subspace
Up = span (up). To construct the orthogonal projection on V2 = U1⊕U2, we simply
add the orthogonal projections on U1 and U2; to construct the orthogonal projection
on V3 = U1 ⊕ U2 ⊕ U3, we add the orthogonal projections on U1, U2 and U3; and
so on. This is a consequence of (u1,u2, . . . ,un) being orthogonal. Otherwise, the
orthogonal projection on U1 ⊕U2 would be different from the sum of the orthogonal
projections on the individual subspaces (see Exercise 7.34).

From the discussion in the previous section we know that each xq is the best
approximation to x in terms of the vectors of Vq, q = 1, 2, . . . , n. Since

V1 ⊂ V2 ⊂ · · · ⊂ Vn

x2 is a better approximation to x than x1 is, x3 is better than x2 is, and so on. That
is,

‖x− x1 ‖ ≥ ‖x− x2 ‖ ≥ · · · ≥ ‖x− xn ‖

In fact, since Vn = X, we have xn = x so that ‖x − xn ‖ = 0. The situation,
which is illustrated in Figure 7.3 for X = R

3, is easy to understand when X is finite
dimensional. The infinite dimensional case is more interesting.

x
1
 

x
2
 

x
3
= x

x 

y

z

Figure 7.3: Orthogonal projections of a vector
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Suppose dim (X) = ∞, and suppose (u1,u2, . . . ,un, . . .) is an infinite sequence of
orthonormal vectors in X.4 For an arbitrary x ∈ X, let us define the subspaces Vq

and the vectors xq as in (7.18) and (7.18) with the index q running not just up to
n but up to infinity. Then again each xq is the orthogonal projection of x on the
q-dimendional subspace Vq, and hence it is the best approximation to x in terms of
the vectors in Vq. That is,

min
u∈Vq

‖x− u ‖ = ‖x− xq ‖ , q = 1, 2, . . .

Since Vq ⊂ Vq+1, we also have

‖x− xq+1 ‖ = min
u∈Vq+1

‖x− u ‖ ≤ min
u∈Vq

‖x− u ‖ = ‖x− xq ‖

that is,

‖x− x1 ‖ ≥ ‖x− x2 ‖ ≥ · · · ≥ ‖x− xq ‖ ≥ · · ·

The interesting point is that although xq approximate x better and better as q in-
creases, without further information about the set (u1,u2, . . . ,un, . . .), we cannot say
that

lim
q → ∞

‖x − xq ‖ = 0 (7.19)

However, if (7.19) is true, we formally write

x =

∞
∑

p=1

cpup (7.20)

The expression on the right-hand-side of (7.20) is known as the Fourier series of x
in terms of (u1,u2, . . . ,un, . . .).

Example 7.15

Refer to Example 3.25. Let X = F(DN , C), and define

〈 f | g 〉 =
1

N

N−1
∑

k=0

f∗[k]g[k]

which is the standard inner product on C
N×1 scaled by 1/N . (Recall that F(DN , C) is

essentially the same as C
N×1.)

Consider the set of functions φp, p = 0, . . . , N −1 defined in Example 3.25. Using the
hint in Exercise 3.20, it can easily be shown that ( φp ) is an orthonormal set in F(DN , C).
Then for a given f ∈ F(DN , C), (7.20) reduces to the (discrete) Fourier series in (3.7),
where

cp = 〈φp | f 〉 =
1

N

N−1
∑

k=0

φ∗
p[k]f [k]

and each cpφp term is the orthogonal projection of f on span (φp).

4Here we assume that such an infinite orthonormal set exists. Although with our present knowl-
edge we cannot guarantee the existence of such a set, we may try to construct one.
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Example 7.16

Let X be the vector space of piece-wise continuous complex-valued functions defined on
a real interval ( 0, T ). Let us define an inner product on X as

〈 f | g 〉 =
1

T

∫ T

0

f∗(t)g(t)dt (7.21)

which is the familiar standard inner product scaled with 1/T . Consider the following set
of functions:

φk(t) = e
ik

2π

T
t
, k = . . . ,−1, 0, 1, . . .

It is left to the reader to prove that (φk) is an orthonormal set with respect to the inner
product in (7.21). Hence the Fourier coefficients of a given function f are computed as

αk = 〈φk | f 〉 =
1

T

∫ T

0

f(t)e
−ik

2π

T
t
dt

As a specific example consider the piece-wise continuous function

f(t) =

{

1, 0 < t < 0.5
0, 0.5 < t < 1

defined on the interval (0, 1). Then its Fourier coefficients are computed as

αk =

∫ 0.5

0

e−i2kπt dt =











1
2 , k = 0

1
kπi

, k odd

0, k 6= 0, k even

Hence the orthogonal projection of f on the subspace

Uq = span ( φ−q, . . . , φ−1, φ0, φ1, . . . , φq )

is given as

fq(t) =
1

2
+

q
∑

k=1

k odd

(
1

kπi
ei2kπt − 1

kπi
e−i2kπt) =

1

2
+

q
∑

k=1

k odd

2

kπ
sin 2kπt

Plots of f and fq for q = 0, 1, 3, 9 are shown in Figure 7.4.

