
Chapter 8

Unitary and Hermitian Matrices

8.1 Unitary Matrices

A complex square matrix U ∈ C
n×n that satisfies

UhU = UUh = I

is called unitary. If U is a real unitary matrix then

U tU = UU t = I

and is U called orthogonal. Equivalently, a complex matrix U is unitary if U−1 =
Uh, and a real matrix is orthogonal if U−1 = U t. Note that the columns of an n× n
unitary (orthogonal) matrix form an orthonormal basis for C

n×1 (Rn×1).
If U is unitary, then

〈Ux |Uy 〉 = xhUhUy = xhy = 〈x |y 〉 for all x,y ∈ C
n×1

Consequently, ‖Ux ‖ = ‖x ‖ for all x ∈ C
n×1, and if {x1, . . . ,xk } is an orthonormal

set, then so is {Ux1, . . . , Uxk }. Also,

θ(Ux, Uy) = θ(x,y)

for all x,y ∈ C
n×1. In other words, a mapping by a unitary transformation preserves

norms and angles.

Example 8.1

It can easily be verified that

R =
1√
2

[

1 −1
1 1

]

is an orthogonal matrix.

Let

x =

[

x1

x2

]

, y = Rx =

[

y1

y2

]

=
1√
2

[

x1 − x2

x1 + x2

]

Then

‖y ‖2 =
(x1 − x2)

2 + (x1 + x2)
2

2
= x2

1 + x2
2 = ‖x ‖2
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270 Unitary and Hermitian Matrices

Expressing R as

R =

[

cos θ − sin θ
sin θ cos θ

]

, θ =
π

4

we observe that the transformation y = Rx corresponds to a counterclockwise rotation
in the plane by an angle of θ = π/4 (see Example 5.3).

If

R1 =

[

cos θ1 − sin θ1

sin θ1 cos θ1

]

and R2 =

[

cos θ2 − sin θ2

sin θ2 cos θ2

]

are two such rotation matrices corresponding to conterclockwise rotations by θ1 and θ2,
then we expect that R = R2R1 should also be a rotation matrix corresponding to a
conterclockwise rotation by θ = θ1 + θ2. Indeed, simple trigonometric identities give

R =

[

cos θ1 − sin θ1

sin θ1 cos θ1

] [

cos θ2 − sin θ2

sin θ2 cos θ2

]

=

[

cos θ2 cos θ1 − sin θ2 sin θ1 − cos θ2 sin θ1 − sin θ2 cos θ1

cos θ2 sin θ1 + sin θ2 cos θ1 cos θ2 cos θ1 − sin θ2 sin θ1

]

=

[

cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]

Note that R is also an orthogonal matrix.

Rotation matrices in the 3-space can be defined similarly (see Exercise 8.3).

If U is a unitary matrix, then

1 = det (UhU) = (det Uh)(det U) = (det U)∗(det U) = | det U |2

so that | det U | = 1. If U is orthogonal then det U is real, and therefore

det U = ∓1

As a simple example, the reader can verify that det U = 1 for the rotation matrix in
Example 8.1.

Structure of unitary matrices is characterized by the following theorem.

Theorem 8.1 Let U ∈ C
n×n be a unitary matrix with eigenvalues λ1, . . . , λn. Then

a) |λi | = 1, i = 1, . . . , n

b) there exists a unitary matrix P ∈ C
n×n such that

P hUP = D = diag [ λ1, . . . , λn ]

Proof We use induction on n.
For n = 1, U = u (a scalar) with λ = u. Then UhU = u∗u = |u |2 = 1, and the

result is trivially true with P = 1 and D = u.
Suppose that (a) and (b) are true for all unitary matrices of order n−1, and consider

a unitary matrix U = U1 of order n. Let λ1 be an eigenvalue of U , and let v1 be a unit
eigenvector (scaled to have unity norm) associated with λ1. Choose V1 such that

P1 = [v1 V1 ]
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is a unitary matrix. (Columns of V1 complete {v1} to an orthonormal basis for C
n×1.)

Then

v
h
1 V1 = 01×(n−1) and V h

1 v1 = 0(n−1)×1

from which we obtain

P h
1 U1P1 =

[

vh
1

V h
1

]

U1 [v1 V1 ] =

[

vh
1U1v1 vh

1 U1V1

V h
1 U1v1 V h

1 U1V1

]

=

[

λ1v
h
1v1 λ∗

1v
h
1V1

λ1V
h
1 v1 V h

1 U1V1

]

=

[

λ1 0

0 U2

]

Since

(P h
1 U1P1)

h(P h
1 U1P1) = P h

1 Uh
1 P1P

h
1 U1P1 = I

we have
[

λ∗
1λ1 0

0 Uh
2 U2

]

=

[

1 0

0 I

]

which implies that λ∗
1λ1 = 1, that is, |λ1 |2 = 1, and that U2 is unitary. Let U2 have the

eigenvalues λ2, . . . , λn. Then they are also eigenvalues of U = U1. Since U2 is of order
n−1, by induction hypothesis |λ2 |2 = · · · = | λn |2 = 1 and there exists a unitary matrix
P2 such that

P h
2 U2P2 = D2 = diag [ λ2, . . . , λn ]

Let

P = P1

[

1
P2

]

Then

P hUP =

[

1

P h
2

]

P h
1 U1P1

[

1
P2

]

=

[

1

P h
2

] [

λ1 0

0 U2

][

1
P2

]

=

[

λ1 0

0 D2

]

= D1

Theorem 8.1 simply states that eigenvalues of a unitary (orthogonal) matrix are
located on the unit circle in the complex plane, that such a matrix can always be
diagonalized (even if it has multiple eigenvalues), and that a modal matrix can be
chosen to be unitary (orthogonal).

Example 8.2

The matrix

U =
1√
2

[

1 i
i 1

]
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is unitary as

UhU =
1

2

[

1 −i
−i 1

][

1 i
i 1

]

=

[

1 0
0 1

]

Its characteristic equation

s2 −
√

2s + 1 = 0

gives the eigenvalues λ1,2 = (1 ∓ i)/
√

2. We observe that |λ1,2 | = 1 as expected. An
eigenvector associated with λ1 is found by solving

(U − λ1I)v =
1√
2

[

−i i
i −i

] [

v1

v2

]

=

[

0
0

]

as

v1 = col [ 1, 1 ]

Similarly, an eigenvector associated with λ2 is found by solving

(U − λ2I)v =
1√
2

[

i i
i i

] [

v1

v2

]

=

[

0
0

]

as

v1 = col [−1, 1 ]

Note that we need not look specifically for an eigenvector v2 that is orthogonal to v1;
eigenvectors of a unitary matrix associated with distinct eigenvalues are orthogonal (see
Exercise 8.11).

Normalizing the eigenvectors, we obtain a unitary modal matrix

P =
1√
2

[

1 −1
1 1

]

The reader can easily verify that

P hUP =
1√
2

[

1 + i
1 − i

]

8.2 Hermitian Matrices

Recall that a matrix A ∈ C
n×n is called Hermitian if Ah = A, and that a real

Hermitian matrix is symmetric.
The following theorem characterizes structure of Hermitian matrices.

Theorem 8.2 Let A ∈ C
n×n be a Hermitian matrix with eigenvalues λ1, . . . , λn.

Then

a) λ∗
i = λi, i = 1, . . . , n, that is, eigenvalues of A are real

b) there exists a unitary matrix P ∈ C
n×n such that

P hAP = D = diag [ λ1, . . . , λn ]
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Proof If v is a unit eigenvector of A associated with an eigenvalue λ, then

Av = λv

and

v
hA = v

hAh = (Av)h = (λv)h = λ∗
v

h

Premultiplying both sides of the first equality by vh, postmultiplying both sides of the
second equality by v, and noting that vhv = ‖v ‖2 = 1, we get

v
hAv = λ = λ∗

Hence all eigenvalues of A are real.

The existence of a unitary modal matrix P that diagonalizes A can be shown by

following almost the same lines as in the proof of Theorem 8.1, and is left to the reader

as an exercise.

Hence, like unitary matrices, Hermitian (symmetric) matrices can always be di-
agonalized by means of a unitary (orthogonal) modal matrix.

Example 8.3

The real symmetrix matrix

A =

[

5 2 2
2 2 1
2 1 2

]

has the characteristic polynomial d(s) = (s−1)2(s−7). We observe that the eigenvalues
are real.

Two linearly independent eigenvectors associated with the multiple eigenvalue λ1 = 1
can be found by solving

(A − λ1I)v =

[

4 2 2
2 1 1
2 1 1

]

v = 0

as

v11 =

[ −1
2
0

]

, v22 =

[ −1
0
2

]

Applying the Gram-Schmidt process to {v11,v12}, and normalizing the orthogonal eigen-
vector generated by the process, we obtain two orthonormal eigenvectors associated with
λ1 = 1 as

u11 =
1√
5

[ −1
2
0

]

, u12 =
1√
30

[ −2
−1

5

]

An eigenvector associated with λ2 = 7 is found as

v2 =

[

2
1
1

]
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Like the eigenvectors of a unitary matrix, eigenvectors of a Hermitian matrix associated
with distinct eigenvalues are also orthogonal (see Exercise 8.11). Therefore, we need
not specifically look for an eigenvector v2 that is orthogonal to v11 and v12. After
normalizing v2, we obtain a unit eigenvector associated with λ2 = 7 as

u2 =
1√
6

[

2
1
1

]

The reader can verify that the modal matrix

P = [ u11 u12 u2 ] =









− 1√
5

− 2√
30

2√
6

2√
5

− 1√
30

1√
6

0 5√
30

1√
6









is orthogonal and that

P tAP = diag [ 1, 1, 7 ]

8.3 Quadratic Forms

Let S ∈ R
n×n be a symmetric matrix and let x ∈ R

n×1. An expression of the form

q(x) = xtSx =
n

∑

i=1

n
∑

j=1

sijxixj (8.1)

is called a quadratic form in x. Note that q(x) is a scalar for every x ∈ R
n×1.

Clearly q(0) = 0. If q(x) > 0 for all x 6= 0, then q(x) is said to be positive
definite. If q(x) ≥ 0 for all x, and q(y) = 0 for at least one y 6= 0, then q(x) is
said to be positive semi-definite. q(x) is said to be negative definite (negative
semi-definite) if −q(x) is positive definite (positive semi-definite), and indefinite if it
is neither positive definite nor negative definite.

A real symmetric matrix S is said to be positive definite (positive semi-definite,
negative definite, negative semi-definite, indefinite) if the associated quadratic form
q(x) = xtSx is positive definite (positive semi-definite, negative definite, negative
semi-definite, indefinite).

Example 8.4

The quadratic form

q1(x1, x2) = x2
1 + 2x1x2 + 4x2

2

involving the real variables x1 and x2 can be written as

q1(x) = [ x1 x2 ]

[

1 1
1 4

][

x1

x2

]

= x
tS1x

Note that the diagonal elements of S are the coefficients of the square terms x2
1 and x2

2,
and the symmetrically located off-diagonal elements are one half of the coefficient of the
cross-product term x1x2. Since

q1(x1, x2) = (x1 + x2)
2 + 3x2

2
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q1 is positive definite (q1 ≥ 0, and q1 = 0 implies x1 = x2 = 0). Therefore, the symmetric
matrix

S1 =

[

1 1
1 4

]

is also positive definite.

The quadratic form

q2(x1, x2) = x2
1 + 4x1x2 + 4x2

2 = (x1 + 2x2)
2

is positive semi-definite, because q2 ≥ 0 and q2 = 0 for any x1 = −2x2 6= 0. Hence the
matrix of q2

S2 =

[

1 2
2 4

]

is also positive semi-definite.

The quadratic form

q3(x1, x2) = x2
1 + 6x1x2 + 4x2

2

is indefinite, because q3(1, 0) = 1 > 0 and q3(1,−1) = −1 < 0. Thus its matrix

S3 =

[

1 3
3 4

]

is indefinite.

In Example 8.4 we established positive definiteness of a quadratic form by express-
ing it as a linear combination of square terms, which is not always as easy as it was
in this example. A systematic way of testing sign properties of a quadratic form is
based on Theorem 8.2, and is described below.