7.5 Exercises

1. (a) Find the uniform, Euclidean and infinity norms of the following vectors.

x =

[

2
−3

5

]

, y =

[

1 + i
−3i

2

]

(b) Repeat part (a) by using MATLAB command norm.

2. In R
2 plot the locus of points x for which ‖x ‖p = 1 for p = 1, 2,∞.
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Figure 7.4: Fourier approximations of a function

3. Let p > 1 be a real number and q > 1 be such that p−1 + q−1 = 1.

(a) Show that

u1/pv1/q ≤ u/p + v/q for all u ≥ 0 , v ≥ 0

Hint: First show that

(1 + x)p ≥ 1 + px for all x ≥ −1 , p > 1

and let 1 + x = (u/v)1/p.

(b) Prove Hölder’s inequality

n
∑

i=1

|xiyi| ≤ (

n
∑

i=1

|xi|p )1/p (

n
∑

i=1

|yi|q )1/q

for x = col [ x1, . . . , xn ] and y = col [ y1, . . . , yn ] ∈ C
n×1. Hint: Apply the

inequality in (a) to

u = ui =
|xi|p

n
∑

i=1

|xi|p
, v = vi =

|yi|q
n

∑

i=1

|yi|q

and then take summation on i.

4. Prove Minkowski’s inequality

(

n
∑

i=1

|xi + yi|p )1/p ≤ (

n
∑

i=1

|xi|p )1/p + (

n
∑

i=1

|yi|p )1/p

Hint: Take summation of both sides of the inequalities

|xi + yi|p ≤ |xi| |xi + yi|p−1 + |yi| |xi + yi|p−1 , i = 1, . . . , n

and use Hölder’s inequality and the identity q(p − 1) = p.

5. Show that

‖ f ‖p = (

∫ b

a

|f(t)|p dt )1/p
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is a norm on C0([a, b],R). Hint: Derive integral counterparts of Hölder’s and Minkowski’s
inequalities.

6. Find the uniform, Euclidean and infinity norms of the following functions.

(a) f(t) = t − 1 , 0 ≤ t ≤ 2

(b) g(t) = eiωt , −π/ω ≤ t ≤ π/ω

(c) h(t) = 1/t , 1 ≤ t ≤ T , T → ∞

7. Refer to Example 7.3. Since the components of any f ∈ C0(I,Rn×1) are continuous,
the function νf

p defined in (7.7) is a continuous function for any p ≥ 1. Hence, ‖ f ‖p,q

in (7.8) is a well-defined quantity for any q ≥ 1. Now, f 6= 0 implies νf

p 6= 0, which in
turn implies ‖ f ‖p,q > 0. Also, for any c ∈ R,

νcf
p (t) = ‖ (cf)(t) ‖p = ‖ cf(t) ‖p = | c | ‖ f(t) ‖p = | c | νf

p(t) for all t ∈ I

so that

‖ cf ‖p,q = ‖ νcf
p ‖q = ‖ | c | νf

p ‖q = | c | ‖ νf

p ‖q = | c | ‖ f ‖p,q

Thus ‖ f ‖p,q satisfies the first two properties of a norm. Show that it also satisfies the
triangle inequality, so that it is a norm on C0(I,Rn×1).

8. Refer to Example 7.3.

(a) Let f(t) = col [ 1, t ] , 0 ≤ t ≤ 1. Find ‖ f ‖1,2 and ‖ f ‖2,∞

(b) Let h(t) = col [ t, t − 1 ] , 0 ≤ t ≤ 1. Find ‖h ‖1,∞ and ‖h ‖∞,1

9. Two norms ‖ · ‖ and ‖ · ‖′ on X are said to be equivalent if there exist 0 < c1 ≤ c2

such that

c1 ‖x ‖ ≤ ‖x ‖′ ≤ c2 ‖x ‖ for all x ∈ X

in which case

1

c2
‖x ‖′ ≤ ‖x ‖ ≤ 1

c1
‖x ‖′ for all x ∈ X

(a) Show that all p-norms on C
n×1 (including p = ∞) are equivalent. Hint: First

show that all p-norms are equivalent to the ∞-norm.

(b) Does a corresponding result hold for the p-norms on C0([ 0, 1 ],R)? Hint: Suppose
that there exist 0 < c1 ≤ c2 such that

c1 ‖ f ‖1 ≤ ‖ f ‖∞ ≤ c2 ‖ f ‖1 for all f ∈ C0([ 0, 1 ],R)

Let

f(t) =

{

1 − nt, 0 ≤ t ≤ 1/n

0, 1/n ≤ t ≤ 1

and show that the second equality is violated for sufficiently large n.