Since P tSP = D for some orthogonal matrix P , a change of the variables as

x = P x̃ (8.2)

transforms the quadratic form in (8.1) into

q(x) = x̃tP tSP x̃ = x̃tDx̃ = q̃(x̃) (8.3)

Since P is nonsingular, it represents a change of basis in R
n×1. Therefore, q and q̃

are equivalent and thus have the same sign property. Also, since

q̃(x̃) = x̃tDx̃ =

n
∑

i=1

λix̃
2
i

sign of q̃ is completely determined by the eigenvalues λi of S. We conclude that a
symmetric matrix (whose eigenvalues are real) is positive (negative) definite if and
only if all eigenvalues are positive (negative), positive (negative) semi-definite if and
only if all eigenvalues are nonnegative (nonpositive) and at least one eigenvalue is
zero, and indefinite if and only if it has both positive and negative eigenvalues.
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Example 8.5

The matrix S1 in Example 8.4 has the eigenvalues

λ1 = (5 +
√

13)/2 ≈ 4.3028 , λ2 = (5 −
√

13)/2 ≈ 0.6972

Since both eigenvalues are positive, S1 and hence q1 are positive definite.

S2 has the eigenvalues

λ1 = 4 , λ2 = 0

and therefore it is positive semi-definite.

The indefinite matrix S3 has a positive and a negative eigenvalue:

λ1 = (5 +
√

45)/2 ≈ 5.8541 , λ2 = (5 −
√

45)/2 ≈ −0.8541

8.3.1 Bounds of Quadratic Forms

Let S ∈ R
n×n be a symmetric matrix with real eigenvalues λ1, . . . , λn, and associated

orthonormal eigenvectors v1, . . . ,vn that form a basis for R
n×1. For an arbitrary

x ∈ R
n×1 expressed as

x =

n
∑

i=1

αivi

we have

‖x ‖2 =

n
∑

i=1

‖αivi ‖2 =

n
∑

i=1

|αi |2

Considering

xtSx =

n
∑

i=1

n
∑

j=1

αiαjv
t
iSvj =

n
∑

i=1

n
∑

j=1

αiαjλiv
t
ivj =

n
∑

i=1

λi |αi |2

we find that

λmin

n
∑

i=1

|αi |2 ≤ xtSx ≤ λmax

n
∑

i=1

|αi |2

or equivalently

λmin ‖x ‖2 ≤ xtSx ≤ λmax ‖x ‖2 (8.4)

where λmin and λmax are the minimum and and maximum eigenvalues of S. Clearly,
equality on either side holds if x equals the corresponding eigenvector. (8.4) estab-
lishes bounds on a quadratic form q(x) = xtSx. It also provides an alternative
explanation to the relation between sign-definiteness of a quadratic form and the
eigenvalues of its symmetric matrix.
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8.3.2 Quadratic Forms in Complex Variables

A quadratic form can also be formed by a complex vector z ∈ C
n×1 just by replacing

the real symmetric matrix S in (8.1) by a complex Hermitian matrix H . Thus a
quadratic form in z ∈ C

n×1 is

q(z) = zhHz =

n
∑

i=1

n
∑

j=1

hijz
∗
i zj (8.5)

where H ∈ C
n×n is Hermitian. Although z is complex, since

q∗(z) = (zhHz)h = zhHhz = zhHz = q(z)

the quadratic form in (8.5) is real. This allows us to extend the definitions of definite
and semi-definite quadratic forms in real variables and real symmetric matrices to
quadratic forms in complex variables and complex Hermitian matrices.

Example 8.6

Consider the quadratic form

q(z1, z2) = z
hHz = [ z∗

1 z∗
2 ]

[

1 i
−i 2

] [

z1

z2

]

= z∗
1z1 + iz∗

1z2 − iz1z
∗
2 + 2z∗

2z2

in the complex variables z1 and z2.
Rewriting the quadratic form as

q(z1, z2) = (z1 + iz2)
∗(z1 + iz2) + z∗

2z2 = | z1 + iz2 |2 + | z2 |2

we observe that q is positive definite. Thus the Hermitian matrix

H =

[

1 i
−i 2

]

of the quadratic form is also positive definite.
Note that by letting z1 = x1 + iy1 and z2 = x2 + iy2, we can express q as

q(z1, z2) = | (x1 − y2) + i(x2 + y1) |2 + | z2 |2

= (x1 − y2)
2 + (x2 + y1)

2 + x2
2 + y2

2

= x2
1 + y2

1 − 2x1y2 + 2x2y1 + 2x2
2 + 2y2

2

= Q(x1, x2, y1, y2)

which is a quadratic form in real variables.

Expressions similar to (8.3) and (8.4) can easily be derived for a quadratic form
in complex variables. With z = P z̃, where P is a unitary modal matrix of H , the
quadratic form q(z) = zhHz is transformed into

q(z) = z̃hP hHP z̃ = z̃hDz̃ = q̃(z̃) =

n
∑

i=1

λi| z̃i |2 (8.6)

Again, the sign properties of q(z) can be deduced from the eigenvalues of H . For
example, the Hermitian matrix of the quadratic form in Example 8.6 has the real
eigenvalues

λ1 = (3 +
√

5)/2 ≈ 2.6180 , λ1 = (3 −
√

5)/2 ≈ 0.3280
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Since both eigenvalues are positive we conclude that the quadratic form (and hence
its matrix) are positive definite.

Similarly, for q(z) = zhHz (8.4) becomes

λmin ‖ z ‖2 ≤ zhHz ≤ λmax ‖ z ‖2 (8.7)

where λmin and λmax are the minimum and and maximum eigenvalues of H .
Finally, we observe from Example 8.6 that a quadratic form in complex variables

is equivalent to a quadratic form in real variables (which are the real and imaginary
parts of the complex variables). To prove this statement in general, let

z = x + iy , H = S + iK

in (8.5), where x and y are real, S is a real symmetric matrix, and K is a real
skew-symmetric matrix. Then, noting that

xtKx = ytKy = 0 , xtSy = ytSx

q(z) can be expressed as

q(z) = (xt − iyt)(S + iK)(x + iy)

= xtSx− xtKy + ytKx + ytSy

= [xt yt ]

[

S −K
K S

] [

x
y

]

= Q(x,y)

(8.8)

involving real quantities only.
Since the quadratic forms q(x) and Q(y, z) in (8.8) are equivalent, the eigenvalues

of their matrices H = S + iK and

H̃ =

[

S −K
K S

]

(8.9)

must be related. This relation is studied in Exercise 8.12.

8.3.3 Conic Sections and Quadric Surfaces

Recall from analytic geometry that an equation of the form

s11x
2
1 + 2s12x1x2 + s22x

2
2 = 1

where not all coefficients are zero, defines a central conic in the x1x2 plane. A suitable
way to investigate the properties of such a conic is to rewrite the defining equation
in compact form as

xtSx = 1 (8.10)

with the obvious definitions of x and S.
Let S have the eigenvalues λ1 ≥ λ2 and an orthogonal modal matrix P such that

P tSP = D = diag [ λ1, λ2 ]

Then a change of coordinate system as x = P x̃ transforms the equation of the conic
into

x̃tDx̃ = λ1x̃
2
1 + λ2x̃

2
2 = 1

Depending on the signs of the (real) eigenvalues λ1 and λ2, we consider the following
distinct cases:
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a) λ1 ≥ λ2 > 0 (S positive definite): Letting a1 = 1/
√

λ1, a2 = 1/
√

λ2, the
equation of the conic takes the form

x̃2
1

a2
1

+
x̃2

2

a2
2

= 1

which represents an ellipse in the x̃1x̃2 plane with axes of length a1 and a2.

b) λ1 > λ2 = 0 (S positive semi-definite): Again, letting a1 = 1/
√

λ1, the equa-
tion becomes

x̃2
1 = a2

1

which represents two straight lines x̃1 = ∓a1.

c) λ1 > 0 > λ2 (S indefinite): With a1 = 1/
√

λ1, a2 = 1/
√
−λ2, we have

x̃2
1

a2
1

− x̃2
2

a2
2

= 1

which represents a hyperbola.

d) 0 ≥ λ1 ≥ λ2 (S negative definite or negative semi-definite): In these cases no
point in the x̃1x̃2 plane (and therefore, no point in the x1x2 plane) satisfies the
equation.

Note that the parabola, which is another conic, does not occur in any of the cases
considered above, because it is not a central conic. A more general equation, which
also includes the parabola, is considered in Exercise 8.28.

Example 8.7

Consider the equation

(10 − c)x2
1 + 2(6 + c)x1x2 + (10 − c)x2

2 = x
tSx = 1

where c is a real parameter, and

S =

[

10 − c 6 + c
6 + c 10 − c

]

, x =

[

x1

x2

]

The matrix S has the eigenvalues

λ1 = 16 , λ2 = 4 − 2c

and an orthogonal modal matrix

P =
1√
2

[

1 −1
1 1

]

which is independent of the parameter c. Thus the change of basis as in (8.2) transforms
the equation of the conic into

16x̃2
1 + (4 − 2c)x̃2

2 = 1

For c = 0, 2, 4, the equation becomes and represents

c = 0 : 16x̃2
1 + 4x̃2

2 = 1 : an elipse

c = 2 : 16x̃2
1 = 1 : two parallel lines

c = 4 : 16x̃2
1 − 4x̃2

2 = 1 : a hyporbala
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−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8

c=0 

c=2 c=4

Figure 8.1: Conics in Example 8.7

The loci of the points that satisfy the given equation for each case are shown in Figure

8.1. Note that the transformation in (8.2) corresponds to a counter-clock-wise rotation

of the coordinate axes by 45◦.

A three-dimensional version of (8.10) defines a quadric surface in the x1x2x3

space. As in the two-dimensional case, a change of coordinate system as x = P x̃
transforms the equation of the quadric into

x̃tDx̃ = λ1x̃
2
1 + λ2x̃

2
2 + λ3x̃

2
3 = 1

where, without loss of generality, we may assume λ1 ≥ λ2 ≥ λ3. Then we have the
following distinct cases:

a) λ1 ≥ λ2 ≥ λ3 > 0 (S positive definite): The quadric equation can be expressed
as

x̃2
1

a2
1

+
x̃2

2

a2
2

+
x̃2

3

a2
3

= 1

which represents an ellipsoid with axes of length a1, a2 and a3.

b) λ1 ≥ λ2 > λ3 = 0 (S positive semi-definite): Now the equation becomes

x̃2
1

a2
1

+
x̃2

2

a2
2

= 1

which represents an elliptic cylinder.

c) λ1 ≥ λ2 > 0 > λ3 (S indefinite): We have a hyperboloid of one sheet described
as

x̃2
1

a2
1

+
x̃2

2

a2
2

− x̃2
3

a2
3

= 1

d) λ1 > λ2 = λ3 = 0 (S positive semi-definite): The equation becomes

x̃2
1

a2
1

= 1

which represents two parallel planes.
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(a) (b) 

(c) 

Figure 8.2: Central quadric surfaces

e) λ1 > λ2 = 0 > λ3 (S indefinite): We have a hyperbolic cylinder described as

x̃2
1

a2
1

− x̃2
3

a2
3

= 1

f) λ1 > 0 > λ2 ≥ λ3 (S indefinite): The equation

x̃2
1

a2
1

− x̃2
2

a2
2

− x̃2
3

a2
3

= 1

represents a hyperboloid of two sheets.

g) 0 ≥ λ1 ≥ λ2 ≥ λ3 (S negative definite or negative semi-definite): The equation
is never satisfied.

The quadric surfaces corresponding to the above cases are illustrated in Figure 8.2,
where (a) contains an ellipsoid and a hyperboloid of two sheets, (b) a hyperboloid of
one sheet, and (c) an elliptic and a hyperbolic cylinder.

8.4 The Singular Value Decomposition

Many applications of linear algebra require knowledge of the rank of a matrix, con-
struction of bases for its row and column spaces or their orthogonal complements,
or computation of projections onto these subspaces. Such applications usually in-
volve matrices whose elements are given only approximately (e.g., as a result of some
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measurement). In such cases, approximate answers, together with a measure of ap-
proximation, make more sense than exact answers. For example, determining whether
a given matrix is close (according to a specified measure) to a matrix of defective rank
may be more significant than computing the rank of the given matrix itself. In the-
ory, the rank of a matrix can easily be computed using the Gaussian elimination.
However, as we noted in Example 4.4, it is not reliable when the matrix has nearly
linearly dependent rows (or columns). This may pose serious problems in practical
situations.