10. Show that the following are norms on F
m×n.

(a) ‖A ‖ =

m
∑

i=1

n
∑

j=1

|aij |

(b) ‖A ‖ = max
i,j

{ |aij | }
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11. (a) Show that the matrix norm subordinate to the uniform vector norm is

‖A ‖1 = max
1≤j≤n

{
m

∑

i=1

|aij | } = max
1≤j≤n

{ ‖aj ‖1 }

where aj denotes the jth column of A Hint: Suppose that the maximum of the
right-hand side is achieved for j = q. Show that for arbitrary x = col [ x1, . . . , xn ]

‖Ax ‖1 ≤ (|x1| + · · · + |xn|) · ‖aq ‖1 = ‖ aq ‖1‖x ‖1

with equality holding for x = eq.

(b) Show that the matrix norm subordinate to the infinity vector norm is

‖A ‖∞ = max
1≤i≤m

{
n

∑

j=1

|aij | } = max
1≤i≤m

{ ‖αi ‖1 }

where αi denotes the ith row of A. Hint: Suppose that the maximum of the
right-hand side is achieved for i = p. Show that for arbitrary x = col [ x1, . . . , xn ]

‖Ax ‖∞ ≤ max
i

{
n

∑

j=1

|aij |} · max
j

{|xj |} = ‖αp ‖1‖x ‖∞

with equality holding for

x = col [ sign(ap1), . . . , sign(apn) ]

12. (a) Find the uniform and infinity norms of the following matrices.

(b) Use MATLAB command norm to verify your results.

A =

[ −1 1
0 3
2 −1

]

, B = At

13. Let A : R
2×2 → R

2×2 be defined as A(X) = Xt. Clearly, A is a linear transformation.
Find

‖A‖1 = max
X 6=O

‖Xt ‖1

‖X ‖1

14. Let X be a normed vector space with a norm ‖ · ‖. An infinite sequence of vectors
(xn ) is said to converge (in the norm ‖ · ‖) to a limit vector x, denoted as

lim
n → ∞

xn = x

if the sequence of real numbers ( ‖xn − x ‖ ) converges to 0. Equivalently, (xn )
converges to x if for any ε > 0 there exists an integer N > 0 such that

‖xn − x ‖ < ε for all n ≥ N

Check if the sequence (xn ), where

xn =

[

1 − 1
(−2)n

1
3n

]

converges in R
2×1, and find its limit if it does. Does your answer depend on the

particular norm you choose for R
2×1?
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15. A sequence (xn) in a normed vector space X is called a Cauchy sequence if

lim
m,n → ∞

‖xn − xm ‖ = 0

Show that every convergent sequence in X is a Cauchy sequence.

16. (a) Find all orthogonal pairs of the following vectors in R
3×1 w.r.t. the standard

inner product:

x1 =

[

1
−1

0

]

, x2 =

[

1
1

−1

]

, x3 =

[

1
1
2

]

, x4 =

[

0
1
1

]

(b) Repeat (a) for the following vectors in C
3×1:

z1 =

[

1
i

1 + i

]

, z2 =

[

3i
1

1 − i

]

, z3 =

[

0
1 + i
−1

]

, z4 =

[ −1
−i

1 + i

]

(c) Repeat (a) for the following vectors in F([ 0, 1 ],R):

f1 = 1 , f2(t) = t + 1 , f3(t) = 2t − 1 , f4(t) = 6t2 − 6t + 1

17. For x,y ∈ R
2×1 let

〈x |y 〉Q = x1y1 + x1y2 + x2y1 + 2x2y2 = x
tQy

where

Q =

[

1 1
1 2

]

(a) Show that 〈 · | · 〉Q is an inner product. Hint:

〈x |x 〉Q = (x1 + x2)
2 + x2

2

(b) Are e1 and e2 orthogonal with respect to this inner product? Find a vector that
is orthogonal to e1 and a vector orthogonal to e2.

(c) The norm defined by this inner product is

‖x ‖Q =
√

xtQy =
√

(x1 + x2)2 + x2
2

Compute ‖ e1 ‖Q and ‖ e2 ‖Q.

18. Show that Schwarz inequality for R
n×1 and F(I, R) is a special case of Hölder’s in-

equality.

19. Let U be a subset of an inner product space X. Prove that U⊥ is a subspace of X.
Hint: Show that U⊥ is closed under vector addition and scalar multiplication.

20. In R
3×1, let

U = span (

[

1
1
1

]

)

Find bases for U⊥ and (U⊥ )⊥ .