Singular value decomposition (SVD) is a computationally reliable method of trans-
forming a given matrix into a simple form, from which its rank, bases for its column
and row spaces and their orthogonal complements and projections onto these sub-
spaces can be computed easily. In the following we shall first prove the SVD Theorem
and then study its uses.

8.4.1 Singular Value Decomposition Theorem

Theorem 8.3 (The Singular Value Decomposition) Let A ∈ C
m×n. There ex-

ist unitary matrices U ∈ C
m×m and V ∈ C

n×n such that

UhAV = Σ =

[

Σ1 O
O O

]

(8.11)

where

Σ1 = diag [ σ1, . . . , σk ]

with σ1 ≥ · · · ≥ σk > 0 for some k ≤ m, n.

Proof AhA ∈ C
n×n is Hermitian, and since

x
hAhAx = (Ax)h(Ax) = ‖Ax ‖2 ≥ 0 for all x

it is at least positive semi-definite. Let the eigenvalues of AhA be

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
k > 0 = σ2

k+1 = · · · = σ2
n

and let

V = [ V1 V2 ]

be a unitary modal matrix of AhA, where V1 and V2 consist of the orthonormal eigenvec-
tors associated with the nonzero and zero eigenvalues. (If AhA is positive definite then
k = n, and V = V1.) Then

AhAV1 = V1Σ
2
1 =⇒ V h

1 AhAV1 = Σ2
1

and

AhAV2 = O =⇒ V h
2 AhAV2 = O =⇒ AV2 = O

Let

U1 = AV1Σ
−1
1



8.4 The Singular Value Decomposition 283

Since

Uh
1 U1 = Σ−1

1 V h
1 AhAV1Σ

−1
1 = Σ−1

1 Σ2
1Σ

−1
1 = I

columns of U1 are orthonormal. Choose U2 such that

U = [ U1 U2 ]

is unitary. (Columns of U2 complete the columns of U1 to an orthonormal basis for
C

m×1.) Then

UhAV =

[

Uh
1 AV1 Uh

1 AV2

Uh
2 AV1 Uh

2 AV2

]

=

[

Σ−1
1 V h

1 AhAV1 O
Uh

2 U1Σ1 O

]

=

[

Σ1 O
O O

]

= Σ

The non-negative scalars σi, i = 1, . . . , n, are called the singular values of A,
and the columns of V and U are called the right and left singular vectors of A,
respectively. Although the proof of Theorem 8.3 provides a constructive method, in
practice, the singular value decomposition of A is obtained by means of a different
algorithm which involves unitary transformations that do not require computation of
the eigenvalues and eigenvectors of AhA. The MATLAB command [U,S,V]=svd(A)

that computes the singular value decomposition of A uses such an algoritm.

The following results are immediate consequences of Theorem 8.3:

a) k = r, that is, the number of nonzero singular values is the rank of A.

b) A ∈ C
n×n is nonsingular if and only if all its singular values are positive.

c) The right singular vectors of A are the eigenvectors of AhA.

d) The left singular vectors of A are the eigenvectors of AAh.

e) AhA and AAh have the same nonzero eigenvalues, σ1, . . . , σk.

f) If A = UΣV h then Ah = V ΣhUh. Thus A and Ah have the same nonzero
singular values.

g) If A ∈ C
n×n is Hermitian with (real) eigenvalues λi, i = 1, . . . , n, then its

singular values are σi = |λi |, i = 1, . . . , n.

(a) follows from (8.11) on noting that U and V are nonsingular, and (b) is a direct
consequence of (a). (c) is the definition used in the proof of Theorem 8.3. (d) follows
from

AAhU = UΣV hV ΣhUhU = UΣΣh

(e) and (f) are obvious. Finally, (g) is a result of the fact that if A is Hermitian with
eigenvalues λi then AhA = A2 has the eigenvalues λ2

i , so that singular values of A

are σi =
√

λ2
i = |λi |.

The following corollary of Theorem 8.3 characterizes various subspaces associated
with a matrix. The proof is left to the reader (see Exercise 8.20).
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Corollary 8.3.1 Let A ∈ C
m×n have the singular value decomposition

A = UΣV h = [ U1 U2 ]

[

Σ1 O
O O

] [

V h
1

V h
2

]

= U1Σ1V
h
1

Then

a) im (U1) = im (A)

b) im (U2) = ker (Ah)

c) im (V1) = im (Ah)

d) im (V2) = ker (A)

Thus U1U
h
1 is the orthogonal projection matrix on im (A), U2U

h
2 is the orthogonal

projection matrix on ker(Ah), etc.
As a consequence of Corollary 8.3.1 we also have

C
m×1 = im (U1)

⊥
⊕ im (U2) = im (A)

⊥
⊕ ker (Ah)

and the dual relation

C
n×1 = im (V1)

⊥
⊕ im (V2) = im (Ah)

⊥
⊕ ker (A)

where the symbol
⊥
⊕ denotes a direct sum decomposition into orthogonal subspaces.

Example 8.8

Let us find the singular value decomposition of

A =

[

2 0
1 1
0 2

]

Eigenvalues of

AtA =

[

5 1
1 5

]

are λ1 = 6 and λ2 = 4. Hence

σ1 =
√

6 , σ2 = 2

An orthogonal modal matrix of AtA can be found as

V = V1 =

[

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]

Letting

U1 = AV1Σ
−1
1 =





1/
√

3 1/
√

2

1/
√

3 0

1/
√

3 −1/
√

2
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and completing the columns of U1 to an orthonormal basis for R
3×1, the singular value

decomposition of A is obtained as

A = UΣV t

=





1/
√

3 1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 −1/
√

2 1/
√

6









√
6 0

0 2
0 0





[

1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]

The reader can verify that

AAt =

[

4 2 0
2 2 2
0 2 4

]

has the eigenvalues λ1 = 6, λ2 = 4, λ3 = 0, and that columns of U are orthonormal
eigenvectors of AAt.

Finally, from

A
e.c.o.−→

[

2 −2
2 0
2 2

]

e.c.o.−→ U1

we observe that im (A) = im (U1), verifying the result of Corollary 8.3.1(a). Other results

of the corollary can be verified similarly.

8.4.2 The Least-Squares Problem and The Pseudoinverse

Corollary 8.1 is especially useful in solving least-squares problems. Recall that the
linear system

Ax = y (8.12)

has a solution if and only if y ∈ im (A). If not, we look for solution(s) of the consistent
system

Ax = yA (8.13)

where yA is the orthogonal projection of y on im (A). Such solutions are called
least-square solutions as they minimize the squared error ‖Ax − y ‖2

2.
Let A have the singular value decomposition

A = UΣV h = U1Σ1V
h
1

Then the orthogonal projection of y on im (A) is

yA = U1U
h
1 y

and (8.13) becomes

U1Σ1V
h
1 x = U1U

h
1 y (8.14)

It is left to the reader (Exercise 8.22) to show that the above m×n system is equivalent
to the r × n system

V h
1 x = Σ−1

1 Uh
1 y (8.15)
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In other words, the least-squares solutions of (8.12) are precisely the solutions of
(8.15). In particular,

x = φLS = V1Σ
−1

1 Uh
1 y = A†y (8.16)

is a least-squares solution with minimum 2-norm (Exercise 8.22). Note that φLS can
be written in open form as

φLS =
uh

1y

σ1

v1 + · · · + uh
ry

σr

vr (8.17)

Consider the matrix

A† = V1Σ
−1

1 Uh
1 (8.18)

that appears in (8.16). Since

AA†A = U1Σ1V
h
1 V1Σ

−1

1 Uh
1 U1Σ1V

h
1 = U1Σ1V

h
1 = A

A†AA† = V1Σ
−1

1 Uh
1 U1Σ1V

h
1 V1Σ

−1

1 Uh
1 = V1Σ

−1

1 Uh
1 = A†

it follows that A† is a generalized inverse of A, called the Moore-Penrose gener-
alized inverse or the pseudoinverse of A. An interesting property of A† is that
since

A†A = V1Σ
−1
1 Uh

1 U1Σ1V
h
1 = V1V

h
1

AA† = U1Σ1V
h
1 V1Σ

−1

1 Uh
1 = U1U

h
1

A†A and AA† are both Hermitian.1 Moreover, A† reduces to a left inverse when
r(A) = n (in which case V1V

h
1 = In), to a right inverse when r(A) = m (in which

case U1U
h
1 = Im), and to A−1 when A is square and nonsingular.

Example 8.9

Consider a linear system with

A =

[

5 0 5
1 1 2
0 5 5

]

, y =

[

4
−15

2

]

Following the procedure of Section 7.4.2, the orthogonal projection of y on im (A) is
computed as

R =

[

5 0
1 1
0 5

]

, yA = R(RtR)−1Rt =

[

1
0

−1

]

The general solution of Ax = yA is then obtained as

x =

[

0.2
−0.2

0.0

]

+ c

[ −1
−1

1

]

1In fact, ÂG = A† is the unique generalized inverse such that ÂGA and AÂG are both Hermitian.
We will not prove this fact.
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which characterizes all least-squares solutions. Among these least-squares solutions

x = φLS =

[

0.2
−0.2

0.0

]

(corresponding to c = 0) has the minimum 2-norm.
The singular value decomposition of A produces

Σ = diag [ 9, 5, 0 ]

U =
1

3
√

6





5 3
√

3
√

2

2 0 −5
√

2

5 −3
√

3
√

2



 , V =
1√
6





1
√

3
√

2

1 −
√

3
√

2

2 0 −
√

2





Then the pseudoinverse of A is obtained as

A† =
1√
6





1
√

3

1 −
√

3
2 0





[

9 0
0 5

]−1
1

3
√

6

[

5 2 5

3
√

3 0 −3
√

3

]

=
1

810

[

106 10 −56
−56 10 106

50 20 50

]

and the expression in (8.16) gives the same minimum norm least-squares solution as
obtained above. (Alternatively, (8.17) produces the same solution.)

The results can be checked using the MATLAB commands [U,S,V]=svd(A), which

produces the singular value decomposition of A, and API=pinv(A), which computes the

pseudoinverse of A. The reader is also urged to verify that A†A and AA† are both

symmetric.

8.4.3 The SVD and Matrix Norms

Recall that

‖A ‖p = max
‖x ‖p=1

{ ‖Ax ‖p }

is the matrix norm subordinate to the p-vector norm. Since

‖Ax ‖2
2 = xhAhAx ≤ λmax(A

hA) ‖x ‖2

with equality holding for the eigenvector corresponding to λmax(A
hA), we find that

‖A ‖2 =
√

λmax(AhA) = σ1 (8.19)

This is a significant result, which states that the matrix norm subordinate to the
Euclidean vector norm is its largest singular value.

An equally significant result, which is left to the reader to prove (Exercise 8.25),
is that

‖A ‖F =
√

σ2
1 + · · · + σ2

r (8.20)
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To appreciate the significance of (8.20), let

A′ = UΣ′V h

where

Σ′ =

[

Σ′
1 O

O O

]

with Σ′
1 = diag [ σ1, . . . , σq ] and q < r. Then r(A′) = q and

‖A − A′ ‖F =
√

σ2
q+1 + · · · + σ2

r (8.21)

Moreover, if B is any other matrix with r(B) = q then

‖A − B ‖F ≥ ‖A − A′ ‖F

Thus A′ is the best rank-q approximation to A in Frobenius norm.2

Example 8.10

Consider the following matrix generated by the MATLAB command A=rand(3,3).

A =

[

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

]

The command [U,S,V]=svd(A) produces

S =

[

1.3485 0 0
0 0.1941 0
0 0 0.0063

]

in addition to U and V that are not shown here. Since all singular values of A are
nonzero, we conclude that A is nonsingular, that is, it has rank r(A) = 3. However, the
third singular value is quite small compared to the others, which suggests that A is close
to a rank-2 (i.e., singular) matrix.