21. In C0([−T, T ],R), let

U = { f | f(−t) = f(t) }
Characterize the orthogonal complement of U with respect to the inner product in
(7.11).
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22. Apply GSOP to

u1 = col [ 1, 1, 0 ] , u2 = col [ 0, 2, 1 ] , u3 = col [ 4, 0, 1 ]

to generate an orthogonal basis for R
3×1.

23. The MATLAB command orth(A) finds an orthonormal basis for im (A). Thus if

A = [ a1 · · · an ] and B = orth(A) = [b1 · · · bq ]

then (b1, . . . ,bq ) is an orthonormal set generated by (a1, . . . ,an ).

(a) Use orth to generate an orthogonal basis for R
3×1 from the vectors in Exercise

7.22.

(b) Use orth to compute the rank of the matrix

A =

[

1 2 1 −3
−1 1 2 −3

2 −1 −3 4

]

24. Let x1 = col [ 1, 1, 0 ] and x2 = col [ 1, 1, 1 ].

(a) Apply GSOP to (x1,x2 ) to generate an orthonormal set (v1,v2 ).

(b) Find orthogonal projections of x = col [ 0, 1, 1 ] on S1 = span (x1 ) and on S2 =
span (x1,x2 ).

(c) Repeat (a) and (b) for x1 = col [ 1,−1, 0 ], x2 = col [ 0, 1, 1 ] and x = col [ 1, 1, 1 ]

25. In R
3 find the minimum distance from the origin to the plane

2x1 + 3x2 − x3 = −5

and also find the point on the plane closest to the origin. Hint: The given plane has
a normal n = (2, 3,−1).

26. A mirror lies in the plane defined by

−2x1 + 3x2 + x3 = 0

which defines a subspace of R
3. Find the reflected image of the vector x = col [ 5, 2,−3 ].

27. Consider C0([−1, 1 ],R) with the inner product given in (7.11).

(a) Apply GSOP to the set (1, t, t2) to generate an orthonormal set of functions.

(b) Find the orthogonal projection of g(t) = t3 on span ( 1, t, t2 ).

28. Let A ∈ Cn×n, and U ∈ Cn×1 be a proper subspace. Show that if U is A-invariant,
then U⊥ is Ah-invariant.

29. (a) Find a least squares solution to
[

1 2
−1 0

1 −1

]

[

x1

x2

]

=

[

4
−2

6

]

(b) Use MATLAB command x=pinv(A)*b to verify your result.

30. Consider the linear equation
[

1 1 2
−1 1 0

1 0 1

]

x =

[

0
2
2

]

(a) Characterize all least squares solutions xLS of the given equation.
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(b) Among all least squares solutions, find the one with minimum norm.

31. (a) In the xy plane plot the locus of all vectors (points) of the form x = p+c q, c ∈ R,
where

p =

[

1
1

]

, q =

[

1
0

]

(b) Determine geometrically the value of c such that ‖p + cq ‖ is minimum.

(c) Formulate and solve the problem in part (b) as a least-squares problem.

32. (a) Find a, b, c which minimize
∫ 1

−1

(t3 − a − bt − ct2)2 dt

(b) Formulate and solve the problem as a least-squares problem in C0([−1, 1], R).

33. Let f(t) be a continuous function defined on an interval 0 ≤ t ≤ 1. Consider the
problem of approximating f by an (n − 1)st degree polynomial

p(t) =

n−1
∑

k=0

pktk

whose coefficients pk, k = 0, . . . , n − 1, are to be determined such that the error

E =

∫ 1

0

[p(t) − f(t)]2 dt

is minimized.

(a) Obtain a system of n linear equations in the n unknowns pk, k = 0, . . . , n− 1, by
setting

∂E

∂pk
= 0 , k = 0, . . . , n − 1

Show that the coefficient matrix of the resulting linear system Hp = b is a
Hilbert matrix of order n.

(b) Interpret the problem as a least-squares problem.

34. Let

u1 =
1√
2

[

1
1
0

]

, u2 =
1√
2

[

0
1
1

]

, x =

[

1
1
1

]

(a) Find the orthogonal projections x1 and x2 of x on span (u1) and span (u2).

(b) Find the orthogonal projection x12 of x on span (u1,u2). Is x12 = x1 + x2?
Explain.

35. Refer to Example 7.16. Obtain the Fourier series of the function

f(t) = t , 0 ≤ t ≤ 1

Use MATLAB to compute and plot the Fourier series truncated at k = 0, 1, 5, 10.

36. Let (xi, i = 1, . . . , k) be an orthonormal set in an inner product space X. Show that
for any x ∈ X

k
∑

i=1

| 〈x |xi 〉 |2 ≤ ‖x ‖2

The inequality above is known as the Bessel’s inequality and is true whether X is
finite or infinite dimensional.