Let

Q =

[

1.3485 0 0
0 0.1941 0
0 0 0

]

and

B = UQV t =

[

0.4065 0.3568 0.1398
0.8953 0.8114 0.2023
0.0589 0.0088 0.1985

]

Then B has rank r(B) = 2 (which can be verified by MATLAB), and is the closest
rank-2 matrix to A in Frobenius norm. The command norm(A-B,’fro’) computes the
Frobenius norm of the difference of A and B as

‖A − B ‖F = 0.0063

as expected.

2The proof of this result is beyond the scope of this book.
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Let A be a nonsingular matrix of order n having a singular value decomposition

A = UΣV h

where Σ = diag [ σ1, . . . , σn ] with σ1 ≥ · · · ≥ σn > 0. Then

A−1 = V Σ−1Uh (8.22)

which shows that A−1 has the singular values σ−1
n ≥ · · · ≥ σ−1

1 > 0.3 Thus

‖A−1 ‖2 = σ−1
n

The ratio

µ =
σ1

σn

= ‖A ‖2 ‖A−1 ‖2 ≥ 1

is called the condition number of A, and is a measure of linear independence of the
columns of A. The larger the condition number of a matrix, the closer it is to being
singular.

Example 8.11

The matrix

A =

[

0.2676 0.5111 0.7627
0.6467 0.6931 0.5241
0.7371 0.6137 0.1690

]

has the singular values

σ1 = 1.6564 , σ2 = 0.5411 , σ3 = 0.0001

as calculated and displayed up to the fourth decimal digit by MATLAB.
The wide separation of the singular values indicate that A is nearly singular. Indeed,

the condition number of A, computed by the MATLAB command cond(A) as 4

µ = 1.6305e + 004

implies that A is badly conditioned, and that A−1 has large element values of the order

of 104. The reader can verify this observation by computing A−1 using MATLAB.

8.5 Exercises

1. (a) Verify that the following matrices are unitary.

(b) Find a unitary modal matrix for each of these matrices and diagonalize them.

(c) Use MATLAB command eig to verify your results in part (b).

A =

[

1/2 −
√

3/2
√

3/2 1/2

]

, B =

[

0 i

−i 0

]

, C =

[

0 0 1
0 1 0
1 0 0

]

3The expression in (8.22) is similar to the singular value decomposition of A−1 except that its
singular values are in ascending order.

4The difference between µ and σ1/σ3 is due to the limited number of digits used to display the
values.
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2. Prove that the product of two unitary matrices is unitary. Verify this result for the
matrices A an B in Exercise 8.1.

3. In the xyz space a counterclockwise rotation about the z axis by an angle of θz is
represented by the matrix

Rz =

[

cos θz − sin θz 0
sin θz cos θz 0

0 0 1

]

(a) Determine the structure of the rotation matrices Ry and Rx about the y and x
axes.

(b) Show that Rx, Ry and Rz are orthogonal.

(c) Characterize an invariant subspace for each of Rx, Ry and Rz.

4. Let

A =













0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0













n×n

(a) Show that A is orthogonal.

(b) Find the eigenvalues and eigenvectors of A.

(c) Find a unitary modal matrix and the Jordan form of A.

5. Use MATLAB command eig to verify your answer to Exercise 8.4 for n = 2, 3, 4.

6. Let b be a unit vector. Show that A = I − bbt is a symmetric projection matrix.

7. Prove the Schur’s theorem: Let A be an n×n complex matrix. There exists a unitary

matrix U such that UhAU is an upper triangular matrix with diagonal elements being

the eigenvalues of A. Hint: Refer to Exercise 5.13.

8. A ∈ Cn×n is said to be an involution if A2 = I . Show that any two of the following
imply the third.

(a) A is Hermitian

(b) A is unitary

(c) A is an involution.

9. Verify the result of Exercise 8.8 for the matrices B and C in Exercise 8.1.

10. Prove that a Hermitian matrix A has a unitary modal matrix, and thus complete the
proof of Theorem 8.2. Hint: Let v1 be a unit eigenvector of A = A1 associated with
some eigenvalue λ1. Choose V1 such that P1 = [v1 V1 ] is unitary, and consider
P h

1 AP1.

11. (a) Show that eigenvectors of a unitary matrix associated with distinct eigenvalues
are orthogonal.

(b) Show that eigenvectors of a Hermitian matrix associated with distinct eigenvalues
are orthogonal.
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12. Show that if λ is an eigenvalue of the Hermitian matrix H = S + iK then it is also an
eigenvalue of H̃ in (8.9) and vice versa. Hint: Let v = u + iw be an eigenvector of H
associated with λ and consider the real and imaginary parts of the expression

(λI − H)v = 0

13. Let S be an n×n real symmetric matrix with an orthogonal modal matrix Q and the
diagonal Jordan form D. Find a modal matrix and the Jordan form of

H =

[

0 jS
−jS 0

]

in terms of Q and D. Hint: Let

H̃ =

[

Qt O
O Qt

] [

0 jS
−jS 0

] [

Q O
O Q

]

=

[

0 jD
−jD 0

]

and find eigenvalues and eigenvectors of H̃.

14. An n × n complex matrix A is said to be normal if it satisfies AhA = AAh. Clearly,
unitary and Hermitian matrices are normal.

(a) Show that a normal triangular matrix must be diagonal.

(b) Prove that A can be diagonalized by a unitary similarity transformation if and
only if it is normal. Hint: To prove sufficiency, use the Schur’s theorem and the
result of part (a).

15. Verify the result of Exercise 8.14 for the matrix

A =

[

2 + i 1
−1 2 + i

]

which is neither unitary nor Hermitian.

16. Investigate the sign properties of the following quadratic forms.

(a) q(x, y) = 2x2 + 8xy + 2y2

(b) q(x1, x2, x3) = 2x2
1 + x2

2 + 7x2
3 − 2x1x2 + 2x1x3 − 4x2x3

(c) q(z1, z2) = 2|z1|2 + |z2|2 + 2 Im (z1z
∗
2)

(d) q(x1, x2, x3) = x2
1 + x2

2 + 2x1x2 + 2x1x3 + 2x2x3

17. Let A ∈ C
m×n. Prove the following.

(a) AhA and AAh are non-negative-definite.

(b) AhA is positive definite if and only if r(A) = n.

(c) AAh is positive definite if and only if r(A) = m.

18. (a) Show that

Q =

[

2 1 0
1 2 1
0 1 2

]

is positive definite.

(b) Show that 〈x |y 〉Q = xtQy is an inner product in R
3×1.

(c) Apply GSOP to (e1, e2, e3) to generate an orthogonal basis for R
3×1, where

orthogonality is defined with respect to 〈 · | · 〉Q.
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(d) Find the orthogonal projection of e3 on span (e1, e2).

19. Obtain singular value decompositions of

A =

[

1 1
−1 1

]

, B =

[

1 1 1
1 −2 1

]

, C =







1 1 0
0 1 1
1 1 0
0 1 1







(a) by hand,

(b) by using MATLAB.

20. Prove Corollary 8.1. Hint: C
m×1 = im (U1)

⊥
⊕ im (U2) and C

n×1 = im (V1)
⊥
⊕ im (V2).

21. Let

A =

[

−1 i
−i −1

]

Obtain the singular value decompositions of A and A100.

22. (a) Show that the systems in (8.14) and (8.15) have the same solution(s).

(b) Let x = φ be any solution of a consistent linear system Ax = y, and let φ0 be
the orthogonal projection of φ on ker (A). Prove that x = φ − φ0 is the unique
minimum 2-norm solution of Ax = y.

(c) Prove that x = φLS = V1Σ
−1
1 Uh

1 y is the minimum 2-norm least-squares solution
of Ax = y.

23. (a) Find all least-squares solutions of Ax = y, where

A =







1 1 0
1 2 1
1 3 2
0 1 1







, y =







9
−9

9
−9







(b) Among all least-squares solutions find the one with minimum Euclidean norm.

(c) Use the MATLAB command x=pinv(C)*y to verify your answer in part (b).

24. Show that the minimum 2-norm least squares solution to Cx = y, where C is as in
Exercise 8.19 and y = col [ y1, y2, y3, y4 ] is given by

x = φLS =
1

6

[

2y1 − y2 + 2y3 − y4

y1 + y2 + y3 + y4

−y1 + 2y2 − y3 + 2y4

]

Verify your result by computing the minimum norm least-squares solution of Cx =
y by using the MATLAB command x=pinv(C)*y for several randomly generated y

vectors.

25. (a) Prove (8.20). Hint: From

A = U1Σ1V
h
1 =

n
∑

k=1

σkukv
h
k

it follows that

aij =

r
∑

k=1

σkuikv∗
jk
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where

uk =







u1k

...
umk







and vk =







v1k

...
vnk







are the kth left and right singular vectors of A. Manipulate the expression

‖A ‖F =

m
∑

i=1

n
∑

j=1

aija
∗
ij =

m
∑

i=1

n
∑

j=1

(

r
∑

k=1

σkuikv∗
jk )(

r
∑

l=1

σluilv
∗
jl )

(b) Prove (8.21).

26. Generate a 4 × 3 random matrix D using the MATLAB command rand, and let
E = C + 0.001D, where C is the matrix in Exercise 8.19. Using MATLAB

(a) obtain the singular value decomposition of E,

(b) compute a rank-2 matrix F which is closest to E in Frobenius norm,

(c) compute ‖E − F ‖F and ‖E − C ‖F .

27. Let

A =

[

0.5055 0.6412 0.8035
0.1693 0.0162 0.6978
0.5247 0.8369 0.4619

]

Using MATLAB

(a) Compute the condition number and the inverse of A.

(b) Find the best rank-1 and rank-2 approximations A1 and A2 of A in Frobenius
norm. Compute also ‖A− A1 ‖F and ‖A− A2 ‖F , and comment on the results.

28. (Application) The most general expression of a conic in the x1x2 plane is

s11x
2
1 + 2s12x1x2 + s22x

2
2 + 2r1x1 + 2r2x2 = 1

Let the equation be expressed in compact form as

x
tSx + 2rt

x = 1

If S = O and r = 0, then the solution set is empty. If S = O and r 6= 0, then the
conic degenerates into a straight line.

Suppose S 6= O. Let S have the eigenvalues λ1 ≥ λ2 and an orthogonal modal matrix
P such that P tSP = D = diag [ λ1, λ2 ]. Then a change of the coordinate system as

x = P x̃− xo , x̃ = P t(x + xo) (8.23)

transforms the equation of the conic into

x̃
tDx̃ + 2(r − Sxo)

tP x̃ = 1 + 2rt
xo − x

t
oSxo

The transformation in (8.23) corresponds to a rotation of the coordinate axes, followed
by a shift of the origin as illustrated in Figure 8.3. The purpose of shifting the origin
of the coordinate system after the rotation is to eliminate, if posible, the linear term
2(r − Sxo)

tP x̃ so that the equation takes the form of that of a central conic.

The following cases need to be considered:
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Figure 8.3: The coordinate transformation in (8.23)

(a) λ1 ≥ λ2 > 0. In this case D is nonsingular. Show that, a choice of xo = S−1r,
reduces the equation of the conic into

x̃2
1

a2
1

+
x̃2

2

a2
2

= 1

which represents an ellipse in the x̃1x̃2 plane.

(b) λ1 > 0 = λ2. This case is more difficult to analyze than the previous one, because
S is singular now. Show that a suitable choice of xo reduces the equation of the
conic into either

x̃2
1 = c2

which represents two parallel lines, or into

cx̃2
1 + x̃2 = 0

which represents a parabola.

(c) λ1 > 0 > λ2. As in case (a), choose xo = S−1r. Work out the details to show
that, depending on the value of 1 + rtS−1r, the equation either represents two
intersecting straight lines or a hyperbola.

(d) λ1 = 0 > λ2. This case is similar to case (b). Show that the solution set may be
empty, consist of a single point, two parallel straight lines, or a parabola.

(e) 0 > λ1 ≥ λ2. This case is similar to case (a). Show that in addition to being an
ellipse, the solution set may also be empty or consist of a single point.

29. (a) Use MATLAB to plot the graph of the conic described by

x2
1 + px1x2 + 2x2

2 − 3x2 − 6 = 0

in a rectangular region −5 ≤ x1, x2 ≤ 5 of the x1x2 plane for each of the values
p = −1, p = 2

√
2 and p = 4.

(b) Transform the equation of the conic into one of the standard forms in Exercise
8.28 for each of the given values of the parameter p.


